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Abstract— Mobility, rather than being a liability, can be an Il. PROBLEM STATEMENT

asset. If delay constraints are loose, it is possible for a given : . : —
packet to observe many different network topologies as nodes In problems where there are multiple objectives (like mini

move relative one another, and these different topologies can be MUm power for given delay or minimum delay for given power
treated as diversity. Opportunistic strategies can exploit these consumption), a common approach is to define a cost structure
large scale changes in the channel quality to decrease transmit reflecting all design concerns and to evaluate optimal dipera
Eg‘t’\‘:\zeﬁtnt]t‘)ebil‘;xP?rgsningift 9fﬁ;‘iraﬂ?%yélgvears]gug}’o;heﬂ:;a‘agﬁ points by varying the weight of cost structure components.
develop simple )g/;'reedy (pac?ket-based) thre)éhold rulesgfor pack){et We takg a similar approagh .|n that_we consider a_sm_gle
transmission. packet in a network of mobile infostations whose destimatio
is also mobile. We seek strategies that deliver the packits to
destination within some deadling or earlier and minimize
its cost.

In generic ad hoc networks, many applications have strictWe assume dlscrgte intervals of duratiorduring which
delay constraints requiring the network to be connectedt mgqufts can move directly between f}wc& ndoﬂes O; stay glljt to
of the time. However, a mobile system based on the infos&”"t or more oppcti)rf(un'e momentg aé?rTﬁ y node mo_| 1ty.
tions architecture [1], [2] targets applications with leatelay Ime s measured In integer units € cost,cy;(t) =

constraints and high data rate requirements. Thus, intiemhi ¢ji(t), of transmissions between nodeand is a function of
connectivity is both tolerated and expected ’ time owing to node mobility 4V independent nodes in planar

Until " bilit desirable si Brownian motion. To avoid boundary effects both x- and y-
nut recently, mobiiity was Seen as undesirable since érxes are wrapped around forming a torus. For all experiments
complicates routing and can cause packet loss owing

. : ., . W2 chooses — 0.010a%/D wherea is the average internodal
Intermittent nqde c_or?nect|V|t_y. However_, if packets h distance and) is the diffusion coefficient. This choice allows
delay constraints, it is possible for a given packet to oleser

. . .significant, but not dramatic, channel variation betweemeti
many different network topologies as nodes move relati

Seps
one another, and these different topologies can be treate a\/[\)/e

diversity [3], [4]. Thus, a packet can travel between nod
when the conditions are favorable and sojourn at a relay no

In the meantime. That is, relay nodes need not forward a pac cessary for successful transmission above the ambiesg no
as soon as it is received. If the next hop is too costly (in sarnan the delay incurred during link traversals

of some suitable network Ires.ource), paclfets can be retaine chieving a target signal to interference/noise ratio ()N

until the next 9090' transm|53|on opportunlt_y. ) *, at the receiver is assumed sufficient for successful trans-
Battery power is an important resource in all wireless ”egiission at some fixed rat@. The received poweP;" at node

works. Although.multl—hop transmission S|gn|f|canfcly reds j due to a transmission from nodewith power P, is

the power required to route a packet, decreasing transinit N

power is still important to prolong battery lifetime. Reduc pr P, (ﬁ) 1)

ing transmit power also has and equally important “social” J ’

I. INTRODUCTION

examine a lightly loaded system so that both multi
cess interference (MAI) and the queuing delay at nodes are
Ssumed negligible. The components of cost are the power

do
advantage. Less transmit power means less interferente OWhered;; is the distance from nodéto j, dy < d;; is some

rest of the network. This usually results in a higher signghinimum distance, and: is the propagation exponent. Ac-
to interference and noise ratio (SINR) at receiver nodes aB@rdineg, the minimum transmit power required for sucéelss

In this paper, we study the trade-off between transmit power AN
and delay in multi-hop infostation networks. We formulate P = NoW~* <_U> 2)
and solve greedy local optimizations from the perspective o do

individual packets seeking carriage in the network pagket- wherelV is the available bandwidth am¥l, is the background
eye view protocol. In a companion paper, these strategies areise spectral intensity. We assume that the transmitter ca
applied to networks where packets can interfere with om®t transmit with arbitrarily small power and the minimum
another via interference and queueing delay [7]. possible power level is equal t8;; of distanced;; = do.



. 1. QUANTIFYING TOPOLOGYVARIATION KNOWLEDGE

We expect that as the packet’s knowledge of node positions
increases, it can better make use of mobility. At one extreme
the packet plans its actions with complete knowledge of
present and future node positions (section-llI-A). In tlleeo
extreme a packet might be given current node positions at the
beginning of the tour and no further updates (section-)lI-B
¢ = Gty * This strategy is similar t@ource routing as used in multi-hop

networks [8]. In practice, some level of knowledge between
these two extremes is probable, so we also consider a sgenari
Fig. 1. A graph depicting all possible tours through a neknafrfour nodes \where a packet can obtain updated topology informatior afte

assuming packet origination at node 1 and forced terminatyotinte ¢t = 7° : .
at node 4. Link costs are shown for the first hop. Since 4 is #stimhtion each hop, but does not know future topologies (sectioG)ll-
A. The Omniscient Packet

node, it is always a terminal node wherever it appears in any to
Suppose that the packet has knowledge of all node
The power cost is simply defined as the minimum powdiineraries on some interval, 7). It then has knowledge of

used in a transmission, all the costs associated with a hop between any two nodes on
di\ @ [0,T] and thus has complete knowledge of the link costs in a
Cp = NogW~* <i> (3) graph analogous to that in FIGURE 1. Toeniscient packet
do can then identify the cost-minimizing tour using standard
Likewise the delay cost is dynamic programming methods [9], [10].

Cp =35 ) We assume th_at we can se_lect_ the packet s_ize to control
packet transmission time. To simplify the analysis, we &goo

and is assumed constant for each link traversal. Thus, the tgacket size such that the time required for the transmission

cost for a transmission from nodeto node; can be defined reception of a packet is equal to the step duratiofhus, the

as N packet can make only one hop per step. Implicitly, we assume
¢i;(t) = wad + w, NoWr* <dij(t)) (5) that the channel is stable over such intervals.
" P do Since K is the number of steps and is the number of

wherew, andw, are positive weighting constants assigned faodes, the associated cost graph consists of abdtitnodes.
delay and power cost respectively. With o the source node and the destination node, we seek

Given link costs, packet motion through the network cafinimum cost paths through the graph (also callemetiis).
then be modeled as a graph such as that depicted in FIGUREQ do SO, we use dynamic programming [9], [10] whose basic
Note thatd;; is assumed zero. The cost of a given tour is tHE®2 iS to start at the destination node and work backward

sum of costs for the links traversed. Formally, if we denote fding minimurr;cost routes recursively.
tour 7 by a sequence of integefs = {i1,is, - ,ix} then First, let K = 5 and assume thdt is an integer larger than

1. Then the cost associated with arrival at the destination is
K c;a (T —0) if the packet is at nodg. For a packet at nodeat
Cr = Z Cir—yix (K —1) ®) time T — 24, finding the minimum cost path to the destination
k=1 requires finding
Finally, we note that the individuat;;(t) could be either )
deterministic or represent snapshots of a random proces?ﬂA(T —26,T) = i [ee(T' = 26) + Cia(T = 9)] (1)

driven by the node mobility and other external t|me-vary|ngnd concomitantlyN' computations. Before leaving this step,

processes.
. . . . we computeCya (T — 26, T) for all £ € {0,1,---N — 1}, an
Our goal s to identify minimum costs action that requiresV2 computations. Then, finding the path
C= mqin Cr (7) from a nodej at timeT — 3 requires us to find
or for stochastic link costs Cja(T =36, T) = min [cje(T — 36) + Cea(T — 26, T)]
_ . (12)
C= min £ [C7] (8) which is equivalent toN more computations. Proceeding
. L :
and optimal schedules ;;c(:jurswely and makingv< computations at each step, we can
T* = argmin C7 ©) Coa(0.T) = min[cy;(0) + C;a(8,T)]  (13)
J
or again for stochastic costs with approximately K N2 computations. Normally, we want

(10) the packet to reacl\ at ¢t = T or “earlier”. Thus, we set

T* = argmin E[C
arg min £[C7] can(t) =0 for ¢ € [0, ]



T Saniseiont baeket routing C. The Well-Informed Packet

Suppose the packet has knowledge of the current network
topology and the nodal mobility model, but not a detailed
node itinerary. How does the packet decide what links to use
to reach its destination? There are a variety of approaches
to this stochastic problem. Here, we will seek to minimize
the mean cost of a tour through the trellis. We assume that
tour modifications can be made at each step according to
the network topologyX(d),X(20),---,X(T — 1) are the
vectors of random variables corresponding to node position
Fig. 2. A comparison of short-sighted and omniscient packatimg for at different times. Since link costs are now random varible
N = 10 nodes,a = 4.0, I = 1000 trials. . .. . . . .

direct application of dynamic programming is impossiblaeT
solution requires a stochastic dynamic programming ambroa

We compute average delay-power cost pairs at variousl) Updated Information at Every Step: Let X(nd)
(wq,wp) values. Since only the relative valueswf andw, be denoted asX,. At n'* epoch, X, is known but
are important we use a normalizeg, = 1.0. Xpt1, Xnto, - Xg_1 are not known by the packet. If the

We place N brownian nodes randomly on a rectangulatiodal mobility is modeled as a stochastic process withcstati
area of(500 x 500)m?. Many random sets of trajectories areary and independent increments, like Brownian motion, then
generated and a graph such as FIGURE 1 is formed for eaxhis a Markov chain an&,, depends only oiX,,_; = x,,_;
instance. Each time two nodes are chosen at random as 4h€l fx, x, ,(x;,x;—1). In section-1ll-C.1 our development
source and destinatiow (@nd A) of the packet and the mini- closely follows [11], [12].
mum cost fromv to A is computed via dynamic programming. Let Y,, be the ID of the relay node that carries the packet
Results are then averaged over different instances. We m@fing stepr. The pair(x,, yn) , define the state of the system
average power cost versus delay. These results are used as &epr. At each step, the packet hag possible control
benchmark to compare the performances of other strategig$ions to choose from:
which by definition use less information.

average delay (steps)

\
-~

10° 10
C,, average power cost

(i) it can hop to one ofV — 1 nodes or,
B. Short-Sighted Packet (i) it can stay put at its current host.

Here, the packet composes the complete tour-al) based  Let A be the set of all possible control actions ande A
on expected link costs. The expected cost of a tbudenoted be the control action chosen at stepThe control actioru,,

by a sequence of integefs = {iy,i2, -+ ,ix }, IS expressed depends on{x,,,y,):
as:
Ay = gn(xn7 yn) (16)
CT|X0 ZE Cijo— 1% - 1)|X0} (14) ) ) o
The functiong,, () is called thedecision rule for stepn. There
The expected cost of the optlmal tour is: are two consequences of an action:
(1) The packet moves to another node in the next step. The
E[Cya(0,T))] mmZE Cirvin (k= 1)|Xo] (15) relay node at stepr + 1) is:
Yn4+1 = h(an) = h(gn(yn7 Xn)) (17)

and as before, dynamic programming is used to identify an
optimal tour. We note that short-sighted packet routing is @) The packet incurs a cost of(yy, Yny1,%n), the cost
simplified form of the source routing used in ad hoc networks.  of hopping from nodey, to nodey,,; when the node
FIGURE 2 is a comparison between power cost and delay positions arex,,. If v, = Ynt1, this cost is pure delay
for short-sighted and omniscient packet models. As seen in cost. Otherwise, it consists of delay and power costs.
the figure, the short-sighted packet is incapable of den:rgasS
power cost while sacrificing delay performance. Specifjca Ig
for large w,, a short-sighted packet waits longer for mor
opportune topologies. However, as the time since the degart K-
becomes longer, the difference between the actual coshand t Cin(0,K) Z (Yo, Vi1, X,) (18)
expectation calculated gt = 0 increases. Thus, omniscient n=0
and short-sighted methods diverge in the low power-highydel L .
region. We gote that equation (1g4) is cumbefsome sﬁcédeac?wereyo andYjc are deterministic and given by
expectation of the sum requires an integration on a torus. Yo=i Yx=A (19)
Thus, from a practical standpoint, finding the optimal tofir o
short-sighted packets is more complicated than for omemgci The goal is to find the sequence of decision rulés x =
packets. (90,91, ,9x—1), also called apalicy, that minimizes the

ince the cost is additive at each step, the total expekted
tep cost from nodéto some destinatiorh can be expressed



expected total cost. The problem can be summarized as
follows:

min {E

o, x

such that Y14 = h(gn(Yn, X)) with given
Yo, Xo, fx, X1y (Xns Xn—1) andYx = A.

Let us assume an optimal polidy;; ,-, exists which decides
what to do next given the current time index, current
position vectorX,,. We defineVk_,(i,X,,) as the multihop
cost from node to A at steprn and using at mostiK’ — n) of
the next steps unddi; ;.. The optimal decision rule at this
point should be to hop to the node which requires the smallest
total expected cost to reach the destination. Thus,

K—1
> e(Ya, Yn+1,Xn)] } (20)

n=0

VKfnfl(j7 X(n+1)) = Fig. 3. lllustration of all possible tours for the lazy patie = 2) originated
. .. . at node 1 and destination is node 4 through a network of fodesoLink
ml_m{c(j, i Xny) + E[Vire—n) (i, Xn)1} (21) costs for the first epoch are shown in detdil{ = §). Costs are assumed to
. . " . be fixed during an epoch.
where the expectation is conditioned &, since at each

step the current positions are known and the past positions

are irrele\_/ant_d.u_e to Markovian property of Brownian moIiorw(Ljlnol the maximum number of hops allowed at each epoch is
By setting initial conditions as: k. We can write the following recursive equation (i, x,, ),
0 i=A the cost from nodé-to the destinatiomA when the position
22 . . . .
o i £A (22)  vector isx,, and an optimal policy is used.

and proceeding backward in tim&}, (y..,x,) can be cal- V(i,xn) = mm{gr;lg{w(wvxd + EV (G, X))}
culated for all m € {1, = , K} anql for any (ym,xm)._ 4 Cp,uli, A, xn)}
However, there is no explicit expression for the expectetio
A numerical soll_Jtion is intractable f_o.r continuo& Evenin where the expectation is with respectfR . ,,, asX(,.1) is
the case of a discrete-valued mobility model -like a randoidependent ofX,,. Since any node is the same as any other
walk- computational complexity grows exponentially witfet in the next epochE[V (j,X,,)] is independent of and will
number of stepsK’. We also note that to také to infinity pe denoted by.
and convert the problem into an infinite horizon dynamic
programming does not simplify the problem. So, we seek V(i,x,) = min{min{u (i, j,x,) + V} + Cp,
alternative practical solutions. i7a ]
2) Infrequent Updates. Lazy Packets: So, we consider uk (i A %0 ) }
another infinite horizon problem where the packet updates it . . S . . .
information much less frequently. We call the time between W& Note thatuy.(i, j,x,,) is minimized atj = i and its
the updates an epoch and denote itTsy. If Ty is very long m|r1|mum value is equal to zero. We can rewrite equation (24)
(longer thanrp /8), node positions become approximately s
from epoch to epoch. This assumption facilitates the amalys V(i,x,) = min {Cp + V,uy(i, A, x,,) } (25)
and leads to a closed form solution. It also represents some
practical scenarios: to save power, terminals might beetirn Equation (25) shows that the optimal policy for the lazy
off from time to time causing long epochs. packet problem is #reshold rule. At each epoch, the packet
At the beginning of each epoch, the packetkes up and calculates minimum cost to the destination it can take with a
makes a decision. It can either complete its tour to the devaximum ofk hops. Then it compares this to the threshold
tination or make some hops without reaching the destinatieast(V + Cp). If the minimum cost is smaller, then it takes
and wait for the next epoch. This sleeping period causeydelthe path immediately. Otherwise, it goes to sleep until et n
thus it has a cost denoted 6y, whereCp = wyTr. We will  epoch. We note that the optimal decision rule never allows th
examine different cases where the packet is allowed to tak@acket take some hops in one epoch and then complete the tour
single hop k£ = 1) or multiple hops § > 1) during one epoch. in the next one - a result that follows intuition. That is, the
FIGURE 3 illustrates the trellis for the problem. During amacket cannot predict the node positions in the next epdch. |
epoch, we assume that the link costs will be fixed and equtfloes not reach the destination in an epoch, in the nextrepoc
to their values at the beginning of the epoch forpacket all its efforts might have been wasted because it will see an
transmission times. Lety (i, j, x,,) be the minimum cost from independent and perhaps worse topology.
nodes to nodes when the node position vector X,, = x,, Moreover, V is unique and can be found by solving the

(23)

(24)



following equation numerically [13]: d
_ 1
vV = C — -1 e
D (P{uk < (V -i:CD)} ) o
+ E[U,k|Uk < (OD + V)] (26) 0.5w region

d,max

Thus, the optimal threshold,* = V' + Cp can be determined
for any given pdf foru,. Unfortunately, obtaining this pdf is
practical only fork = 1. For k > 2 statistical simulation W
methods are more suitable. (For the details see [13].) W e

) V. H EURIS_TICAPPROACHES _ Fig. 4. Shaded area shows the region of valid coefficienspaine region
In section-1lI-C.1, we tried to take advantage of the tim@herewy > 0.5w4 maq. is called one-hop region.

correlation of individual node positions. However, theusian
of the iterative equations was too complex even for anaiftic
simple Brownian motion. Then, in section-11I-C.2, we choswherec; andc, are positive numbers. Then, we can calculate
Tg large enough to remove correlation between epochs. Alle maximum values ofy; andw, by solving:

though, this model provided an exact solution, there is liysua
no need for a packet to sleep that long. So, perhaps a haeristi

approach might be benficial. We can also find the region of valid cost coefficients. As
A. Eager Packets illustrated in FIGURE 4, this region is a triangle due to the
. additive cost structure.
Here, we assume th&fg is not so long as to guarantee e . - .

. . ) We note that it is possible to put a limit on the maximum
independent topologies from epoch to epoch, but is Ior}% . .

LS o mber of hops the packet takes by choosing an appropriate
enough to allow significant topology change. Specificallg, w

chooseT; = 6. We use a threshold-based policy like thé ® For example, whemg > wa,maz /2, the packet can never

solution to the problem in section-11I-C.2, even thoughsit imake more than one hop. If the number of hops is limited to

not necessarily optimal. As in thiazy packet problem, the one, the strategy becomes a threshold rule on the transmissi

packet makes its decision based on the current k-hop costistance where threshold distanag, corresponding to a

its destination. If this cost is smaller than some threshitld particular (wq, w,) is obtained by:

moves all the way to its destination. Otherwise, it waits for c(dg, wa,wy) = 1.0 (29)

time Tx. Note that the policy assumes link costs are fixed

for k steps and packets use the same most recent topologloreover, in one-hop region the sarig can be obtained

information for the next k_steps_ W|th diﬁerent Coefﬁcient paiI’S. From equation (27) and @qu
At every Tz nodes move and at each node a trellis as fiPn (29), it can be easily seen that cost coefficignis, w,,)

FIGURE 1 is formed. Since the number of hops is limited tihat correspond to the sande form a line defined by:

k, the trellis consists ofV nodes andk steps. As explained

in section-IlI-A, finding the minimum cost on such a trellis

requiresO(N2k) computations. The total number of computaB. Eager Packet Performance

tions depends on when the packet accepts a trellis it olderve

Thus, asV; decreases, the average of the total number 8;}

computations increases.

C(d0707wp,maa:) =1.0 C(d07wd,mam70) =1.0 (28)

crwg + cadifwy, —1 =0 (30)

For a performance comparison we evaluate average delay
d power cost of our heuristic by simulation for a given

In this strat th th ters: th i nd a wide range ab,. We do not impose a maximum number
n this strategy there are three parameters. the cost cog “hops, k, directly, i.e. we sek = oo, and exercise control

cients, (wq, w,), and the threshold level. Thus, unlike the only through the cost coefficients.

omnlsment packet, there is not a single performance CUNVe, . FIGURE 5 we compare omniscient packets with eager

Without loss of generality, we séf, = 1.0 and vary the cost . ,

coefficients to describe different possible delav-powen packets that use different;’s. On each curve for eager packet
P y-p o wq is kept fixed andw,, is varied. As expected, performance of

o Hootllreﬁ:{imﬁr:nt? alﬁg rr?i?nnc?\}vebre CZEZ?;?n tartt)r:t;aw]%higﬂ?ﬁhe omniscient packet is better than the eager packet. Haywev
P ' lﬁqlike the short-sighted packet, the eager packet folldves t

possible tour between two nodes is a single hop of IengS L . ) -
. . ame trend as the omniscient packet while performing within
dy. Coefficient pairs used should result a total cost smallerf

than V; = 1.0 for this minimum cost tour. Otherwise, tourap\[/)\/rgxslr;:tter:gtai;afgzr I?)I/vflviWer-hi h delay region (dela
completion is impossible. Let(d, wq,w,) denote the cost of P 9 y reg Y

. e 1000 steps), the performance of the eager packet is insensitive
a link of lengthd when the cost coefficients are; and w,. to wq. On the other hand, in the high power-low delay region

We re.caII equ(_emon (5) which states that cost of link is in th&jelayg 1000 steps), performance depends og. Smaller
following form: ; ) ; .
wy seems to reduce the delay in this region — a seemingly
c(d, wq, wp) = wac1 + wpced® (27) counterintuitive result.



average delay (steps)
5

Wy :0.7wd‘max
_.. minimum C_ & delay
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10° 107 107
average CP (power cost)

Fig. 5. A comparison of the eager packet and the omnisciengpatk= 15
nodes, propagation constant,is equal to4.0

w, =0.1w =
] dm w, = 0'3Wd‘max

A
P pmax ()

= 0
10 10"
' pmax

i.e, making a single hop directly to the destination.

V. SUMMARY

In this paper, we examined the power-delay tradeoff for a
packet that receives negligible amount of interferencenfro
the network. We analyzed optimal packet decisions based
on our cost structure under three different levels of positi
3 knowledge: complete trajectory knowledge (omnisciemt), i
tial topology knowledge (short-sighted) and topology upda
after each hop (well-informed). Since omniscient packet-ro

has complete topology information at the start of a tour,

it is used as a performance benchmark for policies which use
less information. We have seen that the short-sighted packe
is ineffective in the lower/higher cost/delay region.
Since the solution for the well-informed packet was too
complex, we made a set of assumptions (lazy packet model)
that led to a simple solution — a threshold rule based on the
current network topology. Then we relaxed the assumption of
independent position from step to step required for satutib
the lazy packet policy, but kept the idea of a threshold (eage
packet). We found that the eager packet policy followed the
same trends as omniscient packet policies while achieving a
delay performance within approximately a factorfof
” In closing, we note that from a practical and computational
perspective, only the eager packet strategy is simple dntmg
be used in network studies in which packets interact. Thes, w
make use of the eager packet threshold method in a network
setting to derive policies which trade off average delaysuer

throughput in a companion paper [7].

Fig. 6. Average number of hops at different cost coefficieMs= 15 nodes.

[1]
To better understand this seeming paradox, in FIGURE 6
we plot the average number of hops as a functiomwgfand [2]
wp. The number of hops increases as we decreasand, as
explained previously, reduces towhenwg > 0.5wg mqz- It
is observed that even for the cases whete< 0.5wq maqz,
the packet takes approximately one hop at very high and vep(]
low w,. In the first case, very high,, the packet takes one
hop because most low-power tours consist of a single hop.
In other words, statistically it is very unlikely to obseree
topology where the minimum cost tour from the source to the
destination has more than one hop. In the veryigycase, all  [6]
hops have almost the same cost. Then, there is no motivati?ﬂ
to take multiple hops instead of a direct transmission from
source to destination. When we re-examine FIGURE 5 in light8]
of FIGURE 6, we see that smallev; can achieve shorter
delays when there is a potential benefit from multiple hopgg
In this experiment, making multiple hops is advantageous in
the region where average delaylis- 500 steps. [10]
. o . . [11]
In a fixed network, it is known that allowing multiple hops
can save power. The region where the delay is closedan [12]
be interpreted as a fixed network since the topology does TPJ]
change during the packet delivery. The only difference ibat
last portion of the curve where the delay cost is dominant and
our policy delivers the packet in the smallest possible time

(3]
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