
ABRC: An End-to-End Rate Adaptation Scheme for Multimedia Streaming over
Wireless LAN*

Wei Wang, Soung C. Liew, Jack Y. B. Lee
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N. T., Hong Kong
{wwang2, soung, yblee}@ie.cuhk.edu.hk

Abstract
The rapid growth of wireless LAN (WLAN) deployments

will bring about many novel mobile applications. Among them
will be real-time multimedia streaming applications running
on UDP, which may interfere with current data applications
running on TCP. This paper is a first attempt to investigate
how to ensure the performance of these two groups of
applications when they co-exist over a WLAN. Toward this
end, we have designed and implemented a UDP rate
adaptation scheme called Adaptive-Buffer Rate Control
(ABRC) for multimedia streaming over WLAN. ABRC has two
distinguishing features compared with other schemes: 1) It
can achieve arbitrary bandwidth allocations between UDP
and TCP in the WLAN, as opposed to previously proposed
“TCP friendly” schemes, which can only achieve uniform
bandwidth allocations; 2) The majority of previously proposed
flexible bandwidth-allocation schemes achieve arbitrary
bandwidth allocations by prioritizing and scheduling packet
transmissions within network equipment (i.e., within routers,
base stations, etc.). In contrast, ABRC is an end-to-end
application-layer solution that does not require changes to
current WLAN products, making it more readily deployable
over existing networks.

Keywords – Rate control, WLAN, 802.11, Multimedia
streaming, Bandwidth allocation, TCP-friendly protocols,
TFRC

1. Introduction
 In the last few years, wireless networks based on the IEEE

802.11 standard have been undergoing accelerated
deployment in homes, enterprises, and public hotspots such as
airports and hotels. The majority of the wireless LAN
(WLAN) deployments use the Infrastructure Mode of 802.11,
in which the terminal devices communicate with each other as
well as with machines in the wired networks via an access
point (AP). An AP usually has two interfaces: an 802.11
interface for communication in the WLAN, and an Ethernet
interface for connection to the wired Internet infrastructure.

Currently, the prevalent applications in WLANs are TCP
data applications such as web browsing, email delivery, and

 * This work is sponsored by the Areas of Excellence scheme established
under the University Grant Committee of the Hong Kong Special
Administrative Region, China (Project Number AoE/E-01/99).

file downloading. Within a WLAN, these applications
generate mostly downlink traffic from the AP to the wireless
stations. The upstream traffic is generally much lighter. Due to
the relatively low bandwidth of the 802.11 interface compared
with the Ethernet interface (e.g., the maximum data rate of
802.11b is 11 Mbps while the maximum data rate of a typical
Ethernet is 100 Mbps), the AP could become a significant
bottleneck for downlink traffic.

Although the popular applications on WLANs today are
TCP data applications, we anticipate that as WLANs become
even more widespread and ubiquitous, real-time applications
such as voice over IP and video streaming will also be in
demand. These applications typically use UDP as the transport
protocol and have stringent throughput and delay
requirements. An important issue is how to satisfy the
requirements of real-time applications within the WLAN and
at the same time ensure harmonious co-existence with other
TCP data applications.

For harmonious co-existence with TCP, the real-time
applications could employ TCP-friendly protocols on top of
UDP (e.g., see [1]). These protocols can ensure that the
bandwidth is shared in a fair manner among TCP and UDP
streams. Essentially, the bandwidth is divided evenly among
all streams. When there is no competing TCP traffic, UDP
streams can also fully make use of the available WLAN
bandwidth. This makes it possible to support bandwidth-
adaptive applications over the TCP-friendly protocols (e.g.,
video streaming in which the bit rate is adapted according to
the bandwidth available).

TCP-friendly protocols, however, suffer from two
shortcomings. First, one cannot fine-tune the proportions of
bandwidths allocated to real-time applications and TCP
applications in a non-uniform manner. That is, one cannot
allocate more (or less) bandwidths to real-time applications
than TCP applications. Second, most TCP-friendly protocols
proposed to-date either attempt to mimic the behavior of TCP
[2], or explicitly adjust its sending rate based on equations
which model the throughput of the TCP flow under the same
condition of round-trip time and packet loss rate [3]. One side
effect of emulating TCP behavior is that such TCP-friendly
protocols will also inherit certain shortcomings of TCP. For
example, when a packet loss is detected, TCP-friendly
protocols may reduce the input data rate (as in regular TCP)
regardless of whether the packet loss is due to traffic

WCNC 2004 / IEEE Communications Society 393 0-7803-8344-3/04/$20.00 © 2004 IEEE

congestion or random noise in the wireless medium. In the
latter case, the input data rate should not be reduced because
doing so does not solve the packet loss problem and may
degrade the quality of service unnecessarily.

To allocate bandwidths in WLAN, the most direct way is to
schedule packet transmissions on the AP downlink.
Scheduling schemes such as Priority Queuing and Weighted
Fair Queuing (WFQ) implement multiple queues for different
flows or traffic classes [5][6]. However, the AP buffers in
most of today’s commercial products are simple FIFO queues
that are shared by all traffic. We may have to live with such
FIFO queues for some time to come considering the large
amount of such 802.11 equipment already deployed.

To address the problems and issues outlined above, we
propose in this paper an end-to-end UDP rate adaptation
scheme called Adaptive-Buffer Rate Control (ABRC) that can
achieve arbitrary bandwidth allocations between UDP and
TCP at the AP. We have implemented and evaluated its
performance in a real WLAN testbed. Compared with
previous work, ABRC has two major distinguishing features:

1) It achieves desired bandwidth allocations in a totally end-
to-end way. That is, it can be applied to the current 802.11
commercial products without any modifications on them,
making it more readily deployable over existing networks.
To the best of our knowledge, ABRC is the first end-to-end
approach proposed to provide bandwidth allocations
between UDP and TCP traffics in WLAN.

2) It achieves “TCP-friendliness” in a different way than the
previous TCP-friendly schemes. As with these TCP-
friendly schemes, ABRC can make sure that UDP streams
do not hog the bandwidth at the expense of TCP
connections; and when there are no competing TCP
streams, UDP streams can fully make use the entire
WLAN bandwidth. However, ABRC does this without
trying to mimic the behavior of TCP. Consequently, it does
not inherit problems of TCP in wireless networks.

2. Adaptive-Buffer Rate Control Scheme
To explain the ABRC scheme, we consider the network

set-up as shown in Fig. 1. We assume that the ABRC sender is
located close to the AP and connected to it through an
Ethernet. An example of an ABRC sender is a video server. If
the original video source is at a remote location, the server
shown in Fig. 1 could be a local proxy server that obtains the
video data from the original video source for feeding to the
receivers within the WLAN.

The TCP sender could be a server for FTP or other TCP-
based applications. Although the TCP sender is shown in Fig.
1 as being close to the WLAN and connected to it through an
Ethernet, it could in general be located at a distance within the
Internet.

ABRC is an application-layer protocol over UDP. In
ABRC, the receiver collects data and statistics on incoming
packets and feed them back to the sender at regular intervals.

Based on the feedback, the sender estimates the buffer
occupancies of TCP and UDP traffic in the AP downlink
queue, from which the relative bandwidth usage between TCP
and UDP is obtained. The sender then compares the relative
bandwidth usage with the target bandwidth allocation and
adjusts its sending rate accordingly in a dynamic fashion.

Specifically, the tasks performed by the ABRC scheme
can be broken down as follows: 1) Estimation of TCP and
UDP buffer occupancies to obtain the current relative
bandwidth usage; 2) Adjust the sending rate based on 1) to
achieve the desired relative bandwidth allocations.

Figure 1. Network setup for ABRC scheme

2.1 Relationship between Bandwidth Usage and
 Buffer Occupancies

 ABRC attempts to adjust the buffer occupancy of its UDP
packets at the AP to achieve the desired bandwidth allocation
with respect to the co-existing traffic. Denote the buffer
occupancy of TCP and UDP by TCPB and UDPB ,
respectively. If the queue at the AP is FIFO, it is obvious that

TCPUDPTCPUDP BB=λλ (1)

where TCPλ and UDPλ are the throughputs (or output rates)
of TCP and UDP at the queue, respectively. Denote the
desired ratio of bandwidth allocation by

Tk = UDPλ / TCPλ (2)

If we knew the value of TCPB , then the target buffer
occupancy for UDP traffic needed to achieve the desired
bandwidth-allocation ratio is

TB = Tk TCPB (3)
In practice, due to the dynamic nature of TCP operation, the
value of TCPB will change over time. A key ingredient in
ABRC is a method for tracking such change so that the target
buffer occupancy for UDP, TB , can be adjusted accordingly

to maintain the desired Tk . This is detailed in the next two
subsections.

WCNC 2004 / IEEE Communications Society 394 0-7803-8344-3/04/$20.00 © 2004 IEEE

2.2 Estimation of Buffer Occupancy

To estimate the UDP buffer occupancy the sender adds a
sequence number to every packet sent. In the ith feedback
packet, the receiver provides the sequence number][iSeqrecv
of the most recently received packet. Upon receiving the
feedback, the sender estimates the UDP buffer occupancy at
the end of ith feedback interval by

][iBUDP =][][iSeqiSeq recvsend − (4)

where][iSeqsend is the most recent packet sent out by the

sender when the ith feedback packet is received. Note that
(4) is only an approximate upper bound because when the
sender receives the feedback, the current sendSeq could be

larger than the sendSeq when recvSeq was measured on the
receiver. The inaccuracy of (4) is caused by the transmission
time of the feedback packet. (the transmission time as defined
here includes all the overhead incurred by the 802.11 protocol,
such as backoff, physical preamble and InterFrame Space, etc)
From our experiments, we have observed that the error in (4)
is only one or two packets.

To estimate the TCP buffer occupancy, ABRC makes use
of packet inter-arrival times registered by the receiver.
Suppose that the AP queue were filled by UDP packets only,
the inter-arrival time for two consecutive UDP packets
observed by the receiver would be the transmission time of
one UDP packet, denoted as UDPT ,where UDPT also includes
the various 802.11 protocol overheads.

 When the AP queue has a mix of UDP and TCP packets,
the average inter-arrival time of the two consecutive UDP
packets observed by the receiver, mixT , will be larger than

UDPT . mixT is related to the ratio of TCP and UDP buffer
occupancies.

At the end of the ith feedback interval, if that the buffer
occupancy of TCP is twice that of UDP
(i.e.,][2][iBiB UDPTCP =), then the average inter-arrival time

of UDP packets in the ith feedback interval,][iTmix should
be the transmission time of a UDP packet plus two
transmission times of a TCP_DATA packet plus α times the
transmission time of one TCP_ACK packet. Generally, α = 1
or 2, depending on whether the TCP sends a TCP_ACK for
every packet or every two packets. The reason for adding the
transmission time of TCP_ACK as part of][iTmix is that the
wireless channel is shared by all wireless stations. Therefore,
the sending of upstream TCP_ACKs will also increase the
delay of the downstream packets. If we ignore the
transmission time of TCP_ACK, since it is relatively small

compared with TCP_DATA, then approximately][iTmix has
a direct relationship with the buffer occupancies as follows:

TCPUDPmix TikTiT][][+= (5)

where][][][iBiBik UDPTCP= is the ratio between the TCP

and UDP buffer occupancies for the ith feedback interval. If
the TCP has the same packet length of UDP, that is,

UDPTCP TT = , then1

UDPmix TikiT])[1(][+= (6)

In the implementation, we can simply use the minimum inter-
arrival time observed by the receiver as an estimation of

UDPT , counting on the fact that occasionally, two UDP
packets will be transmitted in succession even when there are
TCP packets in the AP queue. So when the receiver measures

][iTmix , the TCP buffer occupancy of the ith feedback
interval can be estimated by

][
][

][iB
T

TiT
iB UDP

UDP

UDPmix
TCP

−
= (7)

2.3 Sending Rate Adjustment

Equation (7) provides us with a way to track the change in
TCP buffer occupancy. The ABRC sender can then
dynamically adapt its sending rate to maintain a certain ratio

Tk between UDP and TCP buffer occupancies. The sending
rate adjustment is a two-step process. The first step is to set up
a target UDP buffer occupancy TB to follow the changes of
the TCP buffer occupancy so that the ratio between the UDP
and TCP buffer occupancies can be maintained at or zoomed
into Tk (i.e., to achieve equality in (3)). The second step is to
adjust the sending rate to let the UDP buffer occupancy
narrow into TB upon receiving the feedback from the
receiver.

For the first step, the sender can estimate the current TCP
buffer occupancy][iBTCP on receiving the ith feedback
packet based on (7). When it is time to adjust the target buffer
occupancy, the TB can be set to][iBkB TCPTT = ,

according to (3). We may want to make TB adjustment

1 Note that strictly speaking the assumption of equal length for UDP and

TCP packets is not necessary. If we define buffer occupancies in terms of
numbers of bytes (or amounts of work) rather than packets, equation (6) will
remain valid even for UDP and TCP packets of different size.

WCNC 2004 / IEEE Communications Society 395 0-7803-8344-3/04/$20.00 © 2004 IEEE

interval several times the feedback interval so as to leave time
for the ABRC to achieve the previously set TB .

For the second step, besides sequence number and inter-
arrival time, the receiver also measures the UDP throughput
over a feedback interval t by counting the number of packets
received during the t seconds. Let iBW denote the

throughput (in packets/second) of the ith feedback interval.
Note that iBW is related to][iTmix by iBW = 1 /][iTmix .

When the sender receives the ith feedback packet, it
estimates the bandwidth of the thi)1(+ feedback interval as

*
1+iBW . Similar to the bandwidth estimations of many other

network protocols, *
1+iBW can be simply set to iBW ; or

alternatively, a window average or an exponential average on

iBW , 1−iBW , …, can be used as the estimate, with the
averaging/smoothing period set according to the
responsiveness desired and the bandwidth fluctuations
observed.

From the feedback, the sender also derives the current UDP
buffer occupancy][iBUDP according to (4). For the

thi)1(+ feedback interval, we expect the number of UDP

packets leaving the AP queue to be tBWi **
1+ . Let 1+iS be

the sending rate during the thi)1(+ interval. Then, the
number of UDP packets entering the AP queue during the

thi)1(+ interval is tSi *1+ .

The change in buffer occupancy is tBWtS ii ** *
11 ++ − .

The target change in buffer occupancy is][iBB UDPT − .
Equating these two terms and rearranging, we have

tiBtBWBS UDPiTi /])[*(*
11 −+= ++ (8)

3. Experimental Evaluation

To evaluate the performance of the ABRC scheme, we have
implemented and tested it in a real network configured as in
Fig. 1. The TCP sender and receivers are FTP server and
clients.

The ABRC implementation uses a feedback interval of one
second (i.e., 1=t) and TB adjustment interval of three

seconds. For bandwidth estimate of the next interval *
1+iBW ,

we simply let ii BWBW =+
*

1 , the bandwidth registered by
the receiver for the current feedback interval. This makes the
ABRC scheme somewhat aggressive in response to bandwidth
changes.

The interactions between ABRC sender and receiver are
summarized below:

1) For each feedback interval over one second, the receiver
measures the average throughput of the ABRC stream,
collects the sequence number of the most recently received
packet. This information is fed back to the sender at the
end of the one second.

2) After receiving a feedback packet, the sender estimates the
UDP buffer occupancy][iBUDP and the average

bandwidth of the next second *
1+iBW .

3) Every three seconds, the sender estimates the TCP buffer
occupancy TCPB . It then adjusts the TB to TCPT Bk * ,

where Tk is the desired bandwidth allocation. If the new

computed TB is below a threshold 5 (i.e., 5<TB), let

5=TB . This is to deal with the case when there is no
competing TCP traffic in the AP. By maintaining a
minimum TB , ABRC scheme can make full use of the
wireless channel while others are not using it.

4) Every second, adjust the sending rate according to (8).

3.1 Bandwidth Allocation Results

The first set of our experiments explores whether ABRC
allocates bandwidths according to the targets. Table 1 shows
the results with one ABRC connection and one FTP
connection. Table 2 shows the results with one ABRC
connection and two FTP connections. We see that for most of
the cases ABRC can achieve the desired bandwidth allocation
rather well.

Table 1. One ABRC coexists with one TCP connection
Bandwidth allocation

factor Tk
ABRC throughput

(Mbps)
TCP throughput

(Mbps)

1 2.53 2.58

2 3.79 1.66

3 4.20 1.36

Table 2. One ABRC coexists with two TCP connections

Bandwidth
allocation

factor Tk

ABRC
throughput

(Mbps)

TCP 1
throughput

(Mbps)

TCP 2
throughput

(Mbps)

Total TCP
throughput

(Mbps)

1 2.53 1.53 1.16 2.69

2 3.74 0.85 0.87 1.72

0.5 1.48 2.05 1.72 3.77

We would like to point out that ABRC treats all TCP

traffic as a whole regardless of how many actual TCP
connections there really are. As a result, ABRC will allocate
bandwidth to the UDP stream with respect to the total
bandwidth of all other TCP streams rather than with respect

WCNC 2004 / IEEE Communications Society 396 0-7803-8344-3/04/$20.00 © 2004 IEEE

the bandwidth of a particular TCP stream. As a matter of fact,
in general it allocates bandwidth to the ABRC stream with
respect to sum total of all other traffic, including other UDP
streams as well, if any. Thus, the value of Tk is the ratio of
the bandwidth allocated to the ABRC stream with respect to
aggregate bandwidth of all other streams.

3.2 Comparison with a TCP-friendly Congestion

Control Scheme
In our second set of experiments, we compare the dynamic

behaviors of ABRC with the well-known TCP-friendly Rate
Control (TFRC) scheme [3]. TFRC is an equation-based TCP-
friendly congestion control mechanism which adjusts its
sending rate as a function of the measured rate of loss events,
where a loss event consists of one or more packets dropped
within a single round-trip time. The reader is referred to [3]
for details on TFRC. The TFRC implementation used in our
experiments was downloaded from its official website [4] with
some modifications on the receiver to record the throughputs
over time.

We first examine the operations of TFRC and ABRC in
isolation. Figure 2 shows the protocol behaviors of TFRC and
ABRC when each of them is the only traffic stream within the
WLAN. The bandwidths recorded over time are the numbers
of bits received by the receiver over successive one-second
intervals.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Time (s)

B
an

dw
id

th
 (
M

bp
s)

TFRC
ABRC

Figure 2. Dynamic bandwidth usage of TFRC and

ABRC when there is no other competing traffic

Similar to TCP, TFRC also has the slow start and

congestion control phases. As can be seen in Fig. 2, after
being started, TFRC needs more than 20 seconds to zoom to
full utilization of the WLAN bandwidth. This is due to its
design principle of not aggressively seeking out available
bandwidth. The time needed for achieving the equilibrium is
rather long, considering that the RTT is rather short in this
experiment. Usually, RTT is no more than several hundreds of
milliseconds.

In contrast, ABRC makes full use of the WLAN bandwidth
right from the start of the experiment. This is attributed to the
operation of ABRC in which it tries to keep to AP queue
nonempty at all time so that the AP always has some packets
to transmit.

Figure 3. Dynamic bandwidth usage of TFRC /ABRC
versus bandwidth usage of competing TCP traffic

Figure 3 shows the bandwidth-usage evolutions for TFRC
and ABRC when there is one competing TCP connection.
Here the bandwidth allocation factor Tk of ABRC is set to
one so as to make ABRC comparable with TFRC.

The RTT within WLAN is quite small so that TCP’s
sending rate is limited by the advertised window rather than
by the congestion window. That is, the maximum value of
advertised window (64 Kbytes for the socket API we used) is
quickly reached while the congestion window is still
increasing. TFRC does not incorporate an advertised window
limit. It only tries to emulate throughput limitation of TCP
caused by congestion window limit. Thus, even after TCP has
reached its advertised window limit, TFRC continues to
increase its bandwidth usage until it causes buffer overflow at
the AP.

Before the buffer overflows and after the advertised
window limit is reached (between 45 sec and 75 sec in Fig. 3),
TFRC can grab more bandwidth than TCP. The throughput of
TCP can be estimated by Max Advertised Window divided by
RTT. Throughput of TCP decreases because Max Advertised
Window remains constant while RTT increases – RTT
increases because TFRC continues to flood the AP buffer and
causes its total occupancy to continue to increase. After 75
sec, AP buffer overflow occurs, and both packets from TCP
and TFRC start to be dropped. Upon detection of lost packets,
TRFC immediately reduces its rate. Although TCP also
decreases its congestion window upon packet loss detection,
the decreased congestion window is still larger than the
advertised window. Meanwhile, the RTT has decreased
because TFRC has already decreased its sending rate. Thus,
the throughput of TCP increases (between 75 sec and 90 sec).
As can be seen in Fig. 3, for a sustained period of time

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Time (s)

B
an

dw
id

th
 (
M

bp
s)

TFRC
TCP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

B
an

dw
id

th
 (
M

bp
s)

ABRC
TCP

WCNC 2004 / IEEE Communications Society 397 0-7803-8344-3/04/$20.00 © 2004 IEEE

(between 50 sec and 95 sec), the bandwidth usage is not
allocated in a uniform and “fair” manner, contrary to the
design objective of TFRC.

In contrast, as illustrated in the right part of Fig. 3, ABRC
tracks and follows the changes of TCP much more closely.
Although there are still fluctuations, the periods are much
smaller (or frequency components much higher). The
implication is as follows. Take a video server as an example.
Suppose that VBR (variable bit rate) encoding is used to adapt
the video bit rate to the sending rate. Unless very large buffers
are used at the encoder and the decoder (with the consequence
of higher delays at the encoder and decoder), one cannot
smooth the fluctuations in bandwidth usage of TFRC because
the fluctuations have very low frequency components. As a
result, the video quality tends to vary periodically over time,
despite there is only one competing TCP connection. This
variation of video quality is self-induced rather than due to
changes in network activity.

Although not shown here due to limit space, our
experimental results beyond 90 sec on the left part of Fig. 3
exhibit continuous long-term oscillatory behavior. The
average throughput of TFRC is higher than that of TCP.
TFRC in fact fails to achieve uniform bandwidth allocations
with TCP within the WLAN.

With ABRC, the oscillations have much smaller periods.
As a result, a smaller buffer can be used at the encoder and
decoder to smooth out the fluctuations, and the video quality
can be maintained at a more consistent level than that with
TFRC. In addition, the targeted uniform bandwidth allocation
in this case is achieved after averaging out the oscillations of
ABRC and TCP.

4. Discussions

Although the competing traffic in this paper is TCP, the
derivation in Section 2 is independent of the particulars of
TCP. Therefore, ABRC is not limited to the case of UDP
coexisting with TCP. ABRC can also be used when there are
other co-existing traffic types, including other ABRC streams.

When there are more than one ABRC streams, additional
constraints need to be met to maintain a stable system. For a
particular ABRC stream i , let us define)1(+= TTi kkβ ,

where iβ is the proportion of the total bandwidth in the

WLAN allocated to the ith ABRC stream. For example, if

Tk is one, then the ABRC stream will be allocated 50% of the
total bandwidth.

If there are n ABRC connections competing with several

TCP connections, for system stability, 1
1

<∑
=

n

i
iβ . The

remaining bandwidth proportion ∑
=

−
n

i
i

1
1 β is fairly shared by

TCP connections.

From the analysis in the previous section, it is clear that
ABRC will not have the shortcomings of TCP and TCP-
friendly protocols in wireless networks, such as degraded
throughput due to the inability to distinguish between packet
losses due to traffic congestion and random bit error. This is
because unlike TFRC, ABRC does not adjust its sending rate
based on detection of lost packets, and therefore lost packets
due to random wireless noise will not cause it to decrease its
sending rate. Our experiment results also validate this. Due to
the page limit, we will present such results in a separate paper.

5. Conclusions

In this paper, we have presented an end-to-end rate control
protocol called ABRC to achieve any desired bandwidth
allocations between UDP and TCP traffic in the WLAN. The
design of ABRC is based on an analytical framework. To test
its performance in practice, we have implemented ABRC in a
WLAN testbed. The experiment results validate the ability of
ABRC to achieve good bandwidth-allocation performance as
intended.

We have also compared the performance of ABRC with a
typical TCP-friendly rate control protocol named TFRC. Our
results show that ABRC does not have a number of the
shortcomings of TFRC in wireless networks, such as
imprecise bandwidth allocation, long-term oscillatory
behavior, and unnecessary throughput degradation due to
random wireless noise.

Last but not least, unlike many previous schemes proposed
in the literature, ABRC achieves bandwidth allocations in a
totally end-to-end way so that it can be applied to the current
installed base of commercial WLAN products without any
modifications on them. As an application-layer protocol, it is
readily deployable over the existing Internet infrastructure.

References
[1] S. Floyd and K. Fall, “Promoting the use of end-to-end

congestion control in the Internet,” Networking, IEEE/ACM
Trans. on, Vol. 7, Aug. 1999, pp. 458-472

[2] R. Rejaie, M. Handley and D. Estrin, “RAP: An end-to-end rate-
based congestion control mechanism for realtime streams in the
Internet,” Proc. INFOCOM’99 , vol. 3, Mar. 1999, pp. 1337-
1345

[3] S. Floyd et al., “Equation-based congestion controlfor unicast
applications,” Proc. ACM SIGCOMM, Aug. 2000, pp. 43-56.

[4] http://www.icir.org/tfrc/
[5] Law, K. L. E., “The bandwidth guaranteed prioritized queuing

and its implementations,” Proc. GLOBECOM’97, vol. 3, Nov.
1997, pp. 1445-1449.

[6] M. Katevenis, S. Sidiropoulos and C. Courcoubetis, “Weighted
round-robin cell multiplexing in a general-purpose ATM switch
chip,” IEEE JSAC, Oct. 1991.

[7] Y. R. Yang, Nin Sik Kim and S. S. Lam, “Transient behaviors of TCP-
friendly congestion control protocols,” Proc. INFOCOM’01, vol. 3, Apr.
2001, pp. 1716-1725.

WCNC 2004 / IEEE Communications Society 398 0-7803-8344-3/04/$20.00 © 2004 IEEE

	footer1:

