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Abstract— Mobility, rather than being a liability, can be an
asset. If delay constraints are loose, it is possible for a given
packet to observe many different network topologies as nodes
move relative one another, and these different topologies can be
treated as diversity. Opportunistic strategies can exploit these
large scale changes in the channel quality to decrease transmit
power at the expense of greater delay. We study the tradeoff
between mobility, transmit power and delay and along the way
develop simple greedy (packet-based) threshold rules for packet
transmission.

I. I NTRODUCTION

In generic ad hoc networks, many applications have strict
delay constraints requiring the network to be connected most
of the time. However, a mobile system based on the infosta-
tions architecture [1], [2] targets applications with loose delay
constraints and high data rate requirements. Thus, intermittent
connectivity is both tolerated and expected.

Until recently, mobility was seen as undesirable since it
complicates routing and can cause packet loss owing to
intermittent node connectivity. However, if packets have loose
delay constraints, it is possible for a given packet to observe
many different network topologies as nodes move relative
one another, and these different topologies can be treated as
diversity [3], [4]. Thus, a packet can travel between nodes
when the conditions are favorable and sojourn at a relay node
in the meantime. That is, relay nodes need not forward a packet
as soon as it is received. If the next hop is too costly (in terms
of some suitable network resource), packets can be retained
until the next good transmission opportunity.

Battery power is an important resource in all wireless net-
works. Although multi-hop transmission significantly reduces
the power required to route a packet, decreasing transmit
power is still important to prolong battery lifetime. Reduc-
ing transmit power also has and equally important “social”
advantage. Less transmit power means less interference to the
rest of the network. This usually results in a higher signal
to interference and noise ratio (SINR) at receiver nodes and
therefore higher data rates [5], [6].

In this paper, we study the trade-off between transmit power
and delay in multi-hop infostation networks. We formulate
and solve greedy local optimizations from the perspective of
individual packets seeking carriage in the network – apacket-
eye view protocol. In a companion paper, these strategies are
applied to networks where packets can interfere with one
another via interference and queueing delay [7].

II. PROBLEM STATEMENT

In problems where there are multiple objectives (like mini-
mum power for given delay or minimum delay for given power
consumption), a common approach is to define a cost structure
reflecting all design concerns and to evaluate optimal operating
points by varying the weight of cost structure components.
We take a similar approach in that we consider a single
packet in a network of mobile infostations whose destination
is also mobile. We seek strategies that deliver the packet toits
destination within some deadlineT or earlier and minimize
its cost.

We assume discrete intervals of durationδ during which
packets can move directly between two nodes or stay put to
wait for more opportune moments afforded by node mobility.
Time is measured in integer units ofδ. The cost,cij(t) =
cji(t), of transmissions between nodesi andj is a function of
time owing to node mobility –N independent nodes in planar
Brownian motion. To avoid boundary effects both x- and y-
axes are wrapped around forming a torus. For all experiments
we chooseδ = 0.010ā2/D whereā is the average internodal
distance andD is the diffusion coefficient. This choice allows
significant, but not dramatic, channel variation between time
steps.

We examine a lightly loaded system so that both multi
access interference (MAI) and the queuing delay at nodes are
assumed negligible. The components of cost are the power
necessary for successful transmission above the ambient noise
and the delay incurred during link traversals.

Achieving a target signal to interference/noise ratio (SINR),
γ∗, at the receiver is assumed sufficient for successful trans-
mission at some fixed rateR. The received powerP (r)

j at node
j due to a transmission from nodei with powerPi is

P
(r)
j = Pi

(

dij

d0

)α

(1)

wheredij is the distance from nodei to j, d0 ≤ dij is some
minimum distance, andα is the propagation exponent. Ac-
cordingly, the minimum transmit power required for successful
transmission is given by:

P ∗
ij = N0Wγ∗

(

dij

d0

)α

(2)

whereW is the available bandwidth andN0 is the background
noise spectral intensity. We assume that the transmitter can-
not transmit with arbitrarily small power and the minimum
possible power level is equal toP ∗

ij of distancedij = d0.



Fig. 1. A graph depicting all possible tours through a network of four nodes
assuming packet origination at node 1 and forced termination by time t = T

at node 4. Link costs are shown for the first hop. Since 4 is the destination
node, it is always a terminal node wherever it appears in any tour.

The power cost is simply defined as the minimum power
used in a transmission,

CP = N0Wγ∗

(

dji

d0

)α

(3)

Likewise the delay cost is

CD = δ (4)

and is assumed constant for each link traversal. Thus, the total
cost for a transmission from nodei to nodej can be defined
as

cij(t) = wdδ + wpN0Wγ∗

(

dij(t)

d0

)α

(5)

wherewd andwp are positive weighting constants assigned to
delay and power cost respectively.

Given link costs, packet motion through the network can
then be modeled as a graph such as that depicted in FIGURE 1.
Note thatdii is assumed zero. The cost of a given tour is the
sum of costs for the links traversed. Formally, if we denote a
tour T by a sequence of integersIT ≡ {i1, i2, · · · , iK} then

CT =

K
∑

k=1

cik−1ik
(k − 1) (6)

Finally, we note that the individualcij(t) could be either
deterministic or represent snapshots of a random process
driven by the node mobility and other external time-varying
processes.

Our goal is to identify minimum costs

C = min
T

CT (7)

or for stochastic link costs

C̄ = min
T

E [CT ] (8)

and optimal schedules

T ∗ = arg min
T

CT (9)

or again for stochastic costs

T ∗ = arg min
T

E [CT ] (10)

III. QUANTIFYING TOPOLOGYVARIATION KNOWLEDGE

We expect that as the packet’s knowledge of node positions
increases, it can better make use of mobility. At one extreme,
the packet plans its actions with complete knowledge of
present and future node positions (section-III-A). In the other
extreme a packet might be given current node positions at the
beginning of the tour and no further updates (section-III-B).
This strategy is similar tosource routing as used in multi-hop
networks [8]. In practice, some level of knowledge between
these two extremes is probable, so we also consider a scenario
where a packet can obtain updated topology information after
each hop, but does not know future topologies (section-III-C).

A. The Omniscient Packet

Suppose that the packet has knowledge of all node
itineraries on some interval[0, T ]. It then has knowledge of
all the costs associated with a hop between any two nodes on
[0, T ] and thus has complete knowledge of the link costs in a
graph analogous to that in FIGURE 1. Theomniscient packet
can then identify the cost-minimizing tour using standard
dynamic programming methods [9], [10].

We assume that we can select the packet size to control
packet transmission time. To simplify the analysis, we choose
packet size such that the time required for the transmissionand
reception of a packet is equal to the step durationδ. Thus, the
packet can make only one hop per step. Implicitly, we assume
that the channel is stable over such intervals.

SinceK is the number of steps andN is the number of
nodes, the associated cost graph consists of aboutNK nodes.
With σ the source node and∆ the destination node, we seek
minimum cost paths through the graph (also called atrellis).
To do so, we use dynamic programming [9], [10] whose basic
idea is to start at the destination node and work backward
finding minimum cost routes recursively.

First, letK = T
δ

and assume thatK is an integer larger than
1. Then the cost associated with arrival at the destination is
cj∆(T −δ) if the packet is at nodej. For a packet at nodèat
time T −2δ, finding the minimum cost path to the destination
requires finding

C`∆(T − 2δ, T ) = min
j

[c`j(T − 2δ) + Cj∆(T − δ)] (11)

and concomitantly,N computations. Before leaving this step,
we computeC`∆(T − 2δ, T ) for all ` ∈ {0, 1, · · ·N − 1}, an
action that requiresN2 computations. Then, finding the path
from a nodej at timeT − 3 requires us to find

Cj∆(T − 3δ, T ) = min
`

[cj`(T − 3δ) + C`∆(T − 2δ, T )]

(12)
which is equivalent toN more computations. Proceeding
recursively and makingN2 computations at each step, we can
find

Cσ∆(0, T ) = min
j

[cσj(0) + Cj∆(δ, T )] (13)

with approximatelyKN2 computations. Normally, we want
the packet to reach∆ at t = T or “earlier”. Thus, we set
c∆∆(t) = 0 for t ∈ [0, T ]
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Fig. 2. A comparison of short-sighted and omniscient packet routing for
N = 10 nodes,α = 4.0, I = 1000 trials.

We compute average delay-power cost pairs at various
(wd, wp) values. Since only the relative values ofwd andwp

are important we use a normalizedwd = 1.0.
We placeN brownian nodes randomly on a rectangular

area of(500 × 500)m2. Many random sets of trajectories are
generated and a graph such as FIGURE 1 is formed for each
instance. Each time two nodes are chosen at random as the
source and destination (σ and∆) of the packet and the mini-
mum cost fromσ to ∆ is computed via dynamic programming.
Results are then averaged over different instances. We plot
average power cost versus delay. These results are used as a
benchmark to compare the performances of other strategies
which by definition use less information.

B. Short-Sighted Packet

Here, the packet composes the complete tour att = 0 based
on expected link costs. The expected cost of a tourT , denoted
by a sequence of integersIT ≡ {i1, i2, · · · , iK}, is expressed
as:

E[CT |X0] =

K
∑

k=1

E[cik−1ik
(k − 1)|X0] (14)

The expected cost of the optimal tour is:

E[Cσ∆(0, T )] = min
T

K
∑

k=1

E[cik−1ik
(k − 1)|X0] (15)

and as before, dynamic programming is used to identify an
optimal tour. We note that short-sighted packet routing is a
simplified form of the source routing used in ad hoc networks.

FIGURE 2 is a comparison between power cost and delay
for short-sighted and omniscient packet models. As seen in
the figure, the short-sighted packet is incapable of decreasing
power cost while sacrificing delay performance. Specifically
for large wp, a short-sighted packet waits longer for more
opportune topologies. However, as the time since the departure
becomes longer, the difference between the actual cost and the
expectation calculated att = 0 increases. Thus, omniscient
and short-sighted methods diverge in the low power-high delay
region. We note that equation (14) is cumbersome since each
expectation of the sum requires an integration on a torus.
Thus, from a practical standpoint, finding the optimal tour of
short-sighted packets is more complicated than for omniscient
packets.

C. The Well-Informed Packet

Suppose the packet has knowledge of the current network
topology and the nodal mobility model, but not a detailed
node itinerary. How does the packet decide what links to use
to reach its destination? There are a variety of approaches
to this stochastic problem. Here, we will seek to minimize
the mean cost of a tour through the trellis. We assume that
tour modifications can be made at each step according to
the network topology.X(δ),X(2δ), · · · ,X(T − 1) are the
vectors of random variables corresponding to node positions
at different times. Since link costs are now random variables,
direct application of dynamic programming is impossible. The
solution requires a stochastic dynamic programming approach.

1) Updated Information at Every Step: Let X(nδ)
be denoted asXn. At nth epoch, Xn is known but
Xn+1,Xn+2, · · ·XK−1 are not known by the packet. If the
nodal mobility is modeled as a stochastic process with station-
ary and independent increments, like Brownian motion, then
X is a Markov chain andXn depends only onXn−1 = xn−1

and fXi|Xi−1
(xi,xi−1). In section-III-C.1 our development

closely follows [11], [12].
Let Yn be the ID of the relay node that carries the packet

during step-n. The pair(xn, yn) , define the state of the system
at step-n. At each step, the packet hasN possible control
actions to choose from:

(i) it can hop to one ofN − 1 nodes or,
(ii) it can stay put at its current host.

Let A be the set of all possible control actions andan ∈ A
be the control action chosen at step-n. The control actionan

depends on(xn, yn):

an = gn(xn, yn) (16)

The functiongn() is called thedecision rule for step-n. There
are two consequences of an action:

(1) The packet moves to another node in the next step. The
relay node at step-(n + 1) is:

yn+1 = h(an) = h(gn(yn,xn)) (17)

(2) The packet incurs a cost ofc(yn, yn+1,xn), the cost
of hopping from node-yn to node-yn+1 when the node
positions arexn. If yn = yn+1, this cost is pure delay
cost. Otherwise, it consists of delay and power costs.

Since the cost is additive at each step, the total expectedK-
step cost from node-i to some destination∆ can be expressed
as:

Ci∆(0,K) =

K−1
∑

n=0

c(Yn, Yn+1,Xn) (18)

whereY0 andYK are deterministic and given by

Y0 = i YK = ∆ (19)

The goal is to find the sequence of decision rules,Π0,K =
(g0, g1, · · · , gK−1), also called apolicy, that minimizes the



expected total cost. The problem can be summarized as
follows:

min
Π0,K

{

E

[

K−1
∑

n=0

c(Yn, Yn+1,Xn)

]}

(20)

such that Yn+1 = h(gn(Yn,Xn)) with given
Y0,X0, fXn|X(n−1)

(xn,xn−1) andYK = ∆.
Let us assume an optimal policy,Π∗

0,K , exists which decides
what to do next given the current time index,n, current
position vector,Xn. We defineVK−n(i,Xn) as the multihop
cost from nodei to ∆ at step-n and using at most(K −n) of
the next steps underΠ∗

0,K . The optimal decision rule at this
point should be to hop to the node which requires the smallest
total expected cost to reach the destination. Thus,

VK−n−1(j,X(n+1)) =

min
i
{c(j, i,X(n)) + E[V(K−n)(i,Xn)]} (21)

where the expectation is conditioned onXn since at each
step the current positions are known and the past positions
are irrelevant due to Markovian property of Brownian motion.

By setting initial conditions as:

V0(i,XK) =

{

0 i = ∆

∞ i 6= ∆
(22)

and proceeding backward in time,Vm(ym,xm) can be cal-
culated for all m ∈ {1, . . . ,K} and for any (ym,xm).
However, there is no explicit expression for the expectations.
A numerical solution is intractable for continuousX. Even in
the case of a discrete-valued mobility model -like a random
walk- computational complexity grows exponentially with the
number of steps,K. We also note that to takeT to infinity
and convert the problem into an infinite horizon dynamic
programming does not simplify the problem. So, we seek
alternative practical solutions.

2) Infrequent Updates: Lazy Packets: So, we consider
another infinite horizon problem where the packet updates its
information much less frequently. We call the time between
the updates an epoch and denote it byTE . If TE is very long
(longer thanτD/8), node positions become approximately IID
from epoch to epoch. This assumption facilitates the analysis
and leads to a closed form solution. It also represents some
practical scenarios: to save power, terminals might be turned
off from time to time causing long epochs.

At the beginning of each epoch, the packetwakes up and
makes a decision. It can either complete its tour to the des-
tination or make some hops without reaching the destination
and wait for the next epoch. This sleeping period causes delay,
thus it has a cost denoted byCD whereCD = wdTE . We will
examine different cases where the packet is allowed to take a
single hop (k = 1) or multiple hops (k > 1) during one epoch.

FIGURE 3 illustrates the trellis for the problem. During an
epoch, we assume that the link costs will be fixed and equal
to their values at the beginning of the epoch fork packet
transmission times. Letuk(i, j,xn) be the minimum cost from
node-i to node-j when the node position vector isXn = xn

node-2

node-3

node-4

node-1
CD

epoch-0

. . .

u(1,1,0)

u(1,2,0)

u(1,3,0)

u(1,4,0)

node-1

C14(0)

node-3

node-4

node-2

C11(0)

C13(0)

C12(0)

C11(0)

C12(0)

C34(0)

C33(0)

C22(0)

C23(0)

CD

CD

t= Ttxt= 0 t= 2Ttx

Fig. 3. Illustration of all possible tours for the lazy packet (k = 2) originated
at node 1 and destination is node 4 through a network of four nodes. Link
costs for the first epoch are shown in detail (Ttx = δ). Costs are assumed to
be fixed during an epoch.

and the maximum number of hops allowed at each epoch is
k. We can write the following recursive equation forV (i,xn),
the cost from node-i to the destination∆ when the position
vector isxn and an optimal policy is used.

V (i,xn) = min{min
j 6=∆

{uk(i, j,xn) + E[V (j,X(n+1))]}

+ CD, u(i,∆,xn)}
(23)

where the expectation is with respect tofX(n+1)
asX(n+1) is

independent ofXn. Since any node is the same as any other
in the next epoch,E[V (j,Xn)] is independent ofj and will
be denoted bȳV .

V (i,xn) = min{min
j 6=∆

{uk(i, j,xn) + V̄ } + CD,

uk(i,∆,xn)}
(24)

We note thatuk(i, j,xn) is minimized atj = i and its
minimum value is equal to zero. We can rewrite equation (24)
as:

V (i,xn) = min
{

CD + V̄ , uk(i,∆,xn)
}

(25)

Equation (25) shows that the optimal policy for the lazy
packet problem is athreshold rule. At each epoch, the packet
calculates minimum cost to the destination it can take with a
maximum ofk hops. Then it compares this to the threshold
cost (V̄ + CD). If the minimum cost is smaller, then it takes
the path immediately. Otherwise, it goes to sleep until the next
epoch. We note that the optimal decision rule never allows the
packet take some hops in one epoch and then complete the tour
in the next one - a result that follows intuition. That is, the
packet cannot predict the node positions in the next epoch. If
it does not reach the destination in an epoch, in the next epoch
all its efforts might have been wasted because it will see an
independent and perhaps worse topology.

Moreover, V̄ is unique and can be found by solving the



following equation numerically [13]:

V̄ = CD

(

1

P{uk < (V̄ + CD)}
− 1

)

+ E[uk|uk < (CD + V̄ )] (26)

Thus, the optimal threshold,V ∗
t = V̄ +CD can be determined

for any given pdf foruk. Unfortunately, obtaining this pdf is
practical only fork = 1. For k ≥ 2 statistical simulation
methods are more suitable. (For the details see [13].)

IV. H EURISTIC APPROACHES

In section-III-C.1, we tried to take advantage of the time
correlation of individual node positions. However, the solution
of the iterative equations was too complex even for analytically
simple Brownian motion. Then, in section-III-C.2, we chose
TE large enough to remove correlation between epochs. Al-
though, this model provided an exact solution, there is usually
no need for a packet to sleep that long. So, perhaps a hueristic
approach might be benficial.

A. Eager Packets

Here, we assume thatTE is not so long as to guarantee
independent topologies from epoch to epoch, but is long
enough to allow significant topology change. Specifically, we
chooseTE = δ. We use a threshold-based policy like the
solution to the problem in section-III-C.2, even though it is
not necessarily optimal. As in thelazy packet problem, the
packet makes its decision based on the current k-hop cost to
its destination. If this cost is smaller than some threshold, it
moves all the way to its destination. Otherwise, it waits for
time TE . Note that the policy assumes link costs are fixed
for k steps and packets use the same most recent topology
information for the next k-steps.

At every TE nodes move and at each node a trellis as in
FIGURE 1 is formed. Since the number of hops is limited to
k, the trellis consists ofN nodes andk steps. As explained
in section-III-A, finding the minimum cost on such a trellis
requires0(N2k) computations. The total number of computa-
tions depends on when the packet accepts a trellis it observed.
Thus, asVt decreases, the average of the total number of
computations increases.

In this strategy there are three parameters: the cost coeffi-
cients,(wd, wp), and the threshold level,Vt. Thus, unlike the
omniscient packet, there is not a single performance curve.
Without loss of generality, we setVt = 1.0 and vary the cost
coefficients to describe different possible delay-power points.

However, wd and wp cannot be chosen arbitrarily. Due
to our minimum transmit power constraint, the minimum
possible tour between two nodes is a single hop of length
d0. Coefficient pairs used should result a total cost smaller
than Vt = 1.0 for this minimum cost tour. Otherwise, tour
completion is impossible. Letc(d,wd, wp) denote the cost of
a link of lengthd when the cost coefficients arewd andwp.
We recall equation (5) which states that cost of link is in the
following form:

c(d,wd, wp) = wdc1 + wpc2d
α (27)

Fig. 4. Shaded area shows the region of valid coefficient pairs. The region
wherewd > 0.5wd,max is called one-hop region.

wherec1 andc2 are positive numbers. Then, we can calculate
the maximum values ofwd andwp by solving:

c(d0, 0, wp,max) = 1.0 c(d0, wd,max, 0) = 1.0 (28)

We can also find the region of valid cost coefficients. As
illustrated in FIGURE 4, this region is a triangle due to the
additive cost structure.

We note that it is possible to put a limit on the maximum
number of hops the packet takes by choosing an appropriate
wd. For example, whenwd > wd,max/2, the packet can never
make more than one hop. If the number of hops is limited to
one, the strategy becomes a threshold rule on the transmission
distance where threshold distance,dt, corresponding to a
particular(wd, wp) is obtained by:

c(dt, wd, wp) = 1.0 (29)

Moreover, in one-hop region the samedt can be obtained
with different coefficient pairs. From equation (27) and equa-
tion (29), it can be easily seen that cost coefficients(wd, wp)
that correspond to the samedt form a line defined by:

c1wd + c2d
α
t wp − 1 = 0 (30)

B. Eager Packet Performance

For a performance comparison we evaluate average delay
and power cost of our heuristic by simulation for a givenwd

and a wide range ofwp. We do not impose a maximum number
of hops,k, directly, i.e. we setk = ∞, and exercise control
only through the cost coefficients.

In FIGURE 5 we compare omniscient packets with eager
packets that use differentwd’s. On each curve for eager packet
wd is kept fixed andwp is varied. As expected, performance of
the omniscient packet is better than the eager packet. However,
unlike the short-sighted packet, the eager packet follows the
same trend as the omniscient packet while performing within
approximately a factor of five.

We see that in the low power-high delay region (delay>
1000 steps), the performance of the eager packet is insensitive
to wd. On the other hand, in the high power-low delay region
(delay≤ 1000 steps), performance depends onwd. Smaller
wd seems to reduce the delay in this region – a seemingly
counterintuitive result.
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To better understand this seeming paradox, in FIGURE 6
we plot the average number of hops as a function ofwd and
wp. The number of hops increases as we decreasewd and, as
explained previously, reduces to1 when wd ≥ 0.5wd,max. It
is observed that even for the cases wherewd < 0.5wd,max,
the packet takes approximately one hop at very high and very
low wp. In the first case, very highwp, the packet takes one
hop because most low-power tours consist of a single hop.
In other words, statistically it is very unlikely to observea
topology where the minimum cost tour from the source to the
destination has more than one hop. In the very lowwp case, all
hops have almost the same cost. Then, there is no motivation
to take multiple hops instead of a direct transmission from
source to destination. When we re-examine FIGURE 5 in light
of FIGURE 6, we see that smallerwd can achieve shorter
delays when there is a potential benefit from multiple hops.
In this experiment, making multiple hops is advantageous in
the region where average delay is1 − 500 steps.

In a fixed network, it is known that allowing multiple hops
can save power. The region where the delay is close to1 can
be interpreted as a fixed network since the topology does not
change during the packet delivery. The only difference is atthe
last portion of the curve where the delay cost is dominant and
our policy delivers the packet in the smallest possible time,

i.e, making a single hop directly to the destination.

V. SUMMARY

In this paper, we examined the power-delay tradeoff for a
packet that receives negligible amount of interference from
the network. We analyzed optimal packet decisions based
on our cost structure under three different levels of position
knowledge: complete trajectory knowledge (omniscient), ini-
tial topology knowledge (short-sighted) and topology update
after each hop (well-informed). Since omniscient packet rout-
ing has complete topology information at the start of a tour,
it is used as a performance benchmark for policies which use
less information. We have seen that the short-sighted packet
is ineffective in the lower/higher cost/delay region.

Since the solution for the well-informed packet was too
complex, we made a set of assumptions (lazy packet model)
that led to a simple solution – a threshold rule based on the
current network topology. Then we relaxed the assumption of
independent position from step to step required for solution of
the lazy packet policy, but kept the idea of a threshold (eager
packet). We found that the eager packet policy followed the
same trends as omniscient packet policies while achieving a
delay performance within approximately a factor of5.

In closing, we note that from a practical and computational
perspective, only the eager packet strategy is simple enough to
be used in network studies in which packets interact. Thus, we
make use of the eager packet threshold method in a network
setting to derive policies which trade off average delay versus
throughput in a companion paper [7].
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