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Abstract 
The rapid growth of wireless LAN (WLAN) deployments 

will bring about many novel mobile applications. Among them 
will be real-time multimedia streaming applications running 
on UDP, which may interfere with current data applications 
running on TCP. This paper is a first attempt to investigate 
how to ensure the performance of these two groups of 
applications when they co-exist over a WLAN. Toward this 
end, we have designed and implemented a UDP rate 
adaptation scheme called Adaptive-Buffer Rate Control 
(ABRC) for multimedia streaming over WLAN. ABRC has two 
distinguishing features compared with other schemes: 1) It 
can achieve arbitrary bandwidth allocations between UDP 
and TCP in the WLAN, as opposed to previously proposed 
“TCP friendly” schemes, which can only achieve uniform 
bandwidth allocations; 2) The majority of previously proposed  
flexible bandwidth-allocation schemes achieve arbitrary 
bandwidth allocations by prioritizing and scheduling packet 
transmissions within network equipment (i.e., within routers, 
base stations, etc.). In contrast, ABRC is an end-to-end 
application-layer solution that does not require changes to 
current WLAN products, making it more readily deployable 
over existing networks. 

Keywords – Rate control, WLAN, 802.11, Multimedia 
streaming, Bandwidth allocation, TCP-friendly protocols, 
TFRC 

1. Introduction 
 In the last few years, wireless networks based on the IEEE 

802.11 standard have been undergoing accelerated 
deployment in homes, enterprises, and public hotspots such as 
airports and hotels. The majority of the wireless LAN 
(WLAN) deployments use the Infrastructure Mode of 802.11, 
in which the terminal devices communicate with each other as 
well as with machines in the wired networks via an access 
point (AP). An AP usually has two interfaces: an 802.11 
interface for communication in the WLAN, and an Ethernet 
interface for connection to the wired Internet infrastructure.  

Currently, the prevalent applications in WLANs are TCP 
data applications such as web browsing, email delivery, and 
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file downloading. Within a WLAN, these applications 
generate mostly downlink traffic from the AP to the wireless 
stations. The upstream traffic is generally much lighter. Due to 
the relatively low bandwidth of the 802.11 interface compared 
with the Ethernet interface (e.g., the maximum data rate of 
802.11b is 11 Mbps while the maximum data rate of a typical 
Ethernet is 100 Mbps), the AP could become a significant 
bottleneck for downlink traffic.  

Although the popular applications on WLANs today are 
TCP data applications, we anticipate that as WLANs become 
even more widespread and ubiquitous, real-time applications 
such as voice over IP and video streaming will also be in 
demand. These applications typically use UDP as the transport 
protocol and have stringent throughput and delay 
requirements. An important issue is how to satisfy the 
requirements of real-time applications within the WLAN and 
at the same time ensure harmonious co-existence with other 
TCP data applications.  

For harmonious co-existence with TCP, the real-time 
applications could employ TCP-friendly protocols on top of 
UDP (e.g., see [1]). These protocols can ensure that the 
bandwidth is shared in a fair manner among TCP and UDP 
streams. Essentially, the bandwidth is divided evenly among 
all streams. When there is no competing TCP traffic, UDP 
streams can also fully make use of the available WLAN 
bandwidth. This makes it possible to support bandwidth-
adaptive applications over the TCP-friendly protocols (e.g., 
video streaming in which the bit rate is adapted according to 
the bandwidth available). 

TCP-friendly protocols, however, suffer from two 
shortcomings. First, one cannot fine-tune the proportions of 
bandwidths allocated to real-time applications and TCP 
applications in a non-uniform manner. That is, one cannot 
allocate more (or less) bandwidths to real-time applications 
than TCP applications. Second, most TCP-friendly protocols 
proposed to-date either attempt to mimic the behavior of TCP 
[2], or explicitly adjust its sending rate based on equations 
which model the throughput of the TCP flow under the same 
condition of round-trip time and packet loss rate [3]. One side 
effect of emulating TCP behavior is that such TCP-friendly 
protocols will also inherit certain shortcomings of TCP. For 
example, when a packet loss is detected, TCP-friendly 
protocols may reduce the input data rate (as in regular TCP) 
regardless of whether the packet loss is due to traffic 
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congestion or random noise in the wireless medium. In the 
latter case, the input data rate should not be reduced because 
doing so does not solve the packet loss problem and may 
degrade the quality of service unnecessarily.  

To allocate bandwidths in WLAN, the most direct way is to 
schedule packet transmissions on the AP downlink. 
Scheduling schemes such as Priority Queuing and Weighted 
Fair Queuing (WFQ) implement multiple queues for different 
flows or traffic classes [5][6]. However, the AP buffers in 
most of today’s commercial products are simple FIFO queues 
that are shared by all traffic. We may have to live with such 
FIFO queues for some time to come considering the large 
amount of such 802.11 equipment already deployed. 

To address the problems and issues outlined above, we 
propose in this paper an end-to-end UDP rate adaptation 
scheme called Adaptive-Buffer Rate Control (ABRC) that can 
achieve arbitrary bandwidth allocations between UDP and 
TCP at the AP. We have implemented and evaluated its 
performance in a real WLAN testbed. Compared with 
previous work, ABRC has two major distinguishing features:  

1) It achieves desired bandwidth allocations in a totally end-
to-end way. That is, it can be applied to the current 802.11 
commercial products without any modifications on them, 
making it more readily deployable over existing networks.  
To the best of our knowledge, ABRC is the first end-to-end 
approach proposed to provide bandwidth allocations 
between UDP and TCP traffics in WLAN.  

2) It achieves “TCP-friendliness” in a different way than the 
previous TCP-friendly schemes. As with these TCP-
friendly schemes, ABRC can make sure that UDP streams 
do not hog the bandwidth at the expense of TCP 
connections; and when there are no competing TCP 
streams, UDP streams can fully make use the entire 
WLAN bandwidth. However, ABRC does this without 
trying to mimic the behavior of TCP. Consequently, it does 
not inherit problems of TCP in wireless networks.  

 

2. Adaptive-Buffer Rate Control Scheme 
To explain the ABRC scheme, we consider the network 

set-up as shown in Fig. 1. We assume that the ABRC sender is 
located close to the AP and connected to it through an 
Ethernet. An example of an ABRC sender is a video server. If 
the original video source is at a remote location, the server 
shown in Fig. 1 could be a local proxy server that obtains the 
video data from the original video source for feeding to the 
receivers within the WLAN. 

The TCP sender could be a server for FTP or other TCP-
based applications. Although the TCP sender is shown in Fig. 
1 as being close to the WLAN and connected to it through an 
Ethernet, it could in general be located at a distance within the 
Internet. 

ABRC is an application-layer protocol over UDP. In 
ABRC, the receiver collects data and statistics on incoming 
packets and feed them back to the sender at regular intervals. 

Based on the feedback, the sender estimates the buffer 
occupancies of TCP and UDP traffic in the AP downlink 
queue, from which the relative bandwidth usage between TCP 
and UDP is obtained.  The sender then compares the relative 
bandwidth usage with the target bandwidth allocation and 
adjusts its sending rate accordingly in a dynamic fashion.  

Specifically, the tasks performed by the ABRC scheme 
can be broken down as follows: 1) Estimation of TCP and 
UDP buffer occupancies to obtain the current relative 
bandwidth usage; 2) Adjust the sending rate based on 1) to 
achieve the desired relative bandwidth allocations. 

 
 
 
 
 
 
 
 

 
Figure 1. Network setup for ABRC scheme 

 

2.1 Relationship between Bandwidth Usage and 
      Buffer Occupancies 

 ABRC attempts to adjust the buffer occupancy of its UDP 
packets at the AP to achieve the desired bandwidth allocation 
with respect to the co-existing traffic. Denote the buffer 
occupancy of TCP and UDP by TCPB  and UDPB , 
respectively. If the queue at the AP is FIFO, it is obvious that 

TCPUDPTCPUDP BB=λλ                                  (1) 

where TCPλ  and UDPλ   are the throughputs (or output rates) 
of  TCP and UDP at the queue, respectively. Denote the 
desired ratio of bandwidth allocation by 

Tk  = UDPλ / TCPλ                                                  (2) 

If we knew the value of TCPB , then the target buffer 
occupancy for UDP traffic needed to achieve the desired 
bandwidth-allocation ratio is 

TB  = Tk TCPB                                                      (3) 
In practice, due to the dynamic nature of TCP operation, the 
value of TCPB  will change over time. A key ingredient in 
ABRC is a method for tracking such change so that the target 
buffer occupancy for UDP, TB , can be adjusted accordingly 

to maintain the desired Tk . This is detailed in the next two 
subsections. 
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2.2 Estimation of Buffer Occupancy 

To estimate the UDP buffer occupancy the sender adds a 
sequence number to every packet sent. In the ith  feedback 
packet, the receiver provides the sequence number ][iSeqrecv  
of the most recently received packet. Upon receiving the 
feedback, the sender estimates the UDP buffer occupancy at 
the end of ith  feedback interval by  

][iBUDP = ][][ iSeqiSeq recvsend −                      (4) 

where ][iSeqsend  is the most recent packet sent out by the 

sender when the ith  feedback packet is received. Note that 
(4) is only an approximate upper bound because when the 
sender receives the feedback, the current sendSeq  could be 

larger than the sendSeq  when recvSeq  was measured on the 
receiver. The inaccuracy of (4) is caused by the transmission 
time of the feedback packet. (the transmission time as defined 
here includes all the overhead incurred by the 802.11 protocol, 
such as backoff, physical preamble and InterFrame Space, etc) 
From our experiments, we have observed that the error in (4) 
is only one or two packets. 

To estimate the TCP buffer occupancy, ABRC makes use 
of packet inter-arrival times registered by the receiver. 
Suppose that the AP queue were filled by UDP packets only, 
the inter-arrival time for two consecutive UDP packets 
observed by the receiver would be the transmission time of 
one UDP packet, denoted as UDPT  ,where UDPT  also includes 
the various 802.11 protocol overheads.  

  When the AP queue has a mix of UDP and TCP packets, 
the average inter-arrival time of the two consecutive UDP 
packets observed by the receiver, mixT , will be larger than 

UDPT . mixT  is related to the ratio of TCP and UDP buffer 
occupancies.  

At the end of the ith  feedback interval, if that the buffer 
occupancy of TCP is twice that of UDP 
(i.e., ][2][ iBiB UDPTCP = ), then the average inter-arrival time 

of UDP packets in the ith  feedback interval, ][iTmix  should 
be the transmission time of a UDP packet plus two 
transmission times of a TCP_DATA packet plus α  times the 
transmission time of one TCP_ACK packet. Generally, α = 1 
or 2, depending on whether the TCP sends a TCP_ACK for 
every packet or every two packets. The reason for adding the 
transmission time of TCP_ACK as part of ][iTmix  is that the 
wireless channel is shared by all wireless stations. Therefore, 
the sending of upstream TCP_ACKs will also increase the 
delay of the downstream packets. If we ignore the 
transmission time of TCP_ACK, since it is relatively small 

compared with TCP_DATA, then approximately ][iTmix  has 
a direct relationship with the buffer occupancies as follows: 

TCPUDPmix TikTiT ][][ +=                                (5) 

where ][][][ iBiBik UDPTCP=  is the ratio between the TCP 

and UDP buffer occupancies for the ith  feedback interval. If 
the TCP has the same packet length of UDP, that is, 

UDPTCP TT = , then1 

UDPmix TikiT ])[1(][ +=                                  (6) 

In the implementation, we can simply use the minimum inter-
arrival time observed by the receiver as an estimation of 

UDPT , counting on the fact that occasionally, two UDP 
packets will be transmitted in succession even when there are 
TCP packets in the AP queue. So when the receiver measures 

][iTmix , the TCP buffer occupancy of the ith  feedback 
interval can be estimated by 

][
][

][ iB
T

TiT
iB UDP

UDP

UDPmix
TCP

−
=                  (7) 

 
2.3 Sending Rate Adjustment 

Equation (7) provides us with a way to track the change in 
TCP buffer occupancy. The ABRC sender can then 
dynamically adapt its sending rate to maintain a certain ratio 

Tk  between UDP and TCP buffer occupancies. The sending 
rate adjustment is a two-step process. The first step is to set up 
a target UDP buffer occupancy TB  to follow the changes of 
the TCP buffer occupancy so that the ratio between the UDP 
and TCP buffer occupancies can be maintained at or zoomed 
into Tk  (i.e., to achieve equality in (3)). The second step is to 
adjust the sending rate to let the UDP buffer occupancy 
narrow into TB  upon receiving the feedback from the 
receiver.  

For the first step, the sender can estimate the current TCP 
buffer occupancy ][iBTCP  on receiving the ith  feedback 
packet based on (7). When it is time to adjust the target buffer 
occupancy, the TB  can be set to ][iBkB TCPTT = , 

according to (3). We may want to make TB  adjustment 

                                                           
1  Note that strictly speaking the assumption of equal length for UDP and 

TCP packets is not necessary. If we define buffer occupancies in terms of 
numbers of bytes (or amounts of work) rather than packets, equation (6) will 
remain valid even for UDP and TCP packets of different size.  
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interval several times the feedback interval so as to leave time 
for the ABRC to achieve the previously set TB . 

For the second step, besides sequence number and inter-
arrival time, the receiver also measures the UDP throughput 
over a feedback interval t  by counting the number of packets 
received during the t  seconds. Let iBW  denote the 

throughput (in packets/second) of the ith  feedback interval. 
Note that iBW  is related to ][iTmix  by iBW  = 1 / ][iTmix . 

When the sender receives the ith  feedback packet, it 
estimates the bandwidth of the thi )1( +  feedback interval as 

*
1+iBW . Similar to the bandwidth estimations of many other 

network protocols, *
1+iBW  can be simply set to iBW ; or 

alternatively, a window average or an exponential average on 

iBW , 1−iBW , …, can be used as the estimate, with the 
averaging/smoothing period set according to the 
responsiveness desired and the bandwidth fluctuations 
observed.   

From the feedback, the sender also derives the current UDP 
buffer occupancy ][iBUDP  according to (4). For the 

thi )1( +  feedback interval, we expect the number of UDP 

packets leaving the AP queue to be tBWi **
1+ . Let 1+iS  be 

the sending rate during the thi )1( +  interval. Then, the 
number of UDP packets entering the AP queue during the 

thi )1( +  interval is tSi *1+ .  

The change in buffer occupancy is tBWtS ii ** *
11 ++ − . 

The target change in buffer occupancy is ][iBB UDPT − . 
Equating these two terms and rearranging, we have 

tiBtBWBS UDPiTi /])[*( *
11 −+= ++           (8) 

 

3. Experimental Evaluation 

To evaluate the performance of the ABRC scheme, we have 
implemented and tested it in a real network configured as in 
Fig. 1. The TCP sender and receivers are FTP server and 
clients.  

The ABRC implementation uses a feedback interval of one 
second (i.e., 1=t ) and TB  adjustment interval of three 

seconds. For bandwidth estimate of the next interval *
1+iBW , 

we simply let ii BWBW =+
*

1 ,  the bandwidth registered by 
the receiver for the current feedback interval.  This makes the 
ABRC scheme somewhat aggressive in response to bandwidth 
changes.  

The interactions between ABRC sender and receiver are 
summarized below: 

1) For each feedback interval over one second, the receiver 
measures the average throughput of the ABRC stream, 
collects the sequence number of the most recently received 
packet. This information is fed back to the sender at the 
end of the one second.  

2) After receiving a feedback packet, the sender estimates the 
UDP buffer occupancy ][iBUDP  and the average 

bandwidth of the next second *
1+iBW . 

3) Every three seconds, the sender estimates the TCP buffer 
occupancy TCPB . It then adjusts the TB  to  TCPT Bk * , 

where Tk  is the desired bandwidth allocation. If the new 

computed TB  is below a threshold 5 (i.e., 5<TB ), let 

5=TB . This is to deal with the case when there is no 
competing TCP traffic in the AP. By maintaining a 
minimum TB , ABRC scheme can make full use of the 
wireless channel while others are not using it. 

4) Every second, adjust the sending rate according to (8). 
 
3.1 Bandwidth Allocation Results 

The first set of our experiments explores whether ABRC 
allocates bandwidths according to the targets. Table 1 shows 
the results with one ABRC connection and one FTP 
connection. Table 2 shows the results with one ABRC 
connection and two FTP connections. We see that for most of 
the cases ABRC can achieve the desired bandwidth allocation 
rather well.  

Table 1. One ABRC coexists with one TCP connection 
Bandwidth allocation 

factor Tk  
ABRC throughput 

(Mbps) 
TCP throughput 

(Mbps) 

1 2.53 2.58 

2 3.79 1.66 

3 4.20 1.36 

 
Table 2. One ABRC coexists with two TCP connections 

Bandwidth 
allocation 

factor Tk  

ABRC 
throughput 

(Mbps) 

TCP  1 
throughput 

(Mbps) 

TCP  2 
throughput 

(Mbps) 

Total TCP 
throughput 

(Mbps) 

1 2.53 1.53 1.16 2.69 

2 3.74 0.85 0.87 1.72 

0.5 1.48 2.05 1.72 3.77 

 
We would like to point out that ABRC treats all TCP 

traffic as a whole regardless of how many actual TCP 
connections there really are. As a result, ABRC will allocate 
bandwidth to the UDP stream with respect to the total 
bandwidth of all other TCP streams rather than with respect 
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the bandwidth of a particular TCP stream. As a matter of fact, 
in general it allocates bandwidth to the ABRC stream with 
respect to sum total of all other traffic, including other UDP 
streams as well, if any. Thus, the value of Tk  is the ratio of 
the bandwidth allocated to the ABRC stream with respect to 
aggregate bandwidth of all other streams. 

 
3.2 Comparison with a TCP-friendly Congestion 

Control Scheme 
In our second set of experiments, we compare the dynamic 

behaviors of ABRC with the well-known TCP-friendly Rate 
Control (TFRC) scheme [3]. TFRC is an equation-based TCP-
friendly congestion control mechanism which adjusts its 
sending rate as a function of the measured rate of loss events, 
where a loss event consists of one or more packets dropped 
within a single round-trip time. The reader is referred to [3] 
for details on TFRC. The TFRC implementation used in our 
experiments was downloaded from its official website [4] with 
some modifications on the receiver to record the throughputs 
over time.  

We first examine the operations of TFRC and ABRC in 
isolation. Figure 2 shows the protocol behaviors of TFRC and 
ABRC when each of them is the only traffic stream within the 
WLAN. The bandwidths recorded over time are the numbers 
of bits received by the receiver over successive one-second 
intervals. 
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Figure 2. Dynamic bandwidth usage of TFRC and 

ABRC when there is no other competing traffic 
 
Similar to TCP, TFRC also has the slow start and 

congestion control phases. As can be seen in Fig. 2, after 
being started, TFRC needs more than 20 seconds to zoom to 
full utilization of the WLAN bandwidth. This is due to its 
design principle of not aggressively seeking out available 
bandwidth. The time needed for achieving the equilibrium is 
rather long, considering that the RTT is rather short in this 
experiment. Usually, RTT is no more than several hundreds of 
milliseconds.  

In contrast, ABRC makes full use of the WLAN bandwidth 
right from the start of the experiment. This is attributed to the 
operation of ABRC in which it tries to keep to AP queue 
nonempty at all time so that the AP always has some packets 
to transmit.  

Figure 3. Dynamic bandwidth usage of TFRC /ABRC 
versus bandwidth usage of competing TCP traffic 
 

Figure 3 shows the bandwidth-usage evolutions for TFRC 
and ABRC when there is one competing TCP connection. 
Here the bandwidth allocation factor Tk  of ABRC is set to 
one so as to make ABRC comparable with TFRC. 

The RTT within WLAN is quite small so that TCP’s 
sending rate is limited by the advertised window rather than 
by the congestion window. That is, the maximum value of 
advertised window (64 Kbytes for the socket API we used) is 
quickly reached while the congestion window is still 
increasing. TFRC does not incorporate an advertised window 
limit. It only tries to emulate throughput limitation of TCP 
caused by congestion window limit. Thus, even after TCP has 
reached its advertised window limit, TFRC continues to 
increase its bandwidth usage until it causes buffer overflow at 
the AP.  

Before the buffer overflows and after the advertised 
window limit is reached (between 45 sec and 75 sec in Fig. 3), 
TFRC can grab more bandwidth than TCP. The throughput of 
TCP can be estimated by Max Advertised Window divided by 
RTT. Throughput of TCP decreases because Max Advertised 
Window remains constant while RTT increases – RTT 
increases because TFRC continues to flood the AP buffer and 
causes its total occupancy to continue to increase. After 75 
sec, AP buffer overflow occurs, and both packets from TCP 
and TFRC start to be dropped. Upon detection of lost packets, 
TRFC immediately reduces its rate. Although TCP also 
decreases its congestion window upon packet loss detection, 
the decreased congestion window is still larger than the 
advertised window.  Meanwhile, the RTT has decreased 
because TFRC has already decreased its sending rate. Thus, 
the throughput of TCP increases (between 75 sec and 90 sec). 
As can be seen in Fig. 3, for a sustained period of time 
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(between 50 sec and 95 sec), the bandwidth usage is not 
allocated in a uniform and “fair” manner, contrary to the 
design objective of TFRC. 

In contrast, as illustrated in the right part of Fig. 3, ABRC 
tracks and follows the changes of TCP much more closely. 
Although there are still fluctuations, the periods are much 
smaller (or frequency components much higher). The 
implication is as follows. Take a video server as an example. 
Suppose that VBR (variable bit rate) encoding is used to adapt 
the video bit rate to the sending rate. Unless very large buffers 
are used at the encoder and the decoder (with the consequence 
of higher delays at the encoder and decoder), one cannot 
smooth the fluctuations in bandwidth usage of TFRC because 
the fluctuations have very low frequency components. As a 
result, the video quality tends to vary periodically over time, 
despite there is only one competing TCP connection. This 
variation of video quality is self-induced rather than due to 
changes in network activity.  

Although not shown here due to limit space, our 
experimental results beyond 90 sec on the left part of Fig. 3 
exhibit continuous long-term oscillatory behavior. The 
average throughput of TFRC is higher than that of TCP. 
TFRC in fact fails to achieve uniform bandwidth allocations 
with TCP within the WLAN. 

With ABRC, the oscillations have much smaller periods. 
As a result, a smaller buffer can be used at the encoder and 
decoder to smooth out the fluctuations, and the video quality 
can be maintained at a more consistent level than that with 
TFRC. In addition, the targeted uniform bandwidth allocation 
in this case is achieved after averaging out the oscillations of 
ABRC and TCP. 

4. Discussions 

Although the competing traffic in this paper is TCP, the 
derivation in Section 2 is independent of the particulars of 
TCP. Therefore, ABRC is not limited to the case of UDP 
coexisting with TCP. ABRC can also be used when there are 
other co-existing traffic types, including other ABRC streams.  

When there are more than one ABRC streams, additional 
constraints need to be met to maintain a stable system. For a 
particular ABRC stream i , let us define )1( += TTi kkβ , 

where iβ  is the proportion of the total bandwidth in the 

WLAN allocated to the ith  ABRC stream. For example, if 

Tk  is one, then the ABRC stream will be allocated 50% of the 
total bandwidth.  

If there are n  ABRC connections competing with several 

TCP connections, for system stability, 1
1

<∑
=

n

i
iβ . The 

remaining bandwidth proportion ∑
=

−
n

i
i

1
1 β is fairly shared by 

TCP connections. 

From the analysis in the previous section, it is clear that 
ABRC will not have the shortcomings of TCP and TCP-
friendly protocols in wireless networks, such as degraded 
throughput due to the inability to distinguish between packet 
losses due to traffic congestion and random bit error. This is 
because unlike TFRC, ABRC does not adjust its sending rate 
based on detection of lost packets, and therefore lost packets 
due to random wireless noise will not cause it to decrease its 
sending rate. Our experiment results also validate this. Due to 
the page limit, we will present such results in a separate paper. 

5. Conclusions 

In this paper, we have presented an end-to-end rate control 
protocol called ABRC to achieve any desired bandwidth 
allocations between UDP and TCP traffic in the WLAN. The 
design of ABRC is based on an analytical framework. To test 
its performance in practice, we have implemented ABRC in a 
WLAN testbed. The experiment results validate the ability of 
ABRC to achieve good bandwidth-allocation performance as 
intended.  

We have also compared the performance of ABRC with a 
typical TCP-friendly rate control protocol named TFRC. Our 
results show that ABRC does not have a number of the 
shortcomings of TFRC in wireless networks, such as 
imprecise bandwidth allocation, long-term oscillatory 
behavior, and unnecessary throughput degradation due to 
random wireless noise. 

Last but not least, unlike many previous schemes proposed 
in the literature, ABRC achieves bandwidth allocations in a 
totally end-to-end way so that it can be applied to the current 
installed base of commercial WLAN products without any 
modifications on them. As an application-layer protocol, it is 
readily deployable over the existing Internet infrastructure. 
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