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Abstract— Many unequal error protection algorithms used in
image communication systems need the operational distortion-rate
(D/R) curve of the source coder whose computation is time-
consuming. We study the use of parametric models instead of the true
D/R curves for wavelet-based embedded image and video coders. We
propose a Weibull model and show its superiority to the previous
models for real-time applications. For unequal error protection over
binary symmetric and packet erasure channels, the Weibull model
yielded performance similar to the one obtained with the true D/R
curve while satisfying the real-time constraint.

I. INTRODUCTION

Because of the increasing popularity of the Internet and
wireless multimedia products, a lot of work has recently been
dedicated to the design of efficient systems for the transmis-
sion of images and video over noisy channels. Traditional
error control systems, which are based on error detection and
retransmission, suffer from delays that may be unacceptable
in real-time applications. An alternative is to use forward
error correction (FEC). Some of the best FEC systems for
multimedia data generate an embedded wavelet bitstream and
protect it in an optimal way with unequal error protection [1],
[2], [3], [4], [5], [6], [7], [8].

In this paper, we focus on the real-time ability of these
FEC systems. The real-time constraint is important in wireless
communications. For example, suppose that a user wants to
take a picture with a digital camera of a 3G mobile phone and
immediately send it to a receiver. The encoder must compress
the image, protect the source code, and send the source-
channel bitstream in real-time. Whereas the source coding
with an appropriate embedded wavelet coder is very fast,
the best unequal error protection algorithms require a time-
consuming preprocessing step, which consists of computing
the operational distortion-rate curve of the original image.
Although an embedded coder has the desirable property that
the source code at the highest available bitrate can be used
to generate the distortion-rate points at all lower rates, the
computation time is still prohibitive for real-time applications.
One faster solution is to estimate the distortion-rate points in
the wavelet domain during the encoding. This gives very good
results for orthogonal or nearly orthogonal wavelet filters.
Another solution is to use a parametric model instead of the
true distortion-rate function. An important advantage of the
model approach is that the encoder need not send overhead
bits to specify the error protection solution to the receiver.
Indeed, only the model parameters (a few real numbers) have

to be transmitted, allowing the receiver to compute the solution
on its side.

Mallat and Falzon [9] introduced a parametric model for
wavelet-based coders but they did not discuss applications.
This model was used by Huang and Liang [10] for joint-
source channel coding with MPEG 2. A different parametric
model for the distortion-rate function of the SPIHT coder [11]
was used for joint-source channel coding by Appadwedula,
Jones, Ramchandran, and Kosintzev [12]. However, in all these
works the complexity aspects, which are essential in real-time
applications, were not studied.

We propose a parametric Weibull model for the operational
distortion-rate curves of the SPIHT, JPEG2000 [13], and
3D SPIHT [14] wavelet coders, which are the most popular
embedded wavelet coders. We show that the Weibull model
is more appropriate for real-time joint source-channel coding
than the models of [9], [12]. We apply the parametric models
to unequal error protection in binary symmetric and packet
erasure channels and show that they allow the computation of
a solution in real-time while ensuring reconstruction quality
similar to the one obtained with the true distortion-rate func-
tion.

The rest of the paper is organized as follows. In Section II,
we give an overview of unequal error protection algorithms
of embedded codes in binary symmetric and packet erasure
channels. In Section III, we propose a parametric model that
approximates the operational distortion-rate function of the
SPIHT, JPEG2000, and 3D SPIHT source coders and show its
superiority over the previous models of [9], [12]. In Section
IV, we present simulation results which show the relevance of
a parametric model for real-time joint source-channel coding
in binary symmetric and packet erasure channels.

II. ALGORITHMS FOR ERROR PROTECTION

A. Binary symmetric channels

One of the most successful systems for the robust progres-
sive transmission of images over binary symmetric channels
was introduced by Sherwood and Zeger [1]. The basic idea is
to use an embedded wavelet coder as a source coder and a con-
catenation of an outer cyclic redundancy-check (CRC) coder
and an inner rate-compatible punctured convolutional (RCPC)
coder as a channel coder. Error propagation is avoided by
stopping the decoding when the first packet error is detected.
Similar systems were also efficiently used by Banister, Belzer,



and Fischer [15] for protecting JPEG2000 [13] coded images
and by Xiong, Kim, and Pearlman [16] for video transmission.

The fastest rate-distortion based unequal error protection
algorithm for this system is the local search algorithm of
Hamzaoui, Stanković, and Xiong [17]. The algorithm starts
from a solution that maximizes the expected number of
received source bits and iteratively searches for a solution with
a lower expected distortion using the distortion-rate function of
the source coder. Experimental results for a binary symmetric
channel with the SPIHT coder and JPEG2000 show that the
solution given by the algorithm is almost optimal [17].

B. Packet erasure channels

Systematic Reed-Solomon (RS) codes allow efficient packet
loss protection of embedded bitstreams in packet erasure chan-
nels. The best RS-based unequal loss protection algorithms are
due to Puri and Ramchandran [3] and Stanković, Hamzaoui,
and Xiong [18]. The first algorithm computes the convex hull
of the operational distortion-rate curve in a preprocessing step.
The local search technique of [18] is similar to that of [17]
and also needs the distortion-rate function of the source coder.

III. MODELING THE DISTORTION-RATE FUNCTION

The operational distortion-rate function of the source coder
gives the reconstruction fidelity at a given source rate. The
reconstruction fidelity is commonly measured by the mean-
square error (MSE) or the peak signal-to-noise ratio (PSNR),
which is defined in dB as

PSNR = 10 log10
2552

MSE
. (1)

All unequal error protection algorithms of the previous
section require the operational distortion-rate curve of the
source coder for the original image. To determine p distortion-
rate points, one needs in principle p encodings and p decodings
of the source coder. Since the source code is embedded, one
encoding at the highest rate gives the bitstream at the p − 1
lower rates. But p decodings are still required. Moreover,
these algorithms work best under the ideal assumption that
the operational distortion-rate curve is convex.

An alternative to the true distortion-rate function is a para-
metric model. Mallat and Falzon [9] proposed the model

y = Cr1−2γ , (2)

where C is a positive number and γ is of the order of 1, to
approximate the MSE of a zerotree-based wavelet coder at bit
rates r under 1 bit-per-pixel (bpp).

In [12], the operational MSE-rate function of the SPIHT
coder was modeled by the sum of four exponential terms

y =
4∑

k=1

cke−lkr. (3)

We show in the following that a better modeling can be
obtained with a Weibull model

y = a − be−crd

, (4)
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Fig. 1. Comparison between the Weibull model, the model of [9], and the
model of [12] with the true MSE-rate function of the SPIHT coder for the
512 × 512 Lenna image.

where the real numbers a, b, c, and d are parameters that
depend on the image and the source coder.

Suppose that we are given N MSE-rate points
(ri,MSE(ri)), 1 ≤ i ≤ N , corresponding to N equidistant
rates in the range [0.001, R]. To fit these points to the
above models, we used linear least squares (applied to the
points (log ri, log MSE(ri)), i = 1, . . . , N ) for (2) and the
Levenberg-Marquardt nonlinear regression method [19] for
(3) and (4).

In the paper, we give numerical results for the standard 8
bpp 512 × 512 Lenna image. We obtained similar results for
other images.

For the SPIHT source coder, a maximum source rate R of
1 bpp, and N = 1024 data points, the root-mean square (rms)
of the difference in MSE between the models and the true
MSE-rate function was 107.99, 1.11, and 3.07 for (2), (3),
and (4) respectively. For JPEG2000 and the same settings, the
rms error was 121.39, 32.95, and 29.7 for (2), (3), and (4)
respectively.

These results may indicate that (3) and (4) should be
preferred to (2). However, the relevance of a parametric model
for our real-time unequal error protection problem depends not
only on the accuracy of the data fitting but also on both the
number N of data points used for the fitting and the number
of parameters in a model. The number of parameters should
be kept small because both the size of the overhead and the
fitting time grow with the number of parameters. The second
issue is the number of data points used for the fitting. To
be meaningful, it should be at least equal to the number of
parameters. On the other hand, it should be as small as possible
to limit the time needed for the decoding and for determining
the model parameters.

To take the real-time constraint under consideration, we now
compare the three models when the number of data points
used for the fitting is limited to 4, 8, and 4 for (2), (3), and
(4) respectively. Figure 1 shows the resulting modeling of the
operational MSE-rate function of the SPIHT coder. Here the
Weibull model was y = 1422.99 − 1424.64e−0.0053r−0.9

.
Figure 2 complements Figure 1 by showing the difference

in MSE between the models and the true MSE-rate function.
The rms error was 125.22, 89.74, and 24.32 for (2), (3), and
(4), respectively.

The figures show that under the real-time constraint, the
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Fig. 2. Difference in MSE between the parametric models and the true
MSE-rate function of the SPIHT coder for the 512 × 512 Lenna image.
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Fig. 3. Comparison between the Weibull model, the model of [9], and the
model of [12] with the true MSE-rate function of the JPEG2000 coder for
the 512 × 512 Lenna image.

Weibull model significantly outperformed the models of [12]
and [9]. In particular, it was better than that of [12] although
it has half as many parameters.

We obtained similar results for JPEG2000 (see Figure 3
and Figure 4). Here the Weibull model was y = 2550.34 −
2550.89e−0.0025r−0.99

.
No model was previously proposed for the operational

PSNR-rate function of an embedded wavelet source coder.
For example, model (3) is always convex when the cks are
positive, thus it cannot provide an appropriate fit for the
PSNR-rate curve, which is concave. Using relation (1), one
could convert the MSE-rate curves found with (2) and (3)
into PSNR-rate curves. However, better results are obtained
by fitting the operational PSNR-rate points to the models.
Figures 5 and 6 show the curves obtained by converting the
MSE-rate points and those by fitting the PSNR-rate points
to (2) and (4) for the SPIHT and JPEG2000 coders. Here
again the Weibull model yielded the best approximation. The
models given by (4) were y = 120.99 − 120.25e−0.4r0.15

and
y = 105.11 − 117.41e−0.6r0.12

for SPIHT and JPEG2000,
respectively.

Figure 7 compares model (2) and the Weibull model (4)
to the true PSNR-rate function of the 3D SPIHT bitstream
corresponding to the first 16 frames of the QCIF YUV foreman
video sequence. The PSNR was computed for the luminance
component and averaged over the 16 decoded frames. The
frame rate was 30 frames per second.

Finally we studied the quality of the fitting for various
values of the maximum rate R. Our experimental results
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Fig. 4. Difference in MSE between the parametric models and the true
MSE-rate function of the JPEG2000 coder for the 512 × 512 Lenna image.
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Fig. 5. Comparison between the true PSNR-rate curve of the SPIHT bitstream
of the Lenna image, the modeling of this curve with the Weibull model (4),
and its modeling with (2). The curves denoted by [9] and [12] are derived
from the modeling of the MSE-rate curve with (2) and (3), respectively.

showed that in contrast to the other models, the Weibull model
was not penalized by decreasing the maximum rate R to values
as low as 0.125 bpp. This is an advantage because the decoding
is faster when the maximum rate is lower.

IV. EXPERIMENTAL RESULTS

In this section, we provide numerical results which show the
suitability of the Weibull model to unequal error protection of
image and video codes in a binary symmetric channel and
unequal loss protection in a packet erasure channel. The state-
of-the-art protection algorithms of [17], [3], [18] were used
for the study. All simulations were run on a PC with a Linux
operating system having an AMD Athlon (TM) XP 1600 1400
MHz processor with a main memory of 1 Gbyte. The programs
were written in C and compiled with the -O3 optimization
option.

For a given set of channel code rates and a target transmis-
sion rate, we determined the highest possible source rate R
for an unequal error protection solution. Then we computed
the model parameters by using equidistant rates in the range
[0.001, R] (see the previous section).

We first give results for unequal error protection over a
binary symmetric channel. We used the local search algorithm
of [17] to minimize the expected MSE. The source coders were
SPIHT and JPEG2000.

The time needed to encode the Lenna image at R = 1 bpp
was 0.11 s for the SPIHT coder and 0.09 s for JPEG2000.
This source rate was the highest one used in our experiments.
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Fig. 6. Comparison between the true PSNR-rate curve of the JPEG2000
bitstream of the Lenna image, the modeling of this curve with the Weibull
model (4), and its modeling with (2). The curves denoted by [9] and [12]
are derived from the modeling of the MSE-rate curve with (2) and (3),
respectively.
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Fig. 7. Modeling of the 3D SPIHT PSNR-rate curve with the Weibull model
(4) and model (2). The rate is given in kbits per second (kbps).

For the SPIHT coder (resp. JPEG2000), the time required to
compute the MSE-rate points and the model parameters was
0.27 s (resp. 0.14 s) for the Weibull model (four data points,
four parameters) and 0.51 s (resp. 0.28 s) for the model of
[12] (eight data points, eight parameters).

The overhead that specifies a model consisted of 16 bytes
(four single-precision floating point numbers) for the Weibull
model and 32 bytes for the model of [12]. If the true distortion-
rate curve is computed or if it is estimated in the wavelet
domain during the encoding, the encoder needs to send an
overhead of N�log2 m� bits, where m is the number of
channel code rates and N is the number of channel packets.
Since m << N , and the channel code rates in a solution are
nondecreasing [17], one may use run-length encoding (RLE),
which requires m�log2 N�+(m−1)�log2 m� bits in the worst
case.

The channel coder was a concatenation of a 32-bit CRC
coder and a rate-compatible punctured turbo coder. The turbo
coder consisted of two identical recursive systematic convolu-
tional encoders with memory length 4 and generators (31, 27)
(octal). The mother code was 20/60 = 1/3, and the puncturing
rate was 20, yielding 41 possible channel code rates. The
length of a packet was equal to L = 2048 bits, consisting
of a variable number of source bits, 32 CRC bits, 4 bits to set
the turbo encoder into a state of all zeroes, and protection bits.
We used iterative maximum a posteriori decoding, which was
stopped if no correct sequence was found after 20 iterations.

Rate Weibull [12] True function
(bpp) MSE Time MSE Time MSE
0.25 66.29 < 0.01 66.59 < 0.01 66.32
0.5 34.64 < 0.01 34.63 < 0.01 34.63
0.75 23.20 < 0.01 23.27 0.01 23.26
1.0 17.33 < 0.01 17.33 0.01 17.33
1.25 13.95 0.01 13.95 0.03 13.95
1.5 11.63 0.02 11.63 0.05 11.65

TABLE I

CPU TIME IN SECONDS AND EXPECTED MSE AT VARIOUS TRANSMISSION

RATES FOR THE LOCAL SEARCH ALGORITHM OF [17]. RESULTS ARE

GIVEN FOR THE SPIHT BITSTREAM OF THE 512 × 512 LENNA IMAGE.

THE BER OF THE BSC IS 0.1.

Rate Weibull [12] True function
(bpp) MSE Time MSE Time MSE
0.25 70.42 < 0.01 71.04 < 0.01 71.87
0.5 36.07 < 0.01 36.15 < 0.01 36.96
0.75 23.56 < 0.01 23.46 0.01 23.77
1.0 17.57 < 0.01 17.60 0.02 17.81
1.25 14.12 0.01 14.11 0.03 14.08
1.5 11.72 0.02 11.72 0.05 11.78

TABLE II

CPU TIME IN SECONDS AND EXPECTED MSE AT VARIOUS TRANSMISSION

RATES FOR THE LOCAL SEARCH ALGORITHM OF [17]. RESULTS ARE

GIVEN FOR THE JPEG2000 BITSTREAM OF THE 512 × 512 LENNA

IMAGE. THE BER OF THE BSC IS 0.1.

Table I and Table II give for SPIHT and JPEG2000 the
CPU time and the expected MSE at various transmission rates
when the unequal error protection solutions were determined
with the Weibull model and the model of [12]. Note that the
expected MSE is shown for the true MSE-rate function. The
tables also provide the expected MSE when the solution was
computed with the true MSE-rate curve.

The performance of the solution found with the Weibull
model was similar to the one obtained with the model of [12].
However, the Weibull model allowed a faster computation of
the solution. This was due to two reasons. First, (3) is more
complex than (4). Second, the local search algorithm applied
to (4) needed fewer iterations to converge. The results also
show that our model can be used for real-time applications.
For JPEG2000, for example, even by adding the 0.23 s needed
for the encoding and the modeling of the MSE-rate curve, the
Weibull model allows a joint source-channel coding in less
than 0.25 s at all transmission rates.

On the other hand, the Weibull model provided almost the
same or a lower MSE than the true MSE-rate curve. The
gain in performance is due to the fact that the local search
algorithm works best when the distortion-rate curve is convex.
This condition is fulfilled by models (2), (3), and (4) but is
only an assumption for a true distortion-rate curve.

We now consider unequal loss protection. We suppose that
N packets of L bytes each are sent over a packet erasure
channel. We assume an exponential packet loss model with a
mean loss rate of 20 %. We used the unequal loss protection
algorithms of [3] and [18] to maximize the expected PSNR.
We compare the solutions obtained with the best parametric



models, the Weibull model and the model of (2), to those
computed with the true PSNR-rate function. Here if the true
distortion-rate curve is computed or if it is estimated during the
encoding, the encoder needs to send an overhead of N�log2 L�
bits, which is not negligible. For example, the overhead is 2500
bits for N = 250 and L = 1000.

Table III and Table IV show the expected PSNR in dB and
the time in seconds for the SPIHT bitstream of the Lenna
image. The algorithm of [3] computes the vertices of the
convex-hull of the PSNR-rate points in a preprocessing step.
Since both the Weibull model and model (2) are concave for
the PSNR-rate data points, this step is not necessary when the
parametric model is used.

Here also using the parametric models instead of the true
PSNR-rate function did not cause a significant loss in expected
PSNR. Moreover, the time complexity was acceptable for real-
time applications. The CPU time of the two models was almost
the same. The Weibull model yielded slightly better PSNR
results. Table V and Table VI show the results for JPEG2000.

Weibull (2) True function
N PSNR Time PSNR Time PSNR
50 31.10 < 0.01 31.10 < 0.01 31.11
100 34.05 < 0.01 34.05 < 0.01 34.06
150 35.77 0.01 35.77 0.01 35.79
200 37.04 0.02 37.04 0.02 37.04
250 38.03 0.03 38.02 0.03 38.02

TABLE III

CPU TIME IN SECONDS AND EXPECTED PSNR IN DB FOR THE

ALGORITHM OF [3]. THE RESULTS ARE FOR THE SPIHT BITSTREAM OF

THE 512 × 512 LENNA IMAGE, N PACKETS OF L = 200 BYTES EACH,

AND AN ERASURE CHANNEL WITH PACKET MEAN LOSS RATE 0.2.

Weibull (2) True function
N PSNR Time PSNR Time PSNR
50 31.11 0.02 31.11 0.02 31.13

100 34.06 0.04 34.05 0.04 34.06
150 35.78 0.07 35.78 0.06 35.78
200 37.02 0.09 37.02 0.08 37.01
250 38.03 0.11 38.03 0.11 38.04

TABLE IV

CPU TIME IN SECONDS AND EXPECTED PSNR IN DB FOR THE

ALGORITHM OF [18]. THE RESULTS ARE FOR THE SPIHT BITSTREAM OF

THE 512 × 512 LENNA IMAGE, N PACKETS OF L = 200 BYTES EACH,

AND AN ERASURE CHANNEL WITH PACKET MEAN LOSS RATE 0.2.

Finally, Table VII shows that the Weibull model is also
successful for source-channel coding of video. Here 0.31 s
were spent for the encoding and 0.8 s were needed to model
the PSNR-rate function with the Weibull model.

V. CONCLUSION

We studied optimal unequal error protection of embedded
wavelet image and video bitstreams using parametric distortion
models of the source coders. We showed that the operational
MSE-rate and PSNR-rate functions of the SPIHT, JPEG2000,
and 3D SPIHT coders are well approximated by a Weibull

Weibull (2) True function
N PSNR Time PSNR Time PSNR
50 30.83 < 0.01 30.81 < 0.01 30.91

100 33.89 < 0.01 33.86 < 0.01 33.92
150 35.71 0.01 35.67 0.01 35.74
200 36.95 0.02 36.90 0.02 36.98
250 37.86 0.03 37.85 0.03 37.92

TABLE V

CPU TIME IN SECONDS AND EXPECTED PSNR IN DB FOR THE

ALGORITHM OF [3]. RESULTS ARE GIVEN FOR THE JPEG2000 BITSTREAM

OF THE 512 × 512 LENNA IMAGE, N PACKETS OF L = 200 BYTES EACH,

AND AN ERASURE CHANNEL WITH PACKET MEAN LOSS RATE 0.2.

Weibull (2) True function
N PSNR Time PSNR Time PSNR
50 30.84 0.02 30.83 0.02 30.93
100 33.90 0.05 33.88 0.05 33.92
150 35.72 0.07 35.68 0.07 35.75
200 36.92 0.09 36.91 0.09 36.96
250 37.82 0.11 37.83 0.11 37.89

TABLE VI

CPU TIME IN SECONDS AND EXPECTED PSNR IN DB FOR THE

ALGORITHM OF [18]. RESULTS ARE FOR THE JPEG2000 BITSTREAM OF

THE 512 × 512 LENNA IMAGE, N PACKETS OF L = 200 BYTES EACH,

AND AN ERASURE CHANNEL WITH PACKET MEAN LOSS RATE 0.2.

model, which outperforms previously proposed models under
a real-time constraint. Experimental results showed that the
Weibull model is suitable to unequal error protection in binary
symmetric channels and unequal loss protection in packet
erasure channels.

The main contribution of the paper was to show that
parametric distortion-rate models allow real-time unequal error
protection and yield PSNR (or MSE) performance comparable
to and sometimes better than the one obtained with the true
operational distortion-rate curves.

The parametric modeling approach is not limited to the
source-channel coding systems considered in this paper; they
can also be used with all systems that exploit the distortion-rate
function of the source coder, including the powerful product
code systems of [6], [7], which were designed for fading
channels.

Weibull (2) True function
N Y-PSNR Time Y-PSNR Time Y-PSNR
50 28.96 < 0.01 28.97 < 0.01 29.03

100 31.57 0.01 31.57 0.01 31.58
150 33.48 0.02 33.49 0.02 33.49
200 34.99 0.02 34.99 0.02 34.99
250 36.33 0.03 36.33 0.03 36.34

TABLE VII

CPU TIME IN SECONDS AND EXPECTED Y-PSNR IN DB FOR THE

ALGORITHM OF [3]. Y-PSNR DENOTES THE PSNR OF THE LUMINANCE

COMPONENT. RESULTS ARE GIVEN FOR THE 3D SPIHT BITSTREAM OF

THE FIRST 16 FRAMES OF THE FOREMAN SEQUENCE, N PACKETS OF

L = 200 BYTES EACH, AND AN ERASURE CHANNEL WITH A PACKET

MEAN LOSS RATE OF 0.05.
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