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Abstract— The capacity of a multiple-input multiple-output
(MIMO) channel can be improved if the transmitter has knowl-
edge of channel. In this paper, we propose an efficient and practi-
cal feedback method based on parameterization and quantization
of channel parameters. The spatial information of channel at
transmitter, which is represented as a matrix with orthonormal
columns, has a geometrical structure. In parameterization, the
geometrical structure is exploited to extract a set of parameters
that has a one-to-one mapping to the original matrix. In slowly
time-varying channels, the parameters are also found to be
smoothly changing in time. We employ adaptive Delta modulation
to quantize and feed back each parameter. The results show that
the proposed feedback scheme has a channel tracking feature
and achieves a capacity very close to the perfect feedback case
with a reasonable feedback rate.

I. I NTRODUCTION

Multiple transmit and receive antenna system is considered
as a strong candidate for future wireless systems because of
potential improvement in channel capacity and link perfor-
mance. A multiple antenna channel provides different capac-
ities under different channel state information (CSI) assump-
tions. The two common CSI assumptions are i)complete CSIT
(channel state information at the transmitter) where perfect
channel information is known to both the transmitter and the
receiver, e.g., [1], [2]; and ii)no CSIT where perfect channel
information is available only at the receiver, e.g., [1]. The
former case, of course, provides a higher channel capacity than
the latter, but the gain comes at an expense of the transmitter’s
perfect knowledge of MIMO channel. However, since in
many applications the channel information is provided to the
transmitter through a dedicated feedback channel, it is almost
impossible for the transmitter to have perfect informationin
time-varying channels. Many previous studies considered the
above two extreme CSIT assumptions, and there are only a
few studies dealing with how to feed back the MIMO channel
information. Some researchers have worked on feedback of
channel information in vector form, for example, for multiple-
input single-output (MISO) channels [3] and for the principal
eigen-mode of MIMO channels [4]. Onggosanusi and Dabak
[5] studied feedback of matrix channel information for MIMO
channels. They introduced a feedback scheme where among a
set of unitary matrices for the channel spatial information, an
index of the matrix minimizing error probability is fed back
to the transmitter.

The purpose of this paper is to provide a general framework
for quantization of MIMO channel information and to develop
a practical feedback method for slowly time-varying channels.
The CSIT consists of the spatial information of channel and
the power allocation over spatial channels. We first focus
on quantization of the spatial information which can be
represented as a matrix with orthonormal columns (a unitary
matrix is an example). We notice a geometrical structure in
the matrix. For example, the columns of at× t unitary matrix
V = [v1, . . . , vt] are all on the unit-norm sphereSt ⊂ C

t

and mutually orthogonal, i.e.,v1 ∈ St, v2 ∈ (St ∩ v⊥
1 ),

v3 ∈ (St ∩ v⊥
1 ∩ v⊥

2 ), and so on, wherev⊥
i is the orthogonal

complement of the space spanned byvi. In this paper, the
geometrical structure is exploited in quantizing the spatial
information. In particular, from the matrix with orthonormal
columns, we extract a set of essential parameters that has a
one-to-one mapping to the original matrix. The number of
parameters equals the degree of freedom in the matrix. Then,
instead of quantizing the original matrix, the parameters are
quantized and fed back to the transmitter, and an approximate
(quantized) version of spatial information is reconstructed at
the transmitter. Although jointly quantizing the parameters
(vector quantization) could be better choice, this paper consid-
ers quantizing each parameter independently (scalar coding)
because of its low complexity. More specifically, adaptive
Delta modulation (ADM) [6] is employed from an observation
that, in slowly time-varying channels, the extracted parameters
are also smoothly changing. ADM is a practical low-rate scalar
coding scheme that can track time-varying channels efficiently.

We use the following notations.A† andAT indicate the con-
jugate transpose and the transpose of matrixA, respectively.
In is the n × n identity matrix and0m,n means them × n
zero matrix.diag(a1, . . . , an) is a square diagonal matrix with
a1, . . . , an along the diagonal. The 2-norm of vectorv is
denoted by‖v‖. E[ · ] represents the expectation operator, and
CN (µ,Σ) is circularly symmetric complex Gaussian random
vector with meanµ and covarianceΣ.

II. SYSTEM MODEL AND MUTUAL INFORMATION

A. Channel Model

We consider a multiple antenna system witht antennas at
the transmitter andr at the receiver. Assuming slow flat-fading,
the MIMO channel is modeled by the channel matrixH ∈



C
r×t. That is, the channel inputx ∈ C

t and the channel output
y ∈ C

r have the following relationship:

y = Hx + η (1)

where η ∈ C
r is the additive white Gaussian noise vector

distributed byCN (0r,1, Ir). We denote the rank ofH by m.
And, the singular value decomposition (SVD) ofH is given
by H = UHΣHV †

H , whereUH ∈ C
r×r and VH ∈ C

t×t are
unitary matrices andΣH ∈ R

r×t contains the singular values
σ1 ≥ . . . ≥ σm > 0 of H. We impose a constraint on the
transmit power byE[x†x] ≤ PT .

We assume that in all cases perfect CSI is known to the
receiver. And, the firstn (0 ≤ n ≤ m) columns ofVH are
to be quantized and fed back to the transmitter as channel
spatial information. When we consider perfect feedback, i.e.,
no quantization error, this setting includes the two extreme
cases: i)n = m is the case that the transmitter has same
spatial information as in thecomplete CSIT case; and ii)n = 0
accounts for no spatial information at the transmitter as inthe
no CSIT case. And, when0 < n < m, it corresponds to
partial CSIT of [7], [8]. For notational convenience, let us
defineV = [v1, . . . , vn] wherevi is the i-th column vector of
VH .

The CSIT consists of the spatial information of channel
and the power allocation information. The matrixV conveys
the spatial information that is needed at the transmitter. In
[7], we discussed a multiple-antenna system concept in which
the optimal power allocation is calculated at the receiver
and provided to the transmitter as additional CSI. The power
allocation information is represented by a real vectorγ = [γi]
where

∑

i γi = 1 and0 ≤ γi ≤ 1.

B. Feedback System Model

This subsection describes a feedback system model for time-
varying MIMO channels that accounts for the discrepancy
between the real channel and the CSI at the transmitter. It
will be used in performance evaluation in Section V. Figure 1
depicts the block-fading model and the frame structure of the
feedback system model. We assume that the channel matrix
is not changing during a time block, which will be called
channel block (with length TC). The channel matrix atk-
th channel block is denoted byH[k], and V [k] and γ[k]
are the corresponding CSI. The quantized version of the CSI
(V̂ [k] and γ̂[k] in the figure) is provided to the transmitter
at a feedback rate of RF times per second via an error-free
feedback channel. The time frame between two consequent
channel updates is calledfeedback frame (with length TF =
1/RF ). For simplicity, we assume there areM (an integer)
channel blocks in a feedback frame, i.e.,TF = MTC . In
addition, in order to model composite delay, e.g., due to
processing and propagation, we introduce an integer parameter
D: at the starting point of each frame, the CSI corresponding
to theD previous channel block is available at the transmitter.
Figure 1 is an example whenD = 1. The CSIT is used in
transmission during the frame before the next update arrives.

TF

TC

V̂ [M], γ̂[M] V̂ [2M], γ [2M]^CSI at Tx

Channel

Feedback

Time

. . . . . . . . .H[1] H[M] H[M+1] H[2M] H[2M+1]

Fig. 1. Feedback system model (whenD = 1).

C. Mutual Information and Capacity

Among many possible measures for evaluating the perfor-
mance of the feedback method, we consider mutual informa-
tion as performance measure in this paper. When the transmit
signalx is distributed byCN (0t,1,Φx), the mutual information
for a given channel realizationH is given by I(x; y) =
log det(Ir +HΦxH†) [1]. Since the covariance matrixΦx is a
Hermitian positive semidefinite matrix, it can be decomposed
as Φx = WΦW † with a unitary matrixW ∈ C

t×t and a
diagonal matrixΦ = diag(P1, . . . , Pt), Pi ≥ 0. From this, we
notice that it is equivalent to transmittingx = Ws, s ∈ C

t

with E[ss†] = Φ over channelH, i.e., an equivalent channel
is

y = HWs + η. (2)

This point of view is useful because each column ofW can be
interpreted as the beamforming vector for the corresponding
symbol in s. And, in some cases,W and Φ can be adjusted
by using the spatial and the power allocation information
available at the transmitter. Let us defineγ = [γ1, . . . , γt],
where γi ∈ [0, 1] and

∑

i γi = 1, which is referred as
power allocation information by settingγi = Pi/PT , i.e.,
Φ(γ) = PT diag(γ1, . . . , γt). And, we denote the mutual
information I(s; y) of the channel (2) when the transmitter
uses beamforming matrixW and power allocationγ by

Ψ(W,γ) = log det(I + HWΦ(γ)W †H†)

= log det(I + V †
HWΦ(γ)W †VHΣ2).

When the transmitter has perfect knowledge of channel (as
in complete CSIT case),W is set toVH . Then, the mutual
information is written asI(s; y) = Ψ(VH , γ) =

∑m
i=1 log(1+

Piλi), whereλi = σ2
i . With water-filling to maximizeI(s; y),

we have the channel capacity

CFull =
m

∑

i=1

[ log(νλi) ]+ (3)

where[a]+ is defined asmax{a, 0} andν is the water-filling
level satisfying the power constraint

∑m

i=1

[

ν − λ−1
i

]+
= PT .

When we denote the optimum power allocation information
by γwf , we can writeCFull = Ψ(VH , γwf). On the other
hand, when no information about channel is available at the
transmitter (as inno CSIT case), the capacity is given by

CNone = Ψ(It, γunif) =

m
∑

i=1

log

(

1 +
PT

t
λi

)

(4)



where γunif = [1/t, . . . , 1/t]. These two capacities for the
extreme cases will be used as references in comparing perfor-
mances.

Now, we consider the following two scenarios where some
non-perfect channel information is available at the transmitter.
The first case is when the transmitter uses the quantized
and/or delayed version of spatial information̂VH and power
allocation information̂γ. Then, the mutual information can be
written as

IV̂H ,γ̂ = Ψ(V̂H , γ̂). (5)

Note that the subscripts in mutual information and capacity
notations indicate the CSIT. The second case is when the
transmitter has only spatial information̂VH and no power
allocation information. In this case, one easy choice of power
allocation is uniform allocation. Then, the mutual information
is given by

IV̂H
= Ψ(V̂H , γunif) =

m
∑

i=1

log

(

1 +
PT

t
λi(HeqH

†
eq)

)

(6)

where Heq = HV̂H and λi(HeqH
†
eq) is the i-th largest

eigenvalue ofHeqH
†
eq.

We expect that channel feedback has more gain whent > r
[7]. In this case, since the rank of channelm < t, we need to
feedback only firstm columns ofVH , i.e., V = [v1, . . . , vm]
(n = m). And, if V̂ is reasonably close toV , the optimum
power allocation will has nearly zeros in the lastt−m entries
in γ. Therefore, when only spatial information̂V is available
at the transmitter, a reasonable uniform power allocation is
γ = [1/m, . . . , 1/m, 0, . . . , 0].

III. PARAMETERIZATION OF CHANNEL INFORMATION

In this section, we focus on how to extract essential param-
eters from the spatial information denoted byV . Since the
columns in spatial informationV are geometrically structured,
the degree of freedom in the matrix is much smaller than the
number of real-number entries in the matrix. The degree of
freedom inV ∈ C

t×n can be expressed as

N = 2t · n − n − 2

(

n

2

)

= 2tn − n2 (real numbers) (7)

where the first term is the number of real-number entries in
the matrix, and second term accounts for reductions from
unit-norm property of each column, and third term from
orthogonality in each pair of columns. For example, at × t
unitary matrix has2t2 real-number entries, but its degree of
freedom is onlyt2. Furthermore, one phase in each column
can be made fixed (e.g., the first row has all nonnegative real
numbers), which givesn additional reductions. Then,

N = (2t − 1)n − n2 (real numbers) (8)

Now, we want to extract a set of essential parameters that
has a one-to-one mapping to the matrixV . There are several
possible ways such as using Givens rotations or Householder
reflections. In this paper, we propose a parameterization

method using Givens rotations in which the number of pa-
rameters is equal to (8), the degree of freedom in the matrix.

Theorem 1 (Parameterization): A matrix V ∈ C
t×n(t ≥

n) with orthonormal columns can be decomposed as

V =

[

n
∏

k=1

Dk(φk,k, . . . , φk,t)
t−k
∏

l=1

Gt−l,t−l+1(θk,l)

]

Ĩ (9)

wheret dimensional diagonal matrix

Dk(φk,k, . . . , φk,t) = diag(1k−1, e
jφk,k , . . . , ejφk,t)

1k−1 is (k−1) 1’s; andGp−1,p(θ) is the Givens matrix which
operates in the(p − 1, p) coordinate plane of the form

Gp−1,p(θ) =









Ip−2

c −s
s c

It−p









, (10)

c = cos θ ands = sin θ; and t × n matrix Ĩ = [In, 0n,t−n]T .
Let us explain the above parameterization procedure with an

example. Consider4×3 matrix V with orthonormal columns.







× × ×
× × ×
× × ×
× × ×







D
†
1−−→







| × | × ×
| × | × ×
| × | × ×
| × | × ×







G
†
3,4,G

†
2,3,G

†
1,2

−−−−−−−−−−−→







1 0 0
0 × ×
0 × ×
0 × ×







D
†
2−−→







1 0 0
0 | × | ×
0 | × | ×
0 | × | ×







G
†
3,4,G

†
2,3

−−−−−−−→







1 0 0
0 1 0
0 0 ×
0 0 ×







D
†
3−−→







1 0 0
0 1 0
0 0 | × |
0 0 | × |







G
†
3,4

−−−→ Ĩ

where | × | represents the magnitude of a particular element.
The procedure is similar to the QR decomposition using
Givens matrices. In the first step, we want to make all the
entries in the first column under the first component all zeros.
To do that, we first extract the phases from the first column
by pre-multiplying V by D†

1 to have a real-valued column,
and then apply a series of Givens matrices with appropriate
parameters to make all entries under the(1, 1) element zeros.
Since the Givens rotation preserves the length of vector, the
(1, 1) element becomes 1. At the same time, all the entries
in the first row except the(1, 1) element also become zeros
because of the orthogonality between columns. We carry out
similar procedures on the remaining columns sequentially,and
then finally we have a diagonal matrix̃I. Since a Givens matrix
is an orthogonal matrix, the matrixV can be factored as

V = D1(φ1,1, . . . , φ1,4)G3,4(θ1,1)G2,3(θ1,2)G1,2(θ1,3)

· D2(φ2,2, φ2,3, φ2,4)G3,4(θ2,1)G2,3(θ2,2)

· D3(φ3,3, φ3,4)G3,4(θ3,1) Ĩ .

Therefore, once we have a set of parameters, the phases{φk,l}
and the rotation angles{θk,l}, the original matrixV can be
exactly reconstructed.

Now, we will show that the number of parameters obtained
by the proposed parameterization is equal to the degree of
freedom inV with the following with the following Lemma
and Theorem.

Lemma 1: Define asṼ the resulting matrix after applying
D1 and the firstl Givens rotationsG†

t−q,t−q+1(θ1,q), q =



1, . . . , l, in the procedure for the first column. Then, the(t −
l, p) element ofṼ is given by

Ṽ [t − l, p] =







‖v
(l+1)
1 ‖ if p = 1,

(v
(l+1)
1 )†v(l+1)

p

‖v
(l+1)
1 ‖

if p = 2, . . . , n
(11)

wherev
(l+1)
i is a vector defined as the lastl + 1 elements in

the i-th columnvi, i.e., v(l+1)
i = [vt−l,i, vt−l+1,i, . . . , vt,i]

T .
Proof: This can be proved by induction.

Theorem 2: In the matrix factorization of Theorem 1, if
orthonormal column matrixV has real-valued elements in the
first row with alternating signs as+ − + − . . ., then the first
parameter ofDk is zero, i.e.,φk,k = 0 for all k. Therefore, the
number of parameters is(2t − 1)n − n2, which is the degree
of freedom inV .

Proof: This can be proved by using Lemma 1 and
orthogonality between two columns ofV . After applyingD†

1

and t − 1 Givens matricesG†
t−l,t−l+1(θ1,l), l = 1, . . . , t − 1,

it can be shown that the resulting matrix is given by

G†
1,2 . . . G†

t−1,t D†
1 V =

[

1 01,n−1

0t−1,1 V ′

]

, (12)

andV ′ is a (t−1)×(n−1) matrix with orthonormal columns
that has same structure asV , i.e., alternating signs in the first
row. Therefore, in a sequential way we can prove the first
phase parameter ofDk is zero for allk. From this, we haven
less parameters than (7), which results in the final conclusion.

Now we find the distribution of the parameters and es-
tablish their independence, a property useful for quantization
purposes.

Theorem 3 (Statistics of Parameters): When the channel
matrix H has i.i.d. CN (0, 1) entries, then all the parameters
from Theorem 1 are statistically independent. Moreover, the
phaseφk,j is uniformly distributed over(−π, π] for all k and
j, and the rotational angleθk,l has probability density

p(θk,l) = 2l sin2l−1 θk,l cos θk,l, 0 ≤ θk,l <
π

2
. (13)

Proof: The theorem can be proved using techniques
for calculating the distribution of transformed random vec-
tor/matrix similar to [9, Ch. 1–3]. Details are omitted due to
space limitations.

The parameterization for power allocation informationγ =
[γ1, . . . , γt],

∑t
i=1 γi = 1 is rather simple. We can see thatγ

has t − 1 of degree of freedom. And, the parameters can be
simply the firstt− 1 elements,[γ1, . . . , γt−1]. Then, from the
constraint, the last one is determined asγt = 1 −

∑t−1
i=1 γi.

IV. QUANTIZATION IN PARAMETER DOMAIN

The overall strategy for quantization is depicted in Figure
2 and summarized below.

1) From the spatial informationV , extract a set of param-
etersΘ (Parameterization): Θ = T (V ).

2) Quantize the parametersΘ and feed back the quantized
parameterŝΘ (Quantization): Θ̂ = Q(Θ).

3) Reconstruct the spatial information̂V from Θ̂ (Recon-
struction): V̂ = T −1(Θ̂).

The proposed methodology for quantization has many advan-
tages. Some of them are as follows. The number of parameters
to quantize is minimal since it equals the degree of freedom in
the spatial information. The parameters, which are phases and
angles, are all bounded quantities. The reconstructed matrix
V̂ has the same geometrical structure asV , i.e., V̂ †V̂ = In.
In addition, the methodology is general and can be applied to
any multiple antenna scenario: MISO systems (whenn = 1)
and MIMO systems with partial feedback (when1 < n < m)
as well as MIMO systems with full feedback (n = m).

V
T

−−−−−→ Θ




y
Q

V̂
T −1

←−−−−−−− Θ̂

Fig. 2. Quantization in the parameter domain.

One can apply some vector quantization (VQ) method to
quantize the parameters. But, complexity issues and track-
ing requirement motivate us to consider employing scalar
quantization. Moreover, the independence of the parameters,
Theorem 3, indicates that the overall loss is minimal. More
specifically, adaptive Delta modulation (ADM) [6, ch. 8]
is used to quantize each parameter. In slowly time-varying
channels, the parameters are also slowly and continuously
changing most of the time. The encoder of ADM consists
of a simple accumulator and a one-bit quantizer. Basically,it
quantizes the difference between the newly incoming sample
and the previous quantized sample. For a parameterθ,

θ̂[k] = θ̂[k − 1] ± ∆[k]. (14)

And the step-size∆[k] of the one-bit quantizer is adaptively
changing to better track the dynamics of the signal. The ADM
with one-bit memory [6] is an example. The step-size is
increased if the consequent two encoded bits are same, and
decreased otherwise, that is,

∆[k] =

{

M1 ∆[k − 1], if c[k] = c[k − 1]

M2 ∆[k − 1], if c[k] 6= c[k − 1]
(15)

where∆[k] and c[k] is the step-size and the encoded bit for
the k-th sample; andM1 > 1 and 0 < M2 < 1, usually
M2 = 1/M1. Compared to VQ, ADM has considerably lower
complexity. And it is a low-rate scalar quantization scheme(as
low as one bit per parameter). Another important advantage is
that ADM has inherently a channel tracking feature for slowly
time-varying channels.

V. NUMERICAL RESULTS

We have performed simulations to investigate the perfor-
mance of the proposed feedback method, especially in slowly
time-varying MIMO channels. The components of the channel
matrix are i.i.d. discrete-time random processes and each
process models Rayleigh fading channel gain. The simulated



channel has the Doppler frequencyfD = 7.4 Hz, which
corresponds to a mobility of 4 km/h at carrier frequency of 2
GHz. As for the frame structure of Section II-B, we considered
the case ofM = 4 andD = 1.

Figure 3 shows the cumulative distribution of mutual infor-
mation with different CSIT assumptions and various transmit
power,PT = −10, 0, 10, 20 dB, with the feedback rateRF =
500 per second (t = 4 and r = 2). CFull and CNone are
calculated from (3) and (4), respectively. Note that the CSIT
for CFull is perfect, that is, it involves neither quantization
error nor channel tracking error. The performances of the
proposed feedback method are shown asCV̂ ,γ̂ andCV̂ , which
are calculated according to (5) and (6), respectively. These
include the effect of quantization error and delay; therefore,
they reflect more practical situations of feedback systems.
From the results, we can see that, in low transmit power range,
the two have some gap; but, in high transmit power range, the
two have little difference. This means that power allocation
information is important in low transmit power range, which
can be understood from the water-filling argument. That is,
when transmit power is low, the optimum transmission scheme
is using only a few spatial channels that have high channel
gains. Note that the feedback rate is corresponding to 5.5 kbps
(for CV̂ ,γ̂) and 5 kbps (forCV̂ ) of feedback bit-rate since we
have 10 parameters forV and one forγ, and ADM encodes
each parameter into one bit at each feedback instant.

Figure 4 shows the results when the feedback rate is
increased toRF = 1000 per second, which corresponds to
11/10 kbps. We can see that the performances become much
closer toCFull. This can be explained as follows. By increasing
the feedback rate, the quantization error is reduced, sincein
ADM encoding the variations between the adjacent samples
are reduced. Also the channel tracking error due to delay is
lessened with increasing the feedback rate.

VI. CONCLUSION

We proposed a general framework for quantization of
MIMO channel information, which involves parameterization
of orthonormal column matrix and quantization of param-
eters. We introduced a new parameterization method that
uses Givens rotations and that provides minimal number of
parameters. The distributions of the parameters were foundand
the independence between them was shown. In slowly time-
varying channels, the extracted parameters are also slowly
and continuously changing in time. This motivated employ-
ing adaptive Delta modulation in quantizing the parameters.
The adaptive Delta modulation is a simple and practical
quantization method that has a channel tracking feature for
slowly time-varying channels. The proposed feedback scheme
requires(2t− 1)n− n2 bits to feedbackV ∈ C

t×n. With the
proposed feedback method, a performance close to the perfect
feedback case can be achieved with a reasonable feedback rate.
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Fig. 3. Cumulative distribution of capacities whenRF = 500/sec (t = 4
andr = 2). Q(V ) = V̂ andQ(γ) = γ̂.
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Fig. 4. Cumulative distribution of capacities whenRF = 1000/sec (t = 4
andr = 2).


