
A Middleware Architecture for Streaming Media
over IP networks to Mobile Devices

Kevin Curran

Internet Technologies Research Group
Northern Ireland Knowledge Engineering Laboratory

University of Ulster, Magee Campus, Northern Ireland, UK
Email: kj.curran@ulster.ac.uk

Gerard Parr
Internet Technologies Research Group

Northern Ireland Knowledge Engineering Laboratory
University of Ulster, Coleraine Campus, Northern Ireland,

UK
Email: gp.parr@ulster.ac.uk

Abstract - Wireless networks differ in bandwidth, size and
access costs each requiring a set of protocol functions to enable
devices to communicate efficiently. Portable multimedia
devices such as PDA’s and laptops will also vary greatly
however all these devices will require optimal multimedia
delivery. A traditional method is for sources to limit their
transmission rates to accommodate lower bandwidth links,
even though high-bandwidth connectivity is available to many
participants. This method similar to others does not provide
optimum throughput to heterogeneous clients due to its quest
for a common denominator bandwidth. In addition, due to the
divergence of users and applications, traditional protocol
stacks are frequently enriched with additional functionality
such as transport protocol functionality, synchronization and
presentation coding which can lead to a performance
bottleneck due to the insufficient processing power and
memory of portable devices.

Chameleon is 100% Java middleware for multimedia
streaming to heterogeneous mobile clients, which allows the
dynamic configuration of protocols with respect to application
requirements and available network resources. We evaluate
the dynamic reconfigurability of the middleware in order to
demonstrate runtime adaptation. We especially concentrate on
the secondary quality transformation technique (SQT) of the
middleware which enables clients to not only subscribe to
media groups in accordance with available resources and
network capacity but to also adapt media quality within each
quality group dynamically in accordance to resources
constraints.

Keywords—middleware, QoS, adaptive protocol stacks

I. INTRODUCTION

The distinction between mobile phones and personal device
assistants (PDA’s) has already become blurred with
pervasive computing being the term coined to describe the
tendency to integrate computing and communication into
everyday life [Dertouzos99]. The creation of low bit rate
standards such as H.263 [H263] allows reasonable quality
video through the existing Internet and is an important step
in paving the way forward. As these new media services
become available the demand for multimedia through
mobile devices will invariably increase.

Corporations such as Intel do not plan to be left behind. Intel
has created a new breed of mobile chip code named Banias.
Intel’s president and chief operating officer Paul Otellino

states that ‘eventually every single chip that Intel produces
will contain a radio transmitter that handles wireless
protocols, which will allow users to move seamlessly among
networks. Among our employees this initiative is
affectionately referred to as ‘radio free Intel’”.1

We argue that traditional monolithic protocols are unable to
support the wide range of application requirements on top of
current networks (ranging from 9600 baud modems up to
gigabit networks) without adding overhead in the form of
redundant functionality for numerous combinations of
application requirements and network infrastructures.
Flexible and adaptive frameworks are necessary in order to
develop distributed multimedia applications in
heterogeneous end-systems and network environments.
Catering for this wide range of mobile devices is the focus
of this paper.

II. STREAMING MEDIA TO MOBILE DEVICES

Implementing protocols from scratch is a complex and time-
consuming task however frameworks are designed to ease
the task of developing new protocols. They achieve this by
providing a library of basic protocol functions and templates
for implementation of new protocols (e.g. the X-Kernal
[Peterson91], STREAMS [Unix90] and Conduits+
[Huni95]). The weakness with these protocol frameworks is
that they are not portable. Many mobile manufacturers at
present including Motorola, Ericcson and Nokia have
devices in the marketplace, which support the Java 2 Micro-
Edition (J2ME) framework. The trend towards the porting
of implementations of Java on mobile devices is expected to
continue2 as it is an ideal language for protocol
implementation due to its extreme portability and support
for modular programming in an object oriented fashion.

Computers communicate through the use of a common set
of protocols that define the set of rules to be adopted for the
duration of the communication. Protocols stacks have
traditionally been monolithic chunks of code where all data
regardless of whether it is a continuous stream of bits with
strict time dependencies between those bits, or the packets

1 www.pcplus.co.uk (Article in May 2002 issue)
2 http://www.javamobiles.com/

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 2090

comprising an asynchronous message are sent through the
same stack. The nature of the data is not considered
however and therefore there is no room for optimisation of
the code to create a more efficient service.

In addition, information travelling over wireless networks is
prone to increased error as opposed to data over a wired
local area network thus an argument exists for protocols
tailored to the nature of each underlying network medium. A
protocol such as TCP can be used to transport data over this
medium, however, TCP applies a rate controlling
mechanism, which halves the current throughput upon
detecting congestion. Congestion is detecting by recording
lost packets however losses are likely to occur on wireless
networks due to error rather than network congestion thus
the TCP congestion mechanism is inappropriate [Kojo97]. A
generic monolithic protocol stack, which contained
mechanisms to cope with every use case could be developed
however this would lead to a solution with a large degree of
redundancy as many functions would not typically be called.
Additionally the amount of user space memory required to
implement this solution would result in the exclusion of
memory-constrained devices.

Another problem exists in the heterogeneity of the mobile
devices with capabilities ranging from powerful full
specification laptop PC’s, to low powered PDA’s. Some
devices will be capable of displaying full colour 1024x800
while others may only manage black and white 100x60
screen resolution. Approaches to the problem have involved
sending the lowest common denominator stream to all
receivers, however this penalises the more powerful mobile
clients that receive far below their true capabilities. There is
also a lack of adequate development frameworks to cover
the characteristics of the above kind of systems, as classical
methods for distributed systems are not sufficient due to
their static character. What is required is a framework that
supports dynamic adaptation in a changing environment,
which is systematic, yet, axiomated on practical experience.

Solutions have appeared at times to counter many of the
various problems above however, these have for the most
part been proprietary in nature and lacking in any standard
API to enable new mechanisms to be deployed at a future
time to cope with additional use cases.

III. THE CHAMELEON FRAMEWORK

Chameleon is a Middleware Framework, which supports
reconfigurable dissemination oriented communication. It
extends earlier research - the RWANDA framework [Parr-
Curran00] - by incorporating a meta-object protocol to allow
dynamic system reconfiguration. Chameleon fragments
various media elements of a multimedia application,
prioritises them and broadcasts them over separate channels
to be subscribed to at the receiver’s own choice. The full
range of media is not forced on any subscriber, rather a
source transmits over a particular channel, and receivers,
which have previously subscribed (to the channel), receive
media streams (e.g. audio, text and video) with no

interactions with the source. Clients are free to ‘move’
between differing quality multicast groups in order to
receive the highest quality (or move to a lower quality group
for the greater good of minimising network congestion. This
is known as Primary Quality Transformation (PQT). In
addition proxies offload intensive computing on behalf of
clients and dynamic reconfigurable abilities allow new
components to be slotted into live systems. The new
components can perform additional transcoding on streams
within each group. This is known as Secondary Quality
Transformation (SQT). PQT and SQT provide a rich set of
features for the optimal reception of multimedia flows.
Chameleon is packaged with a core API and a set of Java
template classes. The object-oriented design process
produces a hierarchy of classes, from which a collection of
objects is instantiated to build a particular application.

Chameleon (Figure 1) addresses the network congestion and
heterogeneity problem by taking into account the differing
nature and requirements of multimedia elements such as
text, audio and video thereby creating tailored protocol
stacks which distribute the information to different multicast
groups allowing the receivers to decide which multicast
group(s) to subscribe to according to available memory,
display resolutions and network bandwidth availability.
Chameleon supports dissemination of multimedia from a
source to multiple destinations however end-to-end closed-
loop control can be difficult and cumbersome with multiple
receivers, as the slowest receiver will impede the progress of
the others.

Figure 1: Chameleon in comparison to the OSI model

We believe that tight, closed-loop, end-to-end control is
inappropriate for applications that expect a large number of
receivers having different capabilities interconnected
through networks proving different QoS. Instead, we have
adopted an alternative approach that relies on very loose
coupling between the source and the receivers, i.e. an open-
loop approach, more suited to real-time continuous media.

Multimedia is composed of varying types such as audio,
video, text, control information, etc. Within these types,
exists a multitude of formats such as PCM, JPEG, and
MPEG etc. Take the example of a conference application,
where control information and files need to be transmitted
alongside audio and video. The control information such as

Chameleon Framework

Network Interface Card

MAC Drivers

IP / Mobile IP

RTP/RTCP

Codecs Renderers Effects QoS

Java Media Framework 2.0 API
Streaming Applications

Physical

Datalink

Network

Transport

Session

Presentation

Application

2

4

6

7

5

3

1

Layer

2091

who has floor control and files need reliable transport
guarantees, whereas the audio and video may be transmitted
with a differing QoS. Traditional transport protocols
transport the media types through the same stack. If a video
stream is filtered through the same stack as an audio stream,
the video data will have to adopt the packet size allocated to
the audio stream. Audio in general runs more efficiently
with smaller packet sizes [Modiano99]. Isochronous
multimedia traffic can tolerate some loss however data that
misses its expected delivery time is of no use. Therefore it is
more efficient to lose smaller packets than larger packets
however, smaller packets demand increased header
processing in routers.

Small packet sizes are not optimal for video data due to the
increased size of the media involved. Using an identical
protocol stack to cater for all these transport types is not an
ideal scenario therefore a more efficient method would
construct optimised protocol stacks for each of the media
e.g. audio, text and video. Maximum benefit would be
achieved if this could be implemented at run-time to cater
for the applications particular preferences. A traditional
stack belonging to a multimedia application, for example,
would send the audio and video in packets of identical size.
Research shows that optimal audio packets are smaller in
size than video packets [SCTE00].

Multiple multicast multimedia groups provide a finer
granularity of control compared to using a single
video/audio/text stream, because a receiver may subscribe to
one or more layers depending on its capabilities. If a
receiver experiences packet loss as a result of network
congestion, moving to a lower quality multicast group will
reduce congestion, and hence will reduce potential packet
loss. This is known as Primary Quality Transformation
(PQT). This technique allows media to be composed into
broad bandwidth encoded qualities thus all a system needs
to do to increase or decrease quality is to move between
multicast groups. The Secondary Quality Transformation
(SQT) technique compliments this technique by providing
fine-grained control of quality within each group by the
insertion of transformations in the stream such as
compression.

The source carries separate streams with each multicast
group Gi, i = 1,2,…,K. The application of multiple multicast
group streaming techniques to continuous media hand
mobile devices the capability of allocating resources based
on local specifications and priorities (see Figure 2).
Multicast group streaming enables receivers to change the
quality of the stream they receive, independently of one
another without the source being aware of the change.
Considering the feedback problems of multicast, this is a
useful property and fits well with an open-loop approach to
congestion control of high-speed networks, as when network
congestion arises, it is possible to move between quality
groups without interruption in service. Service quality
should only be slightly reduced however; this technique can
be highly effective as a last resort for congestion control.

Priorities can be assigned to each multicast group to allow
streams to be protected against competing streams. This is

an application level QoS scheme and can be implemented
easily in Chameleon as all streams pass through a proxy.
Pre-set priority levels overcome many problems associated
with streaming over wireless links. Atmospheric conditions,
physical obstacles, electromagnetic interference and other
phenomena interfere with transmissions over wireless
channels, ultimately introducing bit errors. Long lasting
error bursts can severely impact upon applications, causing
video frames to be dropped, thus effectively lowering the
perceived quality. Chameleon supports the seamless
operation of real-time streams over wireless links by
assigning a priority and a portion of the link’s resources,
which are protected from being used by lower priority
streams.

Figure 2: Multiple Multicast Multimedia Groups

As Chameleon is an open-loop system, a segment with its
size defined by the application, is an independent piece of
information, similar to the Application Data Unit concept
described in [Clark90]. We expect that many multimedia
applications, guarantees of reliable delivery will not be
necessary for various media component types, and some
segments could be dropped at times of heavy congestion. In
addition, some of these applications may actually be quite
tolerant of delays, as described in [Clark92]. Particularly for
lower priority components, applications would be expected
to recover gracefully from loss of segments, or adapt to

Multimedia Server

Video

Text

Text
Specific
Stack

 Text
Group

Video

Video
Specific
Stack

 Video
Group

Audio
Specific
Stack

 Audio
Group

Audio

Chameleon Middleware

Media and Stack Repository

Wireless
LAN

Client

B & W Frames
with Low Frame

t

 Text
Group Audio

Group
Video
Group

Proxy (Home Agent)

Session
Manager

System
Monitor

Ethernet
LAN

Client

Ping Data Control Ping Data ControlChameleon
Players

Pings New stream
Subscription

Mobility,
Bandwidth,
Display,
Location
 Events

Control

Stream Control &
Updates

Stream
Subscription

Statistics & Stack
Component
Requests

2092

changes in the delays of their arrivals. Performing
transformations on multiple streams is suited to the
approach of a source transmitting multiple coded media
streams from which the receivers pick according to their
individual specifications and capabilities.

The benefit of this approach is that there is reduced
complexity due to the absence of feedback control
mechanisms, which are often redundant for continuous
media. Here the source’s main concern is to deliver various
media streams onto a multicast channel, with no emphasis
on where they end up and how they are used. A client’s (or
receiver’s) main concern is what to extract from a channel,
which is viewed as offering multiple streams, some or all of
which are of interest. We believe this communication
paradigm is appropriate for multimedia distribution services
such as cable television systems where a single source
generates video (and associated audio) distributed to a large
set of receivers who generally have little or no interaction
with the source.

Chameleon addresses application, application control, and
transport layers. The application layer consists of the
multimedia application (e.g., a video-on-demand
application) which is responsible for retrieving the stored
audio/video file with captions/subtitles (multilingual),
composition at the sending end, and the audio/video client
which is responsible for decoding and displaying the video
frames at the receiving end. Application control consists of a
media filter at the sending side to demultiplex each stream
into several sub streams, and media filter at the receiving
end to multiplex back one or more sub streams for the
audio/video client. These multiplexed streams (transport
layer) differ from common practice in that these streams are
not logically grouped together and shipped over the wire.
Instead, the media elements are divided into
audio/video/text by the event filter and distributed to
separate groups in accordance with application layered
framing practice and then the receiving filter directs the
streams to the relevant media application, thus the streams
retain their distinctiveness. Media may be stored in separate
files on the server and so that there is no need to split the
media in real-time. The application media filter receives
events from the application which may categorised them as
text, audio or video. A session manager is consulted to see
how many groupings of each category are required. The
normal is one for text, and three each for audio and video.
The text stack is composed as a reliable stack. The
audio/video stacks are both UDP differing in default packet
size and header sizes. Each media is sent to separate
multicast groups where the well-known addresses are
obtained from the session manager. Each of the three sub-
groups of audio and video will require a separate multicast
address. Since the network load changes during a session, a
receiver may decide to join or leave a multicast group,
thereby extending or shrinking the multicast trees.

The active network proposals target network
programmability without being content-aware. Chameleon,
in contrast targets content-aware application-level
programmability. The rapid increase in media types
necessitates a network infrastructure that allows clients and

servers to be free from media dependency and burdens of
managing content & client heterogeneity. This can be
extremely important for streaming media because of its
demanding resource requirements for processing,
translation, and transmission thus middleware must combine
media awareness with a high degree of intelligent adaptivity
in order to truly serve heterogeneous clients. PQT with
priority relies on third party traffic being disabled (or rate
controlled). This can be achieved through the technique of
blocking ports. Traffic types within Chameleon are assigned
port numbers to designate media type and these work
alongside the well know port numbers assigned to traffic
such as FTP, TCP etc. in order to bring about prioritised
media traffic streams. For the PQT with priority technique
to work properly, the end-to-end path must be composed of
Chameleon filters enabled in ‘firehedge’ mode. We adopt
this title (i.e. hedges being much weaker than walls) as
opposed to firewalls as we acknowledge the limited
functionality of a technique such as this in comparison to
industry standard firewalls which block, monitor and
classify traffic in a much more detailed manner.

IV. EVALUATION OF SQT

Secondary Quality Transformation (SQT) assumes
responsibility for responding to quality fluctuations within a
multicast group as opposed to the Primary Quality
Transformation (PQT) technique assumes responsibility for
coarse grain adaptation decisions by moving between
multicast groups upon violation of group bandwidth limits.
SQT does not involve movement between multicast groups
thus it can be seen as a fine grain adaptation technique
where improvements are attempted on the media stream
through the use of filters on proxies and mobile client
devices.

To demonstrate the feasibility of the SQT approach, three
wireless cells were operated in separate parts of the
computing building at the University of Ulster. Each cell has
its own dedicated IP subnet where access is provided and
controlled through routers on Linux PC’s connected to a
number of mobile devices. All tests were performed using
three similar test beds with the basic design having a client
and a server communicating using a proxy and a home
agent. The proxy performs the filtering as mentioned earlier,
while the home agent provides connectivity for the client
however due to space restrictions we only present the
wireless topology which uses 10 Mbps Ethernet to connect
the server, proxy and home agent, but uses a 2 MBps
Zoomair wireless LAN to connect the home agent to the
client. This is an environment exhibiting a reasonable
amount of heterogeneity. An interesting characteristic of this
environment is that Wireless LANs have a much higher
packet loss rate due to the nature its medium (radio). This
has various effects on test results, making them much less
uniform than the other environments.

i. Retransmission Timers

Chameleon may not be able to compete with finely tuned
versions of TCP and UDP, however the additional flexibility

2093

provided by Chameleon can be useful for environments that
have not been considered by standard generic protocols.
One example is where a particular service which lies
somewhere between TCP and UDP is required or where
stronger guarantees than TCP are needed. Chameleon is
ideal for circumstances where a protocol needs to be
configured to match the characteristics of a specific network
environment. One example could be a multimedia
application, which requires congestion control but not
ordered delivery, a service that TCP or UDP cannot provide.

Another scenario that we examine here is TCP over wireless
networks. TCP performs well in wired networks with its low
latency and low failure rate but overreacts in wireless
networks where packet loss can occur for many reasons
other than congestion [Wong01]. The principal problem is
the congestion control algorithm. Nearly all TCP
implementations nowadays assume that timeouts are caused
by congestion, not by lost packets therefore when a timer
expires; TCP retransmits the packet, but also invokes
congestion control measures by reducing the TCP window
size and throughput. The industry standards for versions of
TCP such as Reno retransmit data on reception of 3
duplicate acknowledgements or the expiration of a
retransmission timeout. This timeout however can be set
very coarse, in the order of 350-500ms. Local Area
Networks and organisations fortunate enough to be
connected directly (e.g. Universities) to the backbone of the
Internet quite often experience round-trips approximately
20-100ms, therefore due to the low latency of the network,
faster retransmissions can be beneficial [Cheshire00].

The goal of this test was to reconfigure the TCP
retransmission timer over Wireless networks to react
speedier to errors rather than assume congestion and ‘back-
off’ incorrectly. Thus we ran a series of comparisons
between a Chameleon TCP Reno clone and a Chameleon
TCP with a timeout value set to 150ms for Chameleon TCP
and a time-out value of 400ms for TCP Reno.

The packet losses were simulated by a LOSSY protocol
stack element. The LOSSY component simulated reordering
and loss of messages (0% loss to 50% loss). We performed
a series of 1000 runs of epoch sizes varying from 100-900
over our three-test bed networks. We used a Windows 98
Pentium Pro 500mhz PC Client, with 128 MB Ram
connected via a 2 MB wireless LAN to a Windows 2000
Pentium III 800mhz Server with 128 MB RAM. Figure
Error! No text of specified style in document.-3 illustrates that our
optimised TCP outperforms a standard TCP stack when
faced with losses above a 20% threshold. This is achieved
through the use of a retransmission timer, which is set to
respond faster to lost messages.

TCP Latency Comparisons

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40
Loss Rate (%)

Ro
un

d-
Tr

ip
 T

im
e

(m
s)

TCP

Chameleon TCP

Figure Error! No text of specified style in document.-3 : TCP v Optimized
TCP over Wireless LAN

Determining whether the application is streaming over a
wired or on a wireless network can be determined at run-
time by Chameleon. The assumption on the average packet
loss rate for these networks is hidden in the protocol library
for generic protocol stacks. Chameleon however provides
the hooks for reconfiguring the environmental parameters
involved. The retransmission_interval can be set in
construction of the stack as follows:

IPMULTICAST (ttl=8):FRAG(Size = 2048):NAK(epochsz=32,
retransmission_interval=150)

Chameleon does not require a total reloading of the stack
into memory during run-time should a reconfiguration of the
timer be requested. The timer interval is simply changed,
buffers emptied and transmission continues as before with
the new timer interval settings.

V. RELATED WORK

Problems with RSVP and other end-to-end per-flow
resource reservation techniques has been well documented
in the literature with regards requiring core routers to
maintain individual flow states leading to scaling problems
(not to mention actual deployment) [Kojo97]. In addition,
existing middleware [Maffeis97, Joesph97] and multicast
protocol approaches [Liljeberg96] tend to concentrate on
the delivery of efficient narrowly defined solutions at the
expense of generic adaptable frameworks which can be
applied in wider ranging domains to cope with existing and
unforeseen occurrences. Hierarchical methods [Snoeren01]
do not allow for fine-grain delivery control and the ability
for additional intelligence to be ‘injected’ into the data path
to increase the transmission rate [Poger97, Zhao01].
Reflective approaches [Kojo95, Zenel95] require the use of
non-standard Java virtual machines which again prevents
the ready deployment of applications (which could make use
of existing standard java virtual machines in routers, web
browsers, JDK’s etc). Proxy solutions [Todd99] are often
written in slow scripting languages (hampering
performance) or the filters are part of the application
complicating their reuse and making it difficult to support
legacy applications. Mobile frameworks [VanSteen99]
seem to focus on issues such as mobile hosts migrating to

2094

another network location, at the expense of a more complete
middleware framework thus limiting users in their
application development.

VI. CONCLUSIONS

The results of our research show that middleware
architectures with carefully crafted generic interfaces and
adaptable self-configuring traits are ideal for systems with
fluctuating environment conditions. The goal was to create a
framework where mobile devices can subscribe to an
optimal quality of service using the minimal selection of
stack components necessary and continue execution in the
face of fluctuating conditions in the network and device
itself. This was enabled through a platform independent and
flexible framework where new components can be inserted
and installed within live systems. We provide a series of
template classes to aid future developers in creating mobile
aware streaming solutions.

Sources and receivers are loosely coupled not needing to
know the other identities with the only common object that
both are aware of being a communication channel. This
promotes scalability towards very large numbers of
receivers and reduces the complexity of channel
establishment. Receivers can have different needs, and
satisfy them by individually tailoring the media streams
extracted from a channel where each end system should
receive the amount of data that it is capable of handling i.e.
for each end system the highest possible quality is aimed
for. This also helps overcome the receiver window size
limiting the amount of data that can be buffered at the proxy
as seen in other systems due to the decoupling of the server,
proxy and client. The architecture meet the goal of creating
an extensible framework where new codecs and QoS
modules can be simply added without significantly
perturbing any current running system.

VII. REFERENCES

[Cheshire00] Cheshire, S. For every network service there’s an equal and
opposite network disservice.
http://rescomp.stanford.edu/~cheshire/rants/networkdynamics.html

[Joesph97] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile
computing with the Rover toolkit. IEEE Transactions on Computers,
46(3):337-352, March 1997.

[Kojo97] Kojo M., Raatikainen K., Liljeberg M., Kiiskinen J., Alanko T.:
An Efficient Transport Service for Slow Wireless Telephone Links. IEEE
Journal on Selected Areas in Communications, Vol. 15, No. 7, September
1997.

[Maffeis96] Maffeis Silvano, Bischofberger Walter, and Mätzel Kai-Uwe.
GTS: A Generic Multicast Transport Service to Support Disconnected
Operation. ACM Wireless Networks Journal, 2, 1, pp. 87- 96, 1996

[Maffeis97] Maffeis, S. Building Reliable Distributed Systems with
CORBA, Theory and Practice of Object Systems, Vol. 3(1), John Wiley &
Sons, April 1997

[Modiano99] Eytan Modiano. An adaptive algorithm for optimizing the
packet size used in wireless ARQ protocols. MIT Lincoln Laboratory,
Lexington, MA 02420-9108, USA. Wireless Networks, Vol (5), No 4
(1999)

[Parr-Curran00] Parr, G., Curran, K. A Paradigm Shift In The Distribution
Of Multimedia. Communications Of The ACM, Vol 43, No 6, pp 103-109,
June 2000

[Peterson91] Peterson, L. & Hutchinson, N. The X-Kernal: An architecture
for implementing network protocols, IEEE Transactions on Software
Engineering, 17 (1), pp. 64-76 1991

[Poger97] Elliot Poger and Mary Baker, Secure Public Internet Access
Handler (SPINACH). Proceedings of the USENIX Symposium on Internet
Technologies and Systems, December 1997.

[SCTE00] Society Of Cable Telecommunications Engineers, Inc.
Engineering Committee. Audio codec requirements for the provision of bi-
directional audio service over cable television networks using cable
modems. Data Standards Subcommittee Document: SCTE DSS-00-01 Date
of Original Issue: March 1, 2000 Date of Latest Revision: December 15,
2000

[Snoeren01] Snoeren, Alex., Balakrishnan, Hari, and Kaaeshoek, Frans.
Reconsidering IP Mobility. In proceedings of the 8th IEEE workshop on
Hot Topics in Operating Systems (HoTOS-VIII), Schloss Elmau, Germany,
May 2001.

[VanSteen99] Van Steen, M., Tanenbaum and Homberg, P. Globe: A wide-
area distributed system. IEEE Concurrency, pages 70-78, January-March
1999

[Unix90] Streams programmer’s guide. Unix System V Release 4.

[Wong01] Wong, G., Hiltunen, M., and Schlichting, R. “A configurable
and extensible transport protocol”. IEEE Infocom 2001, April 22-26 2001,
Anchorage, Alaska, April 2001

2095

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

