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Abstract—This paper presents an approach to modeling and 
prediction of session throughput of constant bit rate streams in 
wireless data networks. A stable traffic generator is used to 
generate smooth data streams that are transmitted across various 
types of wireless connections in real-world wireless data 
networks, including wireless LANs and wireless cellular WANs. 
The throughput values of the data streaming sessions are 
recorded. Based on the analysis of statistical properties of the 
collected data, linear time series analysis is used to model and 
predict the session throughput. Autoregressive (AR) models are 
selected from a number of linear time series models since they 
can be fit to data in a deterministic amount of time. The 
performance of AR models for prediction is compared to simpler 
models such as MEAN and Window Mean (WM) models, and our 
study shows that successful models, such as AR and WM models, 
have similar performance in predicting the session throughput of 
wireless data networks. The main contribution of our research is 
that by statistical study it shows that session throughputs in 
wireless data networks can be modeled and predicted to a useful 
degree from past values by using linear time series analysis such 
as AR and WM models. 

Keywords-throughput; modeling; prediction; constant-bit-rate; 
wireless 

I. INTRODUCTION 

A. Wireless Data Networks 
As more and more wireless connections are established in 

offices and homes, wireless data networks are increasingly 
involved in our daily life. Various technologies are utilized in 
wireless data networks, such as Bluetooth [1] in personal area 
networks (PAN), IEEE 802.11 [2] and HyperLan [3] in 
wireless local area networks (WLAN), cellular digital packet 
data (CDPD) [4] in wireless wide area networks (WWAN). In 
this paper, we focus on the data service in wireless data 
networks and wireless voice networks [5] providing integrated 
voice/data services. 

B. Motivation 
With the increase of the maximum bandwidth supported by 

wireless data networks, data applications are proliferating in 
the wireless communication environment. In general, the 
session throughout of an application transmitting data across 
the wireless data networks is apt to volatility because of the 

dynamics of the wireless links. Therefore it is helpful for the 
applications to have information of the throughput dynamics 
so that their performance can be improved by application 
adaptations. 

There are several types of traffic patterns in the data 
networks, such as constant-bit-rate (CBR) and variable-bit-rate 
(VBR) traffics. The CBR traffic pattern can be viewed as one 
of the basic ones since many traffic patterns can be obtained 
by superposition of various parameterized CBR ones. In this 
research, our goal is to study the effects of the dynamics of 
wireless communication links on the session throughput. Since 
the throughput in wireless networks depends on many factors 
including the movement of the wireless devices, geographical 
terrain and obstructions between the transmitter and the 
receiver, and the wireless networking protocols, we study the 
feasibility of modeling and prediction of the session 
throughput of CBR streams in wireless data networks under 
various conditions, such as in WLAN and WWAN with 
different physical (PHY) and media-access-control (MAC) 
layer protocols, and in real-life working environment with 
walking and driving scenarios when using wireless devices. 
Thus this paper will focus on the feasibility study. Its 
applications may also be of interest, but they are not the 
research foci here. 

In addition to allowing applications to adapt to the wireless 
medium, it is important to have the information about the 
session throughput for other benefits, by monitoring, modeling 
and predicting it, in such wireless data networks. For example, 
planning and managing the wireless data networks can benefit 
from such information so that troubleshooting and traffic 
engineering can be performed. How wireless data networks 
should be designed, tested, and managed is in fact an 
outstanding issue in the provisioning of wireless data services. 
By studying session throughput of high data rate CBR sessions 
across a certain wireless data network, information of 
dynamics of wireless links can be gathered for service 
providers’ planning decisions. 

C. Related Work 
Previous research work has considered computing 

resources, including host and network parameters in wired 
networks [6]. Parameters that have been monitored and 
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Figure 2. Data streaming traffic received at the wired host in wired LAN.

predicted include: usage of computer resources (CPU, 
memory), throughput or available throughput of a 
communication path, latency of a data link, and etc. For 
example, network weather service (NWS) is a well-known 
design to provide accurate forecasts of dynamically changing 
performance characteristics for a distributed set of 
metacomputing resources [7]. There also exists research on 
wired networks using statistical models to study the data 
traffic behavior in both wide-area networks [8][9] and local-
area networks [10]. Linear time series models are used in 
predicting both long-term and short-term Internet conditions 
and traffic behaviors. The results are used to predict network 
performance in support of best-effort/real-time services and 
applications. 

There is little existing research on modeling and predicting 
network parameters in wireless data networks. Noble et al. 
[11][12] studied the agility and stability of exponentially 
weighted moving average (EWMA) methods for estimation of 
available bandwidth in the context of mobile networking. Thus 
we start the research by studying the feasibility and 
effectiveness of applying the techniques used in the existing 
research, such as time-series analysis, to CBR-session 
throughput modeling and prediction in the wireless data 
networks. 

Our approach is presented and data collection is described 

in Section 2. Statistical properties of the collected data sets are 
studied in Section 3. In Section 4, we compare several 
modeling techniques and choose appropriate ones for 
modeling the session throughput of wireless data networks (or 
wireless session throughput). In Section 5, prediction of 
wireless session throughput is investigated based on the 
selected models. Section 6 presents conclusions and the 
roadmap for future work. 

II. APPROACH 
In general, a modeling and prediction system can be 

designed in the following steps: (i) performing measurements 
of network resources; (ii) collecting traces of the 
measurements; (iii) analyzing and modeling the traces using 
various, mostly statistical, tools; (iv) evaluating candidate 
models based on the analysis; and (v) implementing a real-
time prediction system based on the appropriate models. We 
follow these steps in conducting this research. 

A. Experiments Description 
Experiments have been designed to measure session 

throughputs in the wireless data networks. Considering the 
proliferation of audio and video applications as the data 
service in data networks, we study the throughput of data 
streaming sessions across the wireless data networks. 
Relationship between the wireless session throughput and 
wireless link bandwidth is discussed. 

1. Experimental Networks 
Fig. 1(a) and Fig. 1(b) illustrate the abstract models of 

experimental networks in the wireless LAN case and the 
wireless WAN case. The wireless LANs are campus networks 
and wireless WANs are commercial networks and both are 
used simultaneously by multiple users. 

The wireless LAN scenarios include Proxim RangeLAN 
[13] and Sony WirelessLAN [14]. Proxim RangeLAN 
operates at 2.4 to 2.483 GHz using spread spectrum frequency 
hopping with media access protocol OpenAir CSMA/CA and 
delivers data traffic up to 1.6 Mbps. Sony WirelessLAN is an 
IEEE 802.11b wireless network operating at 2.4 GHz radio 
frequency band using direct sequence spread spectrum (DSSS) 
and delivers up to 11 Mbps which is comparable to wired 
Ethernet. RTS/CTS is not enabled. 

The wireless WAN scenarios include two service providers 
for CDPD networks. One service provider is OmniSky [15] 
that provides wireless modems for PalmVx handheld devices. 
The other is Sierra [16] providing wireless modem cards for 
mobile laptops. 

2. Data Streaming Source and Sink 
As shown in Fig. 1(a), in the wireless LAN experiments the 

data stream source or sender is a Sun Sparc10 workstation 
with Solaris 2.6 platform and the data stream sinks or 
receivers include a mobile laptop and a wired personal 
computer, both with Windows NT platform installed. The 
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Figure 1. Abstract models of experimental networks. 
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Figure 3. Floor layout in the wireless LAN experiments. 
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(a) RangeLAN wireless LAN, source rate: 50 Kbps   (b) 802.11b wireless LAN, source rate: 500 Kbps 
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(c) CDPD with Palm, source rate: 6 Kbps    (b) CDPD with laptop, source rate: 5 Kbps 

Figure 4. Session throughput recorded at the wireless receivers in different groups of experiments. 

sender sends datagram traffic in a multicast fashion so that 
both receivers can receive the same data traffic. 

A stable traffic generator, which overcomes the randomness 
caused by the scheduling mechanisms of operating systems 
and coarse granularity of timers, is used at the source to 

generate stable and smooth data streams at fixed rates. Fig. 2 
shows the traces of various generated data traffic rates as the 
wired receiver in the same LAN receives the data stream and 
records the number of bits received every second, which is 
defined as the session throughput. 

In one wireless WAN scenario in which the PalmVx device 
is used, the data stream source is the PalmVx and the receiver 
is the wired personal computer because the PalmVx is not 
suitable to record large amount of data on the device. In the 
other wireless WAN case in which mobile laptop is used, the 
placement of the sender and the receiver is the same as that in 
the wireless LAN case. 

3. Mobility Scenarios of the Mobile Devices  
Fig. 3 shows the building layout in our experiment. In the 

wireless LAN case, the mobile laptop travels with varying 
velocity around the base station (or access point) along the 
hallway and enters the offices and the labs. (If the velocity is 
zero, the mobile laptop is stationary.) The maximum distance 
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between the laptop and the base station reaches 100 feet. 
Generally there is no line-of-sight communication between the 
base station and the mobile laptop. In the wireless WAN case, 
the velocity of the Palm device and the mobile laptop varies 
from the stationary, walking speed, to driving speed, and the 
moving paths include paths inside the building in the offices 
and hallways, and driveways outside the building within a 
five-mile range. 

B. Data Collection 
Based on the above-described experimental scenarios, we 

categorize the experiments into four groups, namely the 
RangeLAN, the 802.11b, the CDPD with PalmVx, and CDPD 
with laptop. For each group, several data sets of the 
throughputs recorded at the receivers with different streaming 
rates are collected. Each data set contains 10,000 values of the 
throughput, with one value recorded every second. We 
recorded data sets of throughputs of different sessions with 
different session sending rates. The collection time of data sets 

is randomly distributed over several weeks. In order to keep 
the illustrations clear, not all data sets and sample values are 
plotted in the graphs shown in this paper. We observed that a 
fraction of all the data sets and sample values in each data set 
well represents the whole data sets in terms of statistical 
characteristics. Fig. 4 is a good representative of the general 
results. Various scales are used for better zoom-in view. 

C. Session Throughput vs. Wireless Link Bandwidth 
A comparison of Fig. 2 and Fig. 4 shows that the data traffic 

received at the wired host is very different from that received 
at the mobile hosts. In the wireless LAN case, the difference is 
solely caused by the dynamics of the wireless link since the 
mobile and the wired hosts receive the same multicast 
streaming session and the only difference is the final link type, 
i.e., wired vs. wireless. Fig. 4 shows that the session 
throughput changes dynamically in a wide range due to the 
dynamics of the wireless link. 

In the wireless WAN scenarios the receiving host is not in 
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(a) RangeLAN wireless LAN     (b) 802.11b wireless LAN 
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(c) CDPD with Palm     (d) CDPD with laptop  

Figure 5. Mean bandwidth +/- standard deviation of the session throughput in different groups of experiments. 
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the same subnet as the base station because we do not have 
control over the commercial setup. However, we believe that 
the dynamics of the throughput is still mainly caused by the 
wireless links in wireless WANs. In our experiments, the 
difference between the nominal source rate and the throughput 
recorded at the receiver is determined by the packet delay, loss 
and retransmission. The packet loss and packet retransmission 
can be viewed as special cases of the packet delay. According 
to [17], the mean value of packet delay in wired networks is 
much smaller than that in wireless networks. Therefore it is 
assumed that the measured throughput reflects the wireless 
link bandwidth even in the wireless WANs. 

III. STATISTICAL PROPERTIES 

A. Mean and Standard Deviation 
Summarizing each data set in terms of its mean, standard 

deviation, and maximum and minimum values illustrates the 
extent to which the session throughput varies. Fig. 5 shows the 
mean value and the plus and minus one standard deviation 
points for different data sets. It reveals that the standard 

deviation, in absolute terms, grows with the increasing mean 
throughput. However, the trend does not exist in relative terms 
if we express it in terms of the coefficient-of-variation (COV) 

  
(a) RangeLAN wireless LAN     (b) 802.11b wireless LAN 

  

(c) CDPD with Palm     (d) CDPD with laptop 

Figure 7. Quantile-quantile plots: session throughput vs. normal distribution. 
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Figure 6. Histogram of the data sets shown in Figure 4. 
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as the standard deviation divided by the mean. We also 
observed that the mean values in all the data sets do not vary 
with time if statistically significant amount of consecutive 
samples are considered, e.g., 1,000. 

B. Distribution 
Fig. 6 plots the histograms of data sets in Fig. 4, normalized 

as the percentage of the number of occurrences over the total 
number of samples. It shows that the distribution has a 
unimodal shape. We observed that all other data sets have the 
unimodal distribution pattern. If we treat each data set as a 
realization of an independent, identically distributed (IID) 
stochastic process, then the histogram obtained from a large 
number of data closely approximates its probability 
distribution function (pdf), which can completely describe the 
IID stochastic process. 

We fit a normal distribution to each data set. Fig. 7 shows 
quantile-quantile plots for the normal distribution fitted to the 
several data sets in each group. According to the property of 
quantile-quantile plots, the plot will be linear if the distribution 
fits the data. Fig. 7 implies that the normal distribution does 
not fit the distributions of the data sets well. 

C. Time Series Analysis 
We examined the autocorrelation function of each data set. 

The autocorrelation quantifies how well a throughput value at 
time t is linearly correlated with its corresponding throughput 
value at time t+∆, which in turn shows how well the value at 
time t predicts the value at time t+∆. The value of 
autocorrelation function ranges between −1 and 1. The closer 
the value to 1, the better linear correlation of the value at time 
t and time t+∆. The time series analysis shows that the past 
throughput value has a strong influence on the future 
throughput value. For example, Fig. 8 shows the 
autocorrelation function to a lag of up to 120 seconds (2 
minutes) for the data set in Fig. 4. Note that in all scenarios, 

including the WLAN and WWAN networks, the values of 
session throughput are strongly correlated. 

We found that the above statistical properties are present in 
the whole data sets, irrespective of the velocity of the mobile 
receivers. This implies that session throughput prediction 
based on past values is feasible using linear time series 
models. 

IV. MODELING 
There are a number of models for linear time series 

analysis, such as autoregressive (AR), moving average (MA), 
autoregressive moving average (ARMA), autoregressive 
integrated moving average (ARIMA), and autoregressive 
fractionally integrated moving average (ARFIMA) models 
[18]. Mostly ARIMA and ARFIMA are used in the 
nonstationary time series analysis. Due to resource constraints 
and the computational complexity of ARIMA and ARFIMA 
models, we only consider AR, MA, and ARMA models here. 

A. ARMA Models 
If a data set with time series value {Xt} can be modeled by 

an ARMA model, then it can be described as follows: 

{Xt} is an ARMA(p,q) process if {Xt} is stationary and if for 
every t 

Xt  − φ1Xt–1 − … − φp Xt–p = Zt  + θ1Zt–1 + … + θq Zt–q       (1) 

where {Zt} is a white noise sequence WN(0,σ2). It is 
convenient to use a concise form as 

φ(B) Xt = θ(B)Zt   (2) 

where φ(⋅) and θ(⋅) are the pth and qth degree polynomials as 

φ(x) = 1 − φ1x − … − φp xp   (3) 

θ(x) = 1 + θ1x + … + θq xq   (4) 

and B is the backward shift operator (BjXt = Xt-j, BjZt = Zt–j, 
j=0,±1,±2…). The time series model is said to be an 
autoregressive model of order p or AR(p) if θ(⋅)≡1 and a 
moving average model of order q or MA(q) if φ(⋅)≡1. 

B. AR Models 
Note that MA and ARMA models are a much more difficult 

proposition for a system designer since modeling time series 
data by them takes a non-deterministic amount of time. Instead 
of a linear system, fitting a MA or ARMA model present us 
with a quadratic system.  Thus AR models are highly desirable 
since they can be fit to data in a deterministic amount of time. 
For example, in an AR model with p-order using the Yule-
Walker technique [18], the autocorrelation function is 
computed to a maximum lag p and then a p-wide Toeplitz 
system of linear equations is solved. Even for relatively large 
values of p, this can be done almost instantaneously. The 
evaluation results presented below demonstrate that AR 
models are sufficiently accurate for modeling the session 
throughput of wireless data networks. We also compare AR 

10 20 30 40 50 60 70 80 90 100 110 120
0.85

0.9

0.95

1

A
ut

oc
or

re
la

tio
n 

of
 s

es
si

on
 t

hr
ou

gh
pu

t

Time lag δ [seconds]
0

RangeLAN
CDPD with Palm
CDPD with Laptop
802.11b Network

Figure 8. Autocorrelation function of data sets in Figure 4. 
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models with simple models such as MEAN and windowed 
mean (WM) [7]. 

C. Simple Models 
The MEAN model has Xt =µ, so the future values of the 

time sequence are predicted to be the mean. The WM model 
simply predicts the next sequence value to be the average of 
the previous p values, a simple windowed mean. Note that 
WM subsumes an even simpler model: LAST model as 
“predict that the next value will be the same as the last value”, 
i.e., p=1. 

D. Exponential Model 
Variations of exponential model have been used and studied 

in [7] for the estimation/prediction of network parameters as 
well as in TCP for round-trip time estimation [19]. It can be 
expressed as follows: 

xp
t = αxt−1 + (1−α)xp

t−1   (5) 

where xp
t is the predicted value of x at time instance t, and xt−1 

is the actual value at time instance t−1. 

This is a special form of AR model for prediction. From Eq. 
(5), 

xp
t−1 = αxt−2 + (1−α)xp

t−2   (6) 

Substitute Eq. (6) to Eq. (5): 

xp
t = αxt−1 + α(1−α) xt−2 + (1−α)2xp

t−2  (7) 

Perform similar substitutions recursively, then:  

xp
t = αxt−1 + … + α(1−α)j−1xt−j + (1−α)j+1xp

t−j−1  (8) 

If the last item becomes negligible once j becomes large 
enough, say, N, since  α<1.,then: 

xp
t = αxt−1 + … + α(1−α)N−1xt−N  (9) 

V. EVALUATION 
We collect additional data sets other than those collected in 

Section 2 and use all of them for evaluating different models. 
One-step-ahead and multi-step-ahead predictions are used to 
evaluate the correctness of different models, such as AR(p), 
MEAN, WM(w) models. In the case of sampling frequency 
equal 1 second, m-step-prediction means predicting the 
throughput value at time instance that is m seconds ahead of 
current time instance. The performance index is the mean 
square fit, which is expressed as follows. 

Suppose X is the vector of the observed values, and the Xpred 
is the vector of the predicted values. Then the mean square fit 
is: 

║X – Xpred║ / sqrt(length(X)) 

where ║⋅ ║is the norm operator. 

Fig. 9 compares the one-second prediction value of session 
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 (b) Observed session throughput 

Figure 9. Predicted vs. observed session throughput in the 50 Kbps case 
in wireless LAN shown in Figure 4a. 
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throughput by AR(10) model using the Yule-Walker method 
to the observed session throughput in the 50 Kbps case of 
RangeLAN shown as Fig. 4(a). Fig. 10 shows the mean square 
fits of AR(p) models with different orders of p and WM(w) 
models with different window size w, when predicting session 
throughput in the 50 Kbps case of RangeLAN. The mean 
square fit of the MEAN model in this case is 4.7979. Note that 
unlike the WM model, the MEAN model has to use an infinite 
buffer to store history data or an unlimited data size to store 
the sum and the number of the history data as the time 
increases, which is infeasible in practical modeling and 
prediction systems. 

Using the same evaluation methods described above, we 
studied the prediction performance of AR model and WM 
model in the other three groups of data sets, i.e., the cases of 
802.11b networks and the CDPD networks with Palm and 
Laptop. The results show that the prediction errors by all 
models decrease as the order of the models increase. 
Moreover, in the cases of WLAN and CDPD with Palm, when 
the models’ order is high enough, e.g., 10, different models 

show similar prediction accuracy and the nominal prediction 
errors are in the range of 10%. In the case of CDPD with 
laptop, even though the nominal prediction errors of AR and 
WM models with high orders are in the range of 30%, the 
absolute errors are within 1.6 Kbps in the case of a 5 Kbps 
session. This is due to the bad network connection during the 
data session since the mobile device was in the blind spots of 
the CDPD service areas so that there was no service for a large 
amount of time in such experiments. 

Fig. 11 shows the performance of AR model and WM 
model in multi-step-prediction cases for a 50 Kbps session in 
RangeLAN. The figures show the 15 seconds prediction and 
the 30 seconds prediction, respectively. According to Fig. 10 
and Fig. 11, we observe that the performances of the AR 
model and WM model are almost the same when their orders 
are high enough, e.g., 5. This result remains true in all 
experimental scenarios. 

VI. CONCLUSIONS 

A. Distribution of Wireless Session Throughput 
In this paper, we treat a sequence of values of the session 

throughput as a realization of an independent, identically 
distributed (IID) stochastic process. However, the normal 
distribution does not fit the distribution of the values well. 
Also, our study of quantile-quantile plots shows that the 
prediction errors are not IID normal either. 

B. Linear Time Series Analysis 
Linear time series analysis is feasible for modeling and 

prediction of the time sequence values of session throughput 
of CBR streams in wireless data networks. Specifically, (i) 
session throughput is consistently predictable because of the 
strong correlation between the past values and the 
present/future values; and (ii) successful models, such as 
autoregressive (AR) and window mean (WM) have similar 
performance in predicting the session throughput of wireless 
data networks. 

Our future work includes applying these research results to 
more network scenarios with various traffic patterns and 
different wireless network performance indices, such as packet 
loss rate and link delay, and deploying the prediction tools into 
real world applications. 
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