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Abstract—The capacity of a multiple-input multiple-output The purpose of this paper is to provide a general framework
(MIMO) channel can be improved if the transmitter has knowl-  for quantization of MIMO channel information and to develop
edge of channel. In this paper, we propose an efficient and practi- 5 nractical feedback method for slowly time-varying chasne

cal feedback method based on parameterization and quantization - L .
of channel parameters. The spatial information of channel at The CSIT consists of the spatial information of channel and

transmitter, which is represented as a matrix with orthonormal the power allocation over spatial channels. We first focus
columns, has a geometrical structure. In parameterization, the on quantization of the spatial information which can be

geometrical structure is exploited to extract a set of parametes  represented as a matrix with orthonormal columns (a unitary
that has a one-to-one mapping to the original matrix. In slowly a4y js an example). We notice a geometrical structure in

time-varying channels, the parameters are also found to be th trix. F le th | f 54 unit i
smoothly changing in time. We employ adaptive Delta modulation € matrix. For example, the columns ot a ¢ unitary matrix

to quantize and feed back each parameter. The results show that V' = [v1,...,v;] are all on the unit-norm sphers; C C*
the proposed feedback scheme has a channel tracking featureand mutually orthogonal, i.ewy; € Si, va € (S N vf),

and achieves a capacity very close to the perfect feedback case), ¢ (S, Nvi Ny ), and so on, where;- is the orthogonal
with a reasonable feedback rate. complement of the space spanned 4y In this paper, the
geometrical structure is exploited in quantizing the spati
information. In particular, from the matrix with orthonoatn
Multiple transmit and receive antenna system is consideredlumns, we extract a set of essential parameters that has a
as a strong candidate for future wireless systems becausemé-to-one mapping to the original matrix. The number of
potential improvement in channel capacity and link perfoparameters equals the degree of freedom in the matrix. Then,
mance. A multiple antenna channel provides different capanstead of quantizing the original matrix, the parametess a
ities under different channel state information (CSI) agsu quantized and fed back to the transmitter, and an approgimat
tions. The two common CSI assumptions areoinplete CIT (quantized) version of spatial information is reconstedcat
(channel state information at the transmitter) where pérfehe transmitter. Although jointly quantizing the parammete
channel information is known to both the transmitter and tHgector quantization) could be better choice, this papesith
receiver, e.g., [1], [2]; and iijho CST where perfect channel ers quantizing each parameter independently (scalar gpdin
information is available only at the receiver, e.g., [1].eThbecause of its low complexity. More specifically, adaptive
former case, of course, provides a higher channel cap#eity t Delta modulation (ADM) [6] is employed from an observation
the latter, but the gain comes at an expense of the transmiitt¢hat, in slowly time-varying channels, the extracted pastars
perfect knowledge of MIMO channel. However, since imre also smoothly changing. ADM is a practical low-rate acal
many applications the channel information is provided ® ttcoding scheme that can track time-varying channels effigien
transmitter through a dedicated feedback channel, it imstm We use the following notationsi” and A7 indicate the con-
impossible for the transmitter to have perfect information jugate transpose and the transpose of matfrixespectively.
time-varying channels. Many previous studies considened t/,, is the n x n identity matrix and0,, , means then x n
above two extreme CSIT assumptions, and there are onlygero matrix.diag(as,...,ay) is a square diagonal matrix with
few studies dealing with how to feed back the MIMO channely, ..., a, along the diagonal. The 2-norm of vectoris
information. Some researchers have worked on feedbackdeioted byj|v||. E[-] represents the expectation operator, and
channel information in vector form, for example, for muléip CN (1, X) is circularly symmetric complex Gaussian random
input single-output (MISO) channels [3] and for the priradip vector with meary, and covariance..
eigen-mode of MIMO channels [4]. Onggosanusi and Dabak
[5] studied feedback of matrix channel information for MIMO
channels. They introduced a feedback scheme where amorfly £hannel Model
set of unitary matrices for the channel spatial informatiam We consider a multiple antenna system witaAntennas at
index of the matrix minimizing error probability is fed backthe transmitter and at the receiver. Assuming slow flat-fading,
to the transmitter. the MIMO channel is modeled by the channel matfix €

I. INTRODUCTION

Il. SYSTEM MODEL AND MUTUAL INFORMATION



Tc

Cr>t, That is, the channel input € C* and the channel output

y € C" have the following relationship: chamnel | Wy | - | v l“[M*”‘ [ e ,HZM*”‘ -]
: ' ' Time
y = Hx + n (1) i Feedbacl i
wheren € C" is the additive white Gaussian noise vectof® a‘TX’ VM), M) VM), Yi2m]
distributed byCN (0,1, I,.). We denote the rank off by m. Tr

And, the singular value decomposition (SVD) Hf is given
by H = UyXy V)i, whereUy € C™" and Vy € C* are
unitary matrices and:; € R™** contains the singular values
oy > ... > o, > 00f H. We impose a constraint on the
transmit power byE[zz] < Pr. , _
We assume that in all cases perfect CSI is known to the”AMoNg many possible measures for eyaluatmg thg perfor-
receiver. And, the first (0 < n < m) columns of Vi are mance of the feedback method, we consider mutual informa-

to be quantized and fed back to the transmitter as chanﬂgp as performance measure in this paper. When the transmit

spatial information. When we consider perfect feedback, i eSignalz is distributed bYCA (0,1, @), the mutual information

no quantization error, this setting includes the two eXElfenior a gen chanr;el real!zat|od{ IS given by I(m;y), -
cases: i)n = m is the case that the transmitter has sam@% det(I, + H®, H') [1]. Since the covariance matrik; is a

spatial information as in theomplete CSIT case; and iij, — 0 Hermitian positive semidefinite matrix, it can be decomplose
1 - _ o+ . . . t><t
accounts for no spatial information at the transmitter ah@n as e, = W(I)_Wl W't,h a unitary matrixi” € C a_md a
no CST case. And, wherd < n < m, it corresponds to diagonal matrixp = diag(Py, ..., 1), Fi > 0. From this, V\ie
partial CST of [7], [8]. For notational convenience, let uantme th"’}t it is equivalent to trqnsmntmg - Ws,s € C
defineV — [v1, .. ., v,] whereu is thei-th column vector of ywth E[ss'] = ® over channelH, i.e., an equivalent channel
Va. IS
The CSIT consists of the spatial information of channel y=HWs+1. )
and the power allocation information. The matixconveys This point of view is useful because each columriofcan be
the spatial information that is needed at the transmitier. jnterpreted as the beamforming vector for the correspandin
[7], we discussed a multiple-antenna system concept intwhigympol ins. And, in some cased)’ and® can be adjusted

the optimal power allocation is calculated at the receivgy using the spatial and the power allocation information
and provided to the transmitter as additional CSI. The powgyajlable at the transmitter. Let us define= [

Fig. 1. Feedback system model (wh&h= 1).

C. Mutual Information and Capacity

. . . . Y1, 7725]1
allocation information is represented by a real veeter [v;] where ~;, € [0,1] and 3_.~; = 1, which is referred as
where} v, =1land0 < <1. power allocation information by setting; = P;/Pr, i.e.,

®(v) = Prdiag(m,...,7). And, we denote the mutual
B. Feedback System Model information I(s;y) of the channel (2) when the transmitter

This subsection describes a feedback system model for tinf&®s beamforming matri” and power allocatiory by

\t/)arying MIhMO c?ar;]nels }hatdacrc]ougtss for thhe discrepancy U(W,~) = logdet(I + HW®(y)WTHT)
etween the real channel and the | at the transmitter. It -

will be used in performance evaluation in Section V. Figure 1 = logdet(I + VW (y)WVy%?).

depicts the block-fading model and the frame structure ef th When the transmitter has perfect knowledge of channel (as
feedback system model. We assume that the channel main>xcomplete CST case),IW is set toVy. Then, the mutual

is not changing during a time block, which will be callednformation is written ad (s;y) = ¥(Vy,y) = >~ log(1+
channel block (with length T¢). The channel matrix ak- P;);), where\; = o2. With water-filling to maximizel (s; y),

th channel block is denoted b¥i[k], and V[k] and v[k] we have the channel capacity

are the corresponding CSI. The quantized version of the CSI m

(V[k] and 4[k] in the figure) is provided to the transmitter Crull = Z [log(vA;)]* 3)

at afeedback rate of Rp times per second via an error-free =1

feedback channel. The time frame between two conseque%t 4 . . -
channel updates is callddedback frame (with length 7p = WV ere[a] IS defined aSnaX{a,O}-anrgV IS theyyaier-ﬂllmg
1/Ry). For simplicity, we assume there afe (an integer) |€Vel satisfying the power constraiht;”, =X =Pr.
channel blocks in a feedback frame, i.65 = MT.. In When we denote the optimum power allocation information
addition, in order to model composite delay, e.g., due R 7w, We can writeCrai = W(Vp,vwi). On the other
processing and propagation, we introduce an integer paeamé‘and’ \_Nhen no information about Channe_l is avz_;ulable at the
D: at the starting point of each frame, the CSI correspondifi@nsmitter (as imo CST case), the capacity is given by

to the D previous channel block is available at the transmitter. m Py

Figure 1 is an example whe® = 1. The CSIT is used in CNone = Y (It, Yunit) = Zlog (1 + TM) 4)
transmission during the frame before the next update atrive i=1



where vunir = [1/t,...,1/t]. These two capacities for themethod using Givens rotations in which the number of pa-

extreme cases will be used as references in comparing perfameters is equal to (8), the degree of freedom in the matrix.

mances. Theorem 1 (Parameterization): A matrix V € C™>x"(t >
Now, we consider the following two scenarios where some) with orthonormal columns can be decomposed as

non-perfect channel information is available at the trattem " —k

The first case is When the tr_angmitter uses the quantizedy — HDk(¢k,k7-~~7¢k,t)Hthl,tflJrl(gk,l) I (9

and/or delayed version of spatial informatidfy and power el =1

allpcation informationy. Then, the mutual information can bevvheret dimensional diagonal matrix

written as ‘ .

= U(Vg,7). (5) Di(@h ks - - s Prt) = diag(1p_1, €0k . eIkt

Note that the subscripts in mutual information and capacity—1 IS (k —1) 1's; andG,, ., (¢) is the Givens matrix which
notations indicate the CSIT. The second case is when theerates in thép —1,p) coordinate plane of the form

Iy,

Y

transmitter has only spatial informatiofi; and no power I,_o

allocation information. In this case, one easy choice of grow c —s

allocation is uniform allocation. Then, the mutual infoitioa Gp-1(0) = s ¢ ’ (10)
is given by I,

c=cosf ands = sin@; andt x n matrix I = [I,,,0,¢ )"
Let us explain the above parameterization procedure with an
example. Considet x 3 matrix V' with orthonormal columns.

R m P
Iy = Y(Vi, yunit) = Zlog (1 + TTAi(chng)) (6)

i=1

where Hq = HVy and \(He HJ,) is the i-th largest

. X X X x| x x 1 0 O )
eigenvalue OfHeqH;rq' ) x x x| bl |Ix] x x claclsels o x x| o
We expect that channel feedback has more gain whem XXX [x] x  x 0 x X
h . X X X x| x X 0 x X
[7]. In this case, since the rank of chanmel< ¢, we need to
. . 1 0 0 + t 1 0 O s 1 0 0 T
feedback only firstn columns of Vg, i.e., V = [v1, ..., ] 0 x| x| %a%ga o 1 ol i Jo 1 o0 | %a ;
(n = m). And, if V is reasonably close t&, the optimum [0 [x] X 0 0 x 0 0 |x|
0 |x]| x 0 0 x 0 0 |x|

power allocation will has nearly zeros in the lastm entries
in 7. Therefore, when only spatial informatidn is available where| x | represents the magnitude of a particular element.
at the transmitter, a reasonable uniform power allocat®n The procedure is similar to the QR decomposition using
y=[1l/m,...,1/m,0,...,0]. Givens matrices. In the first step, we want to make all the
entries in the first column under the first component all zeros
To do that, we first extract the phases from the first column
In this section, we focus on how to extract essential paratoy pre-multiplying V' by DI to have a real-valued column,
eters from the spatial information denoted by Since the and then apply a series of Givens matrices with appropriate
columns in spatial informatiof’” are geometrically structured, parameters to make all entries under thel) element zeros.
the degree of freedom in the matrix is much smaller than tignce the Givens rotation preserves the length of vecter, th
number of real-number entries in the matrix. The degree ©f, 1) element becomes 1. At the same time, all the entries
freedom inV € C**™ can be expressed as in the first row except thél, 1) element also become zeros
n because of the orthogonality between columns. We carry out
N=2t-n—n-— 2< ) = 2tn — n? (real numbers) (7) similar procedures on the remaining columns sequentiatig,
2 then finally we have a diagonal matrix Since a Givens matrix
where the first term is the number of real-number entries is an orthogonal matrix, the matriX can be factored as

I1l. PARAMETERIZATION OF CHANNEL INFORMATION

the_ matrix, and second term accounts for r_eductlons fromV:Dl(qu, L 61.4) G3.4(01.1) Go.3(01.0) G1.0(01.3)
unit-norm property of each column, and third term from D G (00 ) G (0
orthogonality in each pair of columns. For example; &t  D2(92,2, 92,3, $2.4) 3’4(}’1) 2,3(02,2)
unitary matrix has2¢> real-number entries, but its degree of - D3(¢3,3, #3,4) G3,4(03,1) 1.

freedom is onlyt2. Furthermore, one phase in each COIUmﬁ‘herefore, once we have a set of parameters, the pliase$

can be made fixed (e.g., the first row has all nonnegative regly the rotation angle8d,;}, the original matrixV can be
numbers), which gives additional reductions. Then, exactly reconstructed. '

N=(2t—1)n— n? (real numbers) @) Now, we will show that thg nu_mbgr of parameters obtained
by the proposed parameterization is equal to the degree of
Now, we want to extract a set of essential parameters thisgedom inV with the following with the following Lemma
has a one-to-one mapping to the matvix There are several and Theorem.
possible ways such as using Givens rotations or Householdetemma 1: Define asV the resulting matrix after applying
reflections. In this paper, we propose a parameterizatibh and the first! Givens rotationsGI7q7t7q+1(017(1), q =



., 1, in the procedure for the first column. Then, tfie- 3) Reconstruct the spatial informatidn from © (Recon-
I,p) element ofV is given by struction): V = 7-1(0).
HUYH)H The proposed methodology for quantization has many advan-
Vit—1,p = D)y (11) tages. Spmg of thm are as follows. The number of parameters
TSET fp=2...,n to quant!zells m|n|mal since it equals the degree of freedom i
the spatial information. The parameters, which are phases a
whereu, is a vector defined as the lakt 1 elements in angles are all bounded quantities. The reconstructedixmatr
the i-th columnvz, ie. v(l+1) [Vt 1y Vt—t41iiy -+ s Um.]T_ V has the same geometrical structurelasi.e., ViV = I,.
Proof: This can be proved by induction. m [n addition, the methodology is general and can be applied to
Theorem 2: In the matrix factorization of Theorem 1, if @ny multiple antenna scenario: MISO systems (whes 1)
orthonormal column matri¥” has real-valued elements in thetnd MIMO systems with partial feedback (wheén< n < m)
first row with alternating signs as — + — ... ., then the first @s well as MIMO systems with full feedback & m).
parameter oDy, is zero, i.e.gy 1, = 0 for all k. Therefore, the

if p=1,

(I+1)

T
number of parameters i@t — 1)n — n?, which is the degree v
of freedom inV’. |o
Proof: This can be proved by using Lemma 1 and R
orthogonality between two columns &f. After applying DI v
and¢ — 1 Givens matricegifl,tful(el,l)' l=1,....t—1, Fig. 2. Quantization in the parameter domain.

it can be shown that the resulting matrix is given by
One can apply some vector quantization (VQ) method to
Gl, ... Gl 1t DIV = [0 L 01%4] , (12) quantize the parameters. But, complexity issues and track-
’ =11 ing requirement motivate us to consider employing scalar
andV’ is a(t—1) x (n—1) matrix with orthonormal columns quantization. Moreover, the independence of the parasieter
that has same structure &5 i.e., alternating signs in the first Theorem 3, indicates that the overall loss is minimal. More
row. Therefore, in a sequential way we can prove the firspecifically, adaptive Delta modulation (ADM) [6, ch. 8]
phase parameter d@,, is zero for allk. From this, we have. iS used to quantize each parameter. In slowly time-varying
less parameters than (7), which results in the final conmusi channels, the parameters are also slowly and continuously
m changing most of the time. The encoder of ADM consists
Now we find the distribution of the parameters and e®f a simple accumulator and a one-bit quantizer. Basicilly,
tablish their independence, a property useful for quatitima quantizes the difference between the newly incoming sample
purposes. and the previous quantized sample. For a parangter
Theorem 3 (Statistics of Parameters): When the channel Al A
matrix H hasi.i.d. CN(0,1) entries, then all the parameters Olk] = Olk — 1) & Alk]. (14)
from Theorem 1 are statistically independent. Moreoveg, tiAnd the step-size\[k] of the one-bit quantizer is adaptively
phasegy, ; is uniformly distributed ovef—, 7] for all £ and changing to better track the dynamics of the signal. The ADM
J, and the rotational anglé, ; has probability density with one-bit memory [6] is an example. The step-size is
increased if the consequent two encoded bits are same, and

_ 97 oin2l-1 . ™ ) .
P(Or) = 20 8™ by cos by, 0= Ory < 9 (13)  decreased otherwise, that is,

Proof: The theorem can be proved using techniques My Alk — 1), if c[k] = clk — 1]
for calculating the distribution of transformed random wvec Alk] = My Alk 1]’ it clk] % cll — (15)
tor/matrix similar to [9, Ch. 1-3]. Details are omitted due t 2 » 1€ ¢

space limitations. B whereA[k] and c[k] is the step-size and the encoded bit for
The parameterization for power allocation informatipr=  the k-th sample; andM; > 1 and0 < M, < 1, usually
1,5 %)y S4_y v = 1 is rather simple. We can see that )7, — 1/M;. Compared to VQ, ADM has considerably lower
hast — 1 of degree of freedom. And, the parameters can R@mplexity. And it is a low-rate scalar quantization scheae
simply the firstt —1 elements|vi, ..., v-1]. Then, from the Jow as one bit per parameter). Another important advantage i
constraint, the last one is determinedyas=1— 3" 7.  that ADM has inherently a channel tracking feature for sjow

time-varying channels.
IV. QUANTIZATION IN PARAMETER DOMAIN ying

The overall strategy for quantization is depicted in Figure V. NUMERICAL RESULTS

2 and summarized below. We have performed simulations to investigate the perfor-
1) From the spatial informatioflY, extract a set of param- mance of the proposed feedback method, especially in slowly
eters® (Parameterization): © = 7 (V). time-varying MIMO channels. The components of the channel

2) Quantize the paramete® and feed back the quantizedmatrix arei.i.d. discrete-time random processes and each
parameter® (Quantization): © = Q(0). process models Rayleigh fading channel gain. The simulated



channel has the Doppler frequendgy, = 7.4 Hz, which
corresponds to a mobility of 4 km/h at carrier frequency of 8]
GHz. As for the frame structure of Section II-B, we considere
the case of\/ = 4 andD = 1. (2]

Figure 3 shows the cumulative distribution of mutual infor-
mation with different CSIT assumptions and various tramsms]
power, Pr = —10, 0, 10, 20 dB, with the feedback rat&r =
500 per second( = 4 andr = 2). Cpui and Cnone are 4
calculated from (3) and (4), respectively. Note that theTCSI
for Cruy is perfect, that is, it involves neither quantizatio .
error nor channel tracking error. The performances of t e]
proposed feedback method are showrC@,% andCy,, which
are calculated according to (5) and (6), respectively. &hel§!
include the effect of quantization error and delay; themfo 7
they reflect more practical situations of feedback systems.
From the results, we can see that, in low transmit power ran
the two have some gap; but, in high transmit power range, t
two have little difference. This means that power alloaatio
information is important in low transmit power range, which®]
can be understood from the water-filling argument. That is,
when transmit power is low, the optimum transmission scheme
is using only a few spatial channels that have high channel
gains. Note that the feedback rate is corresponding to 55 kb
(for C‘A,’,Ay) and 5 kbps (forC,) of feedback bit-rate since we
have 10 parameters far and one fory, and ADM encodes
each parameter into one bit at each feedback instant.

Figure 4 shows the results when the feedback rate is
increased toRr = 1000 per second, which corresponds to

11/10 kbps. We can see that the performances become much

closer toCr,;1. This can be explained as follows. By increasing
the feedback rate, the quantization error is reduced, simce
ADM encoding the variations between the adjacent samples
are reduced. Also the channel tracking error due to delay is
lessened with increasing the feedback rate.

VI. CONCLUSION

We proposed a general framework for quantization &f9:
MIMO channel information, which involves parameterizatioand
of orthonormal column matrix and quantization of param-
eters. We introduced a new parameterization method that
uses Givens rotations and that provides minimal number of
parameters. The distributions of the parameters were fandd
the independence between them was shown. In slowly time-
varying channels, the extracted parameters are also slowly
and continuously changing in time. This motivated employ-
ing adaptive Delta modulation in quantizing the parameters
The adaptive Delta modulation is a simple and practical
guantization method that has a channel tracking feature for
slowly time-varying channels. The proposed feedback sehem
requires(2t — 1)n — n? bits to feedback/ € C**". With the
proposed feedback method, a performance close to the perfec
feedback case can be achieved with a reasonable feedback rat
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