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Iterative Multiuser Detection and Decoding
with Spatially Coupled Interleaving

Keigo Takeuchi,Member, IEEEand Shuhei Horio

Abstract—Spatially coupled (SC) interleaving is proposed
to improve the performance of iterative multiuser detection
and decoding (MUDD) for quasi-static fading multiple-input
multiple-output systems. The linear minimum mean-squareder-
ror (LMMSE) demodulator is used to reduce the complexity and
to avoid error propagation. Furthermore, sliding window MU DD
is proposed to circumvent an increase of the decoding latency
due to SC interleaving. Theoretical and numerical analysesshow
that SC interleaving can improve the performance of the iterative
LMMSE MUDD for regular low-density parity-check codes.

Index Terms—spatial coupling, multiple-input multiple-output
(MIMO) systems, iterative multiuser detection and decoding,
sliding window decoding, density evolution.

I. I NTRODUCTION

SPATIAL coupling is a sophisticated technique for boosting
the belief-propagation (BP) decoding threshold up to the

optimal one [1]. The basic idea of spatially coupled (SC) low-
density parity-check (LDPC) codes in [1] is as follows: An SC
LDPC code is constructed as a chain ofL conventional LDPC
codes. The point is to introduce an irregular structure at both
ends that allows the decoder to attain reliable informationat
the ends. When the code lengthM of each section in the chain
is sufficiently long, the reliable information can propagate
toward the center of the chain regardless of the chain length
L. The influence of the irregularity at both ends is negligible
when 1 ≪ L (≪ M ). Consequently, the BP-based iterative
decoding can achieve the optimal performance.

In this letter, spatial coupling is utilized to improve the per-
formance of BP-based iterative multiuser detection and decod-
ing (MUDD) for quasi-static fading multiple-input multiple-
output (MIMO) systems. One should not confuse the termi-
nology “spatial coupling” with coupling in the physical space.
Coupling is actually made in the time domain. Iterative MUDD
algorithms based on approximate BP have been proposed in
[2], [3] and analyzed via density evolution in the large-system
limit where the numbers of transmit and receive antennas
tend to infinity at the same rate [4]. These low-complexity
algorithms can achieve excellent decoding performance in the
large-system limit compared to non-iterative receivers. We pro-
pose SC interleaving to improve the performance of iterative
MUDD via an improvement of the decoding threshold.

The main contribution of this letter is to incorporate spa-
tial coupling into bit-interleaved coded modulation (BICM),
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Fig. 1. MIMO system.π and π−1 represent the SC interleaver and its
deinterleaver, respectively.

instead of encoding. It is possible to combine SC interleaving
with any code that allows the decoder to use efficient BP
decoding. This compatibility of SC interleaving is suitable for
practical systems that use several codes as options.

As related works, it was proposed in [5]–[8] to combine
spatial coupling with spread spectrum modulation. The main
difference between this letter and the previous works is that
practical codes with low decoding complexity are used in this
letter, whereas the uncoded case [5]–[7] or the information-
theoretically optimal codes [8] were considered in the previous
works. In [8], the code rate was controlled to avoid the
occurrence of error propagation. In this letter, we consider
LDPC codes with a fixed rate, and investigate the influence of
error propagation in iterative MUDD.

II. SYSTEM MODEL

A. MIMO System

We consider an MIMO system withK transmit antennas
andN receive antennas operating over a frequency-flat quasi-
static fading channel, shown in Fig. 1. A binary information
stream is encoded with a(dv, dc)-regular LDPC code of code
lengthM [9]. After SC interleaving, which will be presented
shortly, the interleaved stream is modulated and divided into
K data streams. Gray-mapped quadrature phase shift keying
(QPSK) C = {a + jb : a, b = ±1/

√
2} is used. The

obtained data symbols{xt = (x1,t, . . . , xK,t)
T ∈ CK} are

directly transmitted fromK transmit antennas at timet. The
corresponding received vectoryt ∈ CN is given by

yt = Hxt + nt, nt ∼ CN (0, N0IN ). (1)

In (1), {nt} denote independent additive white Gaussian noise
(AWGN) vectors with covarianceN0IN . The channel matrix
H = (h1, . . . ,hK) ∈ CN×K is assumed to be independent
of the time indext and to be known to the receiver. The
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former assumption, i.e. the assumption of quasi-static fading
is consistent with the latter assumption: It is possible forthe
receiver to estimate the channel matrix by utilizing the known
training symbols sent from the transmitter. For simplicity,
independent and identically distributed (i.i.d.) Rayleigh fading
is assumed: The channel matrixH has independent circularly
symmetric complex Gaussian (CSCG) random elements with
variance1/K. Note that there may be dependencies between
the elements ofH in practice.

B. Spatially Coupled Interleaver

We shall define an SC interleaver with section sizeM , chain
lengthL, and coupling widthW . The section sizeM is equal
to the code length of the used code. The overall length of
interleaving isML. The chain is coupled circularly, and each
section is connected to(W−1) neighboring sections uniformly
and randomly. We impose a constraint under which each data
symbol consists of bits in the same codeword, by defining
a constrained interleaver of lengthM that maps consecutive
integers{2i, 2i+ 1} to consecutive integers{2j, 2j + 1} for
i, j ∈ {0, . . . ,M/2 − 1}. This constraint simplifies density
evolution analysis. Input (respectively output) indexm ∈
M = {0, . . . ,M − 1} within sectionl ∈ L = {0, . . . , L− 1}
corresponds to the(Ml + m)th input (respectively output)
for the SC interleaver. See Fig. 2 for an example of the
SC interleaver. In particular, the SC interleaver withW = 1
reduces toL uncoupled random interleavers.

Definition 1 (SC Interleaver). An SC interleaverπ is a
bijection fromM × L onto M × L. Let {πin

l : l ∈ L} and
{πout

l : l ∈ L} denoteL independent random interleavers of
lengthM andL independent random constrained interleavers
of length M , respectively. For(m, l) ∈ M × L, the SC
interleaverπ(m, l) is given by

π(m, l) = (πout
l′ (πin

l (m)), l′), (2)

with l′ = (l− (⌊πin
l (m)/2⌋)W )L, in which(i)n ∈ {0, . . . , n−

1} denotes the remainder for the division ofi ∈ Z by n ∈ N.

A known sequence of length(W − 1)M is sent in the first
(W−1) sections. In general, the decoder can decode the code-
words in sections close to the first sections with smaller error
probability than in distant sections. WhenM is sufficiently
large, the reliable information at the first sections may spreads
over the whole system. Consequently, it is possible to decode
the codewords in distant sections with almost the same error
probability as in sections close to the first sections.

III. I TERATIVE MUDD

A. Sliding Window MUDD

SC LDPC codes can be efficiently decoded by sliding
window (SW) decoding [10]. We propose SW MUDD to
reduce the decoding delay compared to iterative MUDD with
parallel scheduling, in which messages are collectively sent
to the decoder (respectively demodulator) after estimating the
data symbols (respectively codewords) forall sections. In SW
MUDD, the codeword at sectionl is decoded in the order1

1 In order to avoid unnecessary latency, the codewords shouldbe sent in
the same order after transmission of a known sequence.

input side

output side

0

πin
l

5 0

πin
l+1

5 0

πin
l+2

50

πin
l-1

50

πin
l-2

5
l-2 l-1 l l+1 l+2

0 5
l-2

0 5
l-1

0 5
  l

0 5
l+1

0 5
l+2

πout
l πout

l+1 πout
l+2πout

l-1πout
l-2

Fig. 2. SC interleaver forM = 6 and W = 3. πin

l
and πout

l
denote

a random interleaver and a random constrained interleaver for section l,
respectively.

l = W − 1, L − 1,W, L − 2, . . .. In the decoding stage for
sectionl, we update log likelihood ratios (LLRs) exchanged
through the edges that are connected to the coded bits in
section l, shown by the solid edges in Fig. 2, whereas the
other LLRs are fixed to the current values. In each iteration,the
demodulator calculates LLRs and sends them to the decoder,
which uses the passed LLRs to calculate extrinsic LLRs to be
fed back to the demodulator. After convergence orI iterations,
the decoder outputs the decoding results, and the SW MUDD
proceeds to the next stage. Note that the SW MUDD is
suboptimal, since we do not update LLRs passed through the
edges that are connected to the following sections.

The extrinsic LLRs passed from the decoder toward the
demodulator are calculated by using the conventional sum-
product algorithm with the number of iterationsJ [9]. The
LLRs passed in the opposite direction are updated by using the
linear minimum mean-squared error (LMMSE) demodulator,
since the optimal demodulator is infeasible in terms of the
complexity. In this letter, we refer to iterations in the decoder
and in the MUDD as inner and outer iterations, respectively.

B. LMMSE Demodulator

Let Ldec
k,t ∈ C denote the a prioricomplexLLR for the

data symbolxk,t ∈ C fed back from the decoder in an outer
iteration round. The real and imaginary parts ofLdec

k,t corre-
spond to the LLRs for those of the data symbol, respectively.
In the initial outer iteration for the SW scheduling, the a
priori LLR is equal to that passed from the decoder in the
preceding stage if it exists. Otherwise, the LLR is set to zero.
The corresponding a priori probabilityp(xk,t) is given by
p(xk,t) = p(ℜ[xk,t])p(ℑ[xk,t]), in which

p

(

ℜ[xk,t] = ± 1√
2

)

=
e±ℜ[Ldec

k,t ]/2

eℜ[Ldec
k,t

]/2 + e−ℜ[Ldec
k,t

]/2
, (3)

where a positive LLR implies thatℜ[xk,t] = 1/
√
2 is more

likely. The real part of the mean̂xk,t with respect top(xk,t)
is given byℜ[x̂k,t] = 2−1/2 tanh(ℜ[Ldec

k,t ]/2). The a priori
probability and mean ofℑ[xk,t] are defined in the same
manner. Thus, the a priori variance(1− |x̂k,t|2) of the QPSK
symbolxk,t is given byσ2(ℜ[Ldec

k,t ],ℑ[Ldec
k,t ]), with

σ2(Lr, Li) = 1− 1

2

{

tanh2
(

Lr

2

)

+ tanh2
(

Li

2

)}

. (4)
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We focus on thekth symbol at timet, and shall derive the
LMMSE estimation ofxk,t based on theextrinsic information
{p(xk′,t) : k′ 6= k}. The use of the true a priori probability
p(xk′,t) results in the optimal nonlinear demodulator with
high complexity. In order to reduce the complexity, the a
priori probabilitiesp(xk′,t) for all k′ 6= k are approximated
by proper complex Gaussian distributions with meanx̂k′,t

and variance(1 − |x̂k′,t|2) that are equal to those ofxk′,t

for p(xk′,t), respectively. On the other hand,p(xk,t) is ap-
proximated by a CSCG distribution with unit variance. These
approximations result in the approximate posterior probability
density function (pdf) ofxk,t given by

p(xk,t|yt,H) =
1

πξk,t
exp

(

−|xk,t − x̄k,t|2
ξk,t

)

, (5)

with

x̄k,t = ξk,th
H
k Σ

−1
k,t



yt −
∑

k′ 6=k

hk′ x̂k′,t



 , (6)

ξk,t =
(

1 + hH
k Σ

−1
k,thk

)−1

. (7)

In these expressions,Σk,t is given by

Σk,t = N0IN +
∑

k′ 6=k

(1 − |x̂k′,t|2)hk′hH
k′ . (8)

Expression (5) implies that the complex LLRLdem
k,t ∈ C for

xk,t sent from the LMMSE demodulator to the decoder is
given by

Ldem
k,t = 2

√
2hH

k Σ
−1
k,t



yt −
∑

k′ 6=k

hk′ x̂k′,t



 , (9)

of which real and imaginary parts correspond to the LLRs for
those ofxk,t, respectively.

UnlessN0 is zero,soft information about the data symbols,
i.e. a finite LLR (9) is fed forward to the decoder. Note that
the LMMSE demodulator reduces to the zero-forcing (ZF)
demodulator whenN0 in (8) is approximated by a sufficiently
small value. Since the second term in (8) is not invertible for
N > K−1, the LLR (9) diverges when the ZF demodulator is
used. In other words,hard information about the data symbols
is sent to the decoder. The hard information may result in error
propagation, so that the LMMSE demodulator is used to avoid
error propagation in this letter.

IV. D ENSITY EVOLUTION

A. Asymptotic Analysis

We follow [4] to present the density evolution of the iterative
MUDD in the large-system limit after taking the infinite code
length limit M → ∞. In the large-system limit, the numbers
of transmit and receive antennas tend to infinity with their
ratio α = K/N kept constant. It is known that the large-
system analysis can provide a good prediction for the starting
location of the so-calledwaterfall regime.

Let pdecl (L) denote the asymptotic pdf of the real LLRs
emitted from the decoder for sectionl asM → ∞. The pdf
pdecl (L) can be analyzed with the Gaussian approximation
of the LLRs [9]. Thus, we mainly present the large-system
analysis of the demodulator.

B. LMMSE Demodulator

The analysis of the LMMSE demodulator is based on [11].
We focus on sectionl, and suppose that{pdecl′ (L) : l′ =
l, . . . , l +W − 1} have been fed back from the decoder. Let
(k, t) denote any couple that corresponds to indices included
in sectionl at the output side of the SC interleaver. It is proved
that the LLR (9) sent to the decoder is statistically equivalent
to that for the interference-free complex AWGN channel

zl = xl + nl, nl ∼ CN (0, σ2
l ), (10)

with xl ∈ C denoting the input symbol for sectionl. In (10),
the noise varianceσ2

l will be defined shortly. The complex
LLR LAWGN

l ∈ C for the AWGN channel (10) with the
uniform a priori probabilityp(xl) = 1/|C| is given by

LAWGN
l = 2

√
2
zl
σ2
l

. (11)

The distribution of the LLR (11) is statistically equivalent to
that of the original LLR (9) in the large-system limit, when
σ2
l is given as the solution to a fixed-point equation.

Theorem 1. Focus on sectionl, and suppose that{pdecl′ (L) :
l′ = l, . . . , l +W − 1} have been fed back from the decoder.
For any couple(k, t) that corresponds to indices included in
sectionl, the LLR (9) givenH, {x̂k′,t}, and xk,t = x con-
verges in distribution to (11) givenxl = x with probability 1
in the large-system limit after takingM → ∞. In evaluating
(11), σ2

l is given by the solution to the fixed-point equation,

σ2
l = α

(

N0 +
1

W

W−1
∑

w=0

MSEl+w(σ
2
l )

)

, (12)

with

MSEl′(σ
2
l ) =

∫

R2

σ2(Lr, Li)σ
2
l

σ2(Lr, Li) + σ2
l

pdecl′ (Lr)p
dec
l′ (Li)dLrdLi,

(13)
where the a priori varianceσ2(Lr, Li) is given by (4).

Proof: See Appendix A.
The function (13) corresponds to the average power of the

interference due to the data symbols associated with thel′th
codeword. Thus, the interference power tends to zero when
the mass ofpdecl′ (L) concentrates at±∞. This situation occurs
when thel′th decoder sends the correct hard decision.

Theorem 1 implies that the asymptotic multiuser efficiency
(ME) for sectionl is given byαN0/σ

2
l , and that the analysis

of the decoder for sectionl reduces to that of decoder for
the LDPC-coded AWGN channel (10) withW signal-to-noise
ratio (SNR) levels{1/σ2

l′ : l′ = l − (W − 1), . . . , l}. This
problem can be solved with the Gaussian approximation of
the LLRs [9]. See Appendix B for the details.

V. NUMERICAL RESULTS AND CONCLUDING REMARKS

The performance of the SC interleaving is compared to that
of the conventional random interleaving withW = 1. In all
numerical results, we used(3, 6)-regular LDPC codes [9].

Figure 3 shows the evolution of the asymptotic ME based
on Theorem 1. We used the parallel scheduling in order to
clarify the behavior of the iterative MUDD. ME close to one
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Fig. 3. Multiuser efficiency for the iterative LMMSE MUDD with parallel
scheduling forα = K/N = 1 and the number of inner iterationsJ = 100.

TABLE I
DECODING THRESHOLDS FOR SUFFICIENTLY LARGEL, α = K/N = 1,

AND THE NUMBER OF INNER ITERATIONSJ = 100.

W = 1 W = 2 W = 3 W = 4

Parallel 2.94 dB 2.47 dB 2.36 dB 2.31 dB
SW 2.94 dB 2.60 dB 2.55 dB 2.53 dB

implies that the inter-stream interference has been eliminated.
Consequently, the systems can enjoy the interference-free
performance. The ME for the conventional interleaving tends
to a value distant from one after sufficiently many iterations
when SNR1/N0 = 2.93 dB. On the other hand, the ME for the
SC interleaving can still converge to one for1/N0 = 2.47 dB,
whereas it cannot for1/N0 = 2.46 dB. These observations
imply that the decoding threshold is between2.46 dB and
2.47 dB, which is defined as the minimum SNR such that the
ME converges to one after infinite outer iterations.

Table I lists the decoding thresholds for the parallel and SW
scheduling. The chain lengthL was set to sufficiently large
values to eliminate the influence of the rate loss due to spatial
coupling. We find that the SC interleaving withW ≥ 2 can
improve the decoding threshold compared to the conventional
interleaving withW = 1. Furthermore, the SW scheduling
with a decoding delay ofO(W ) is slightly inferior to the
parallel scheduling with a delay ofO(L). This implies that
there is a tradeoff between the performance and the delay.

Figure 4 shows the average bit error rates (BERs) in
decoding for the16×16 MIMO system. Note that the iterative
MUDD converges quickly for the SNR regime above the
decoding thresholds, although the maximum numbers of inner
and outer iterations were set to100 and300, respectively. As a
fair comparison between the conventional and SC interleavers
in terms of the overall rate, we also plotted the BERs for the
case of no channel state information (CSI): A random training
binary sequence of length16384 was transmitted for the (non-
iterative) LMMSE channel estimation in the MIMO system
with the conventional interleaving. For the SC interleaving, on
the other hand,12.5 % of the sequence was used as the training
sequence for spatial coupling, and the remaining sequence
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Fig. 4. BER versus SNR1/N0 for the 16 × 16 MIMO system. Code
lengthM = 2048, and the numbers of inner and outer iterationsJ ≤ 100

and I ≤ 300, respectively. The vertical lines show the decoding thresholds
for the three schemes.

was utilized for the LMMSE channel estimation. We find that
the SC interleaving can provide performance gains of0.5 dB
and0.8 dB for the SW and parallel scheduling, respectively,
compared to the conventional random interleaving.

APPENDIX A
PROOF OFTHEOREM 1

In the proof of Theorem 1, we treat the channel matrixH

and the soft decisions{x̂k′,t} as deterministic variables, and
omit conditioning with respect to these variables. It is known
that the LLR for linear receivers converges in distributionto
a Gaussian random variable with probability1 in the large-
system limit, e.g., see [12], [13]. Thus, it is sufficient to
evaluate the conditional mean and variance of the LLR (9).

We first calculate the conditional meanE[Ldem
k,t |xk,t = x].

Substituting (1) into (9) yields

Ldem
k,t

2
√
2

= cHk,thkxk,t +
∑

k′ 6=k

cHk,thk′(xk′,t − x̂k′,t) + cHk,tnt,

(14)
with ck,t = Σ

−1
k,thk denoting the LMMSE filter. Expres-

sion (14) implies

E[Ldem
k,t |xk,t = x] = 2

√
2hH

k Σ
−1
k,thkx, (15)

where we have used the assumption that the a priori mean of
xk′,t is equal tox̂k′,t for all k′ 6= k.

We next evaluate the conditional varianceV[Ldem
k,t |xk,t].

Using the fact that{xk′,t} are regarded as independent random
variables for allk′ 6= k in the limit M → ∞, because of
random interleaving, we obtain

V

[

Ldem
k,t

2
√
2

∣

∣

∣

∣

∣

xk,t

]

=
∑

k′ 6=k

|cHk,thk′ |2(1− |x̂k′,t|2) +N0‖ck,t‖2

=cHk,tΣk,tck,t, (16)

with (8). Substitutingck,t = Σ
−1
k,thk, we obtain

V[Ldem
k,t |xk,t] = 8hH

k Σ
−1
k,thk. (17)
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As observed from (11), on the other hand, the LLR (11) con-
ditioned onxl = x for the AWGN channel has mean2

√
2x/σ2

l

and variance8/σ2
l . Thus, it is sufficient to prove that

hH
k Σ

−1
k,thk converges to1/σ2

l in the large-system limit, given
by the solution to the fixed-point equation (12).

It is worth noting that the quantityhH
k Σ

−1
k,thk is equal to

the signal-to-interference ratio (SIR)sirk,t for the LLR (9) in
the limit M → ∞. In fact, from (14) we obtain

sirk,t =
8|cHk,thk|2

V[Ldem
k,t |xk,t]

= hH
k Σ

−1
k,thk, (18)

where we have usedck,t = Σ
−1
k,thk and (16). The SIR (18)

depends on the channel matrixH and the soft decisions
{x̂k′,t} via (8). Tse and Hanly [11] used random matrix theory
to prove2 that the SIR (18) convergesin probability to a
deterministic value in the large-system limit. Here, we shall
present a bit stronger statement [14].

Theorem 2 ( [11]). Suppose thatσ2
l is the solution to the

fixed-point equation

σ2
l = α

(

N0 +

∫

xσ2
l

x+ σ2
l

dF (x)

)

, (19)

whereF (x) represents the limiting empirical distribution of
the a priori variances{1− |x̂k′,t|2},

F (x) = lim
K→∞

1

K − 1

∑

k′ 6=k

χ
(

1− |x̂k′,t|2 ≤ x
)

, (20)

with χ denoting the indicator function. Then, the SIR (18)
converges almost surely to1/σ2

l in the large-system limit.

Note that the fixed-point equation (19) for the MIMO
system is slightly different from the so-called Tse-Hanly equa-
tion [11] for code-division multiple-access (CDMA) systems,
because of the difference in power normalization.

In order to complete the proof of Theorem 1, we evaluate
the limiting empirical distribution (20). From (4), (20) reduces
to

F (x) = lim
K→∞

1

K − 1

∑

k′ 6=k

χ
(

σ2(ℜ[Ldec
k′,t],ℑ[Ldec

k′,t]) ≤ x
)

.

(21)
Recall that we are focusing on sectionl at the output side of
the SC interleaver. From the construction of the SC interleaver,
theW decoders from sectionsl to l +W − 1 feed the LLRs
back to the demodulator with equal probability in the large-
system limit. Furthermore, the assumption of the random bit-
interleaving implies that the LLRs{ℜ[Ldec

k′,t],ℑ[Ldec
k′,t] : k

′ 6=
k} are independent random variables, since we have first taken
the limit M → ∞. From the law of large numbers, the
empirical distribution (21) converges almost surely to

F (x) =
1

W

W−1
∑

w=0

∫

R2

χ
(

σ2(Lr, Li) ≤ x
)

·pdecl+w(Lr)p
dec
l+w(Li)dLrdLi, (22)

2 More precisely, they considered the case of real random variables.
However, the result is easily generalized to the case of complex random
variables.

which implies that the fixed-point equation (19) reduces to
(12). Note that the subscripts of the two pdfs in (22) coincide
with each other, since each data symbol consists of bits in the
same codeword.

APPENDIX B
DENSITY EVOLUTION FOR DECODER

We shall present the DE analysis for thelth decoder. In Sec-
tion IV-B, we have proved that the analysis of thelth decoder
reduces to that of the decoder for the LDPC-coded complex
AWGN channel withW SNR levels{1/σ2

l′ : l
′ = l − (W −

1), . . . , l}. Since it is infeasible to trace the exact distribution
of LLRs, we follow [9] to approximate the distributions of the
LLRs by Gaussian distributions. As shown in Appendix A, the
LLR (11) conditioned onxl has mean2

√
2xl/σ

2
l and variance

8/σ2
l . Since QPSK is used, the productsℜ[LAWGN

l ]ℜ[xl] and
ℑ[LAWGN

l ]ℑ[xl] are independent of each other, and follow the
real Gaussian distribution with mean2/σ2

l and variance4/σ2
l .

In the Gaussian approximation of LLRs, the distributions
of the LLRs are approximated by this constrained Gaussian
distributions.

Without loss of generality, we assume transmission of all-
zero codeword. We follow [9] to use the entropyh = ψ(m)
as the parameter that determines the constrained Gaussian
distribution, instead of meanm > 0, given by

ψ(m) =

∫

R

S

(

eL/2

eL/2 + e−L/2

)

1√
4πm

e−
(L−m)2

4m dL, (23)

whereS(p) denotes the binary entropy function

S(p) = −p log2 p− (1− p) log2(1− p). (24)

As seen from (3), the entropyh = ψ(m) is regarded as the
average entropy of a binary random variable characterized by
a Gaussian-distributed LLRL with meanm and variance2m.
Since (23) is monotonically decreasing, the inverse function
m = ψ−1(h) exists.

Let h(j)c,l denote the entropy for the LLR emitted from each
check node in inner iterationj. Recall that we are focusing
on thelth decoder. We approximate the pdf of the LLR by the
Gaussian pdf with meanψ−1(h

(j)
c,l ) and variance2ψ−1(h

(j)
c,l ).

Since each variable node sends to a check node the sum of
LLRs sent by the demodulator and by the other(dv − 1)
check nodes connected to the variable node, we evaluate the
entropyh(j)v,l,l′ for the LLR emitted from a variable node that
is connected to the AWGN channel with SNR1/σ2

l′ as

h
(j)
v,l,l′ = ψ

(

2

σ2
l′
+ (dv − 1)ψ−1(h

(j−1)
c,l )

)

, (25)

with h
(0)
c,l = 1. Thus, the average entropyh(j)v,l emitted from

the variable nodes is given by

h
(j)
v,l =

1

W

W−1
∑

w=0

ψ

(

2

σ2
l−w

+ (dv − 1)ψ−1(h
(j−1)
c,l )

)

. (26)

Here, we approximate the distribution of the LLRs emit-
ted from the variable nodes byN (ψ−1(h

(j)
v,l ), 2ψ

−1(h
(j)
v,l )),

although the true distribution is the mixture of Gaussian
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distributions under the first Gaussian approximation. Notethat
the same approximation is made in the DE analysis of irregular
LDPC codes.

In order to calculate the entropyh(j)c,l , we use the duality
between variable nodes with entropyh and check nodes with
entropy(1−h) [9]. Exchanging the roles of variable nodes and
check nodes, and repeating the derivation of (25), we obtain

h
(j)
c,l = 1− ψ

(

(dc − 1)ψ−1(1 − h
(j)
v,l)
)

. (27)

The two expressions (26) and (27) correspond to the DE
equations for the decoder. The entropyhdecl for the LLR
passed from thelth decoder to the demodulator is given by

hdecl = ψ
(

dvψ
−1(h

(J)
c,l )
)

, (28)

where J denotes the total number of inner iterations. This
implies that the asymptotic pdfpdecl (L) emitted from thelth
decoder is given by

pdecl (L) =
1

√

4πψ−1(hdecl )
e
−

(L−ψ−1(hdec
l

))2

4ψ−1(hdec
l

) , (29)

whereψ−1 denotes the inverse function of (23).
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[12] D. Guo, S. Verdú, and L. K. Rasmussen, “Asymptotic normality of linear
multiuser receiver outputs,”IEEE Trans. Inf. Theory, vol. 48, no. 12, pp.
3080–3095, Dec. 2002.
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