
Dynamic NIx-Vector Routing for Mobile Ad Hoc
Networks

Young J. Lee and George F. Riley

School of Electrical & Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332

Email: {young, riley}@ece.gatech.edu
Tel: (404) 894-9041; Fax: (404) 894-9959

Abstract— We present a new protocol for multi–hop routing
in mobile ad hoc networks called Dynamic NIx–Vector Routing
(DNVR). Our scheme is based on the NIx–Vector concept for
efficient routing originally designed for wired networks. DNVR
acquires a loop–free route and maintains it on a need basis as
do other on–demand protocols. However, DNVR has several new
features as compared to other existing reactive routing protocols
which lead to more stable routes and better scalability. DNVR
effectively validates the stored routes as well as efficiently senses
the up-to-date network topology during a route discovery phase
by sending a unicast probe packet. To accommodate networks
with a high degree of mobility, the routing states are invalidated
in a timely manner. DNVR adopts a conservative route discovery
strategy by suppressing route requests in some cases, and thus
only a few routes are maintained per destination. Moreover,
it attains bandwidth efficiency by using a Neighbor Index and
Medium Access Control (MAC) addresses for routing purposes,
which obviates the need for address resolution. We show via
simulation that DNVR scales well to a large network with varying
traffic load under diverse mobility scenarios. We compare DNVR
to the well known Dynamic Source Routing (DSR) protocol, which
is believed to be one of the most efficient on-demand routing
protocols. Simulation results reveal that DNVR is as efficient as
DSR while at the same time providing higher packet delivery
ratios (up to 46 % higher) and smaller delays (up to 23 %
smaller) than DSR in most cases.

Index Terms— Mobile ad hoc network, wireless routing, mobile
computing

I. INTRODUCTION

A mobile ad hoc network is a collection of mobile nodes
that form a network structure without the help of any ex-
isting infrastructure or central administration, such as static
base stations in cellular networks. With the advancements of
wireless communications and computer technologies, the use
and application of mobile ad hoc networks is increasing over
time. For example, military operations or disaster relief efforts
are usually performed without any pre-existing infrastructure.
Also commercial applications that need cooperative mobile
data exchange can benefit from this mobile ad hoc networking
technology [1]. Moreover, this type of network may provide
an inexpensive alternative to cellular networks [2].

In recent years, several routing protocols for mobile ad
hoc networks have been proposed. The primary goal of such
routing protocols is to establish a correct route from a source
node to a destination node in an efficient way, to maintain

the discovered routes, and react to the network topology
changes effectively. Ad hoc network routing protocols can
be classified into two major categories according to the way
routes are acquired and maintained: table-driven (proactive)
and on-demand (reactive) protocols. Among these ad hoc
routing protocols, commonly studied protocols include DSR
[3] and AODV [4].

In Dynamic Source Routing (DSR) [3], packets are deliv-
ered using source routing. A DSR packet contains a complete
ordered list of IP address for nodes through which it should
pass. DSR is an on-demand protocol and therefore finds a
path to a destination only when it wishes to send to the
destination. The main advantage of this type of protocol
is that the intermediate nodes on a path do not need to
maintain up-to-date routing information, which removes the
need for route advertisement and explicit neighbor detection
mechanisms. Further, it is straightforward to obtain loop-free
routes with this approach. However, the size of a packet header
containing route information grows with the length of a path,
which results in high packet overhead and raises scalability
concerns. Obviously, this could have a negative impact due to
limited bandwidth in wireless networks. There was an effort to
reduce this packet overhead using implicit source routing[5].
It successfully reduces the packet overhead due to source
routing, but shows very similar performance to DSR in other
metrics such as packet delivery and latency. Furthermore, DSR
does not have a mechanism to invalidate the cached routing
information in a timely fashion, which can lead to a routing
misbehavior due to stale routes, resulting in poor performance
in highly mobile networks.

Ad hoc On-demand Distance Vector (AODV) [4] adopts the
distance vector routing algorithm. Each node exchanges rout-
ing information to attain the up-to-date view of the network
only when involved in an active routing path, which makes
it an on-demand routing protocol. AODV forwards packets in
a hop-by-hop manner. It uses HELLO messages to maintain
local connectivity at each node. One of the advantages of the
protocol is that it scales well to large networks. However,
even though the neighbor management associated with local
connectivity is done only during an active routing phase, it
does increase the signaling overhead of the entire network.

All of these protocols also prefer stored route information

IEEE Communications Society / WCNC 2005 1995 0-7803-8966-2/05/$20.00 © 2005 IEEE

(at route caches or routing tables) in a route discovery phase.
Even though this behavior can save some routing overhead,
it often fails to sense the up-to-date network topology, which
leads to the discovery of invalid paths, resulting in additional
packet drops and more delays, especially in case of high
mobility.

In addition, a node in a mobile ad hoc network tends to
communicate with more peers than those in a wired network
due to the dynamic nature of the network. Thus, frequent
address resolution services are requested, which may degrade
the performance of routing protocols in terms of delay and
packet loss [3], [12].

We introduce a new scheme which we call Dynamic NIx-
Vector Routing for mobile ad hoc networks (DNVR). DNVR
is a pure on-demand routing protocol. It acquires a loop-free
route and maintains it on a demand basis as do other on-
demand routing protocols [3], [4], [6].

The DNVR protocol, however, has several distinct features
from other on-demand routing protocols as follows:

• Validation of the stored route information
• Utilization of probes for efficient sensing of the network
• Management of routing states in a timely fashion
• Suppression of route requests for a conservative route

discovery
• Removal of address resolution
• Use of a compact form of source routes
DNVR effectively validates the stored route information

before using it as well as efficiently detects the up-to-date
network topology in a route discovery phase by utilizing a
unicast packet functioning as a probe. To accommodate a
high degree of mobility, the routing states are invalidated in a
timely manner. DNVR adopts a conservative route discovery
strategy by suppressing route requests at destinations, and thus
only a few routes are maintained per destination. In addition,
DNVR uses MAC addresses instead of IP addresses to identify
routing neighbors, which eliminates the need for additional
mechanisms such as Address Resolution Protocol (ARP) [8]
to resolve a neighbor’s IP address. 1 DNVR uses a compact
form of a source route since it inherits the NIx-Vector routing
as a basic routing method, which reduces packet overhead
significantly. By virtue of these features, DNVR provides
more stable and scalable performance as compared to existing
routing methods, with respect to network size, mobility, and
traffic volume.

The rest of the paper is organized as follows. In Section II,
we overview the wired NIx-Vector routing method. In Sec-
tion III, we describe the DNVR protocol in detail. Section IV
gives the performance evaluation of the new scheme and
compares it with DSR. Section V concludes the paper.

II. OVERVIEW OF WIRED NIX-VECTOR ROUTING

The wired NIx-Vector (NV) routing protocol was introduced
to provide an efficient routing method in the Internet [7].

1The use of a MAC address for identifying a routing neighbor simply
removes ARP, and it operates only from the perspective of per-hop behavior.
Note that it does not violate the layered protocol approach.

0 1

2

3

4

5

6

7 8

9

1011

12

1 1 1
12 2

2

3

3

4

5

0 0 0 0 0 0

0

01 1

1

0

2

Fig. 1. Simple routing path

The NV routing was motivated from the observation that the
specification of the IP address for each next hop in a routing
path is an excess of information. The NV routing method
enables the relevant routing information to be specified with
a small number of bits per hop, and thus the same amount of
routing information can be specified in a much smaller space.

The NIx-Vector routing method starts with the concept of
a neighbor index (NIx). Each router has an ordered set of
routing neighbors. For example, if a router has three routing
neighbors, it has a set of {0, 1, 2}. The router selects the next
hop from this set. The NV consists of the concatenation of
the all neighbor index (NIx) values selected on the path from
a source to a destination.

A NV is constructed during a creation phase while a packet
goes from a source to a destination. During this phase, routers
make a normal routing decisions and record the neighbor index
decisions in the packet header by simply concatenating the
NIx value to the existing vector, and incrementing the length
by the appropriate number of bits. When the packet arrives
at the destination, the NV is complete and is returned to the
source. Once the NV is available at a source, it is included
in all subsequent packets from the source to the destination,
and the routers use it to efficiently forward the packets by
extracting the appropriate number of bits from the vector and
decrementing the length.

Fig. 1 shows a simple network as an example. Each router
has varying numbers of neighbors, and each router numbers
those neighbors sequentially as shown. Suppose the path for
a packet is 0–1–3–6–9–12. The resulting NV for this path is
0 10 10 011 1 (binary).

Once a NV from a source to a destination is created and
becomes available to the source, it can be subsequently used
for efficient O(1) routing decisions. Each router extracts the
appropriate number of bits from the received NV, which
specifies the correct NIx for the next hop. This NIx is used
to index a table of next hop IP address, interface number, and
(optionally) layer 2 address. The packet is then forwarded to
this neighbor with no further processing. The extracted NIx
values at each router between 0 and 12 would be 0, 2, 2, 3,
and 1, resulting in the correct path 0–1–3–6–9–12.

III. DYNAMIC NIX-VECTOR ROUTING PROTOCOL

DNVR protocol mainly consists of two parts: NV creation
and mobility management. In the NV creation phase, a path
from a source to a destination is found, and a NV for the path is
constructed. In the mobility management phase, DNVR detects
routing failures and performs mobility management functions.

IEEE Communications Society / WCNC 2005 1996 0-7803-8966-2/05/$20.00 © 2005 IEEE

Color

4 bits

Neighbor Index

variable length

Fig. 2. NIx structure

A. Data Structures

DNVR utilizes three types of data structures: NIx-Vector,
neighbor table, and NV Forwarding Information Base (NV-
FIB). Each structure is detailed in the following sub-sections.

1) NIx and NV: The number of routing neighbors is dy-
namic due to mobility in a mobile ad hoc network, which
makes it difficult to record a NIx with a constant number of
bits. To cope with this, we slightly modified the original NIx
structure. We introduced an additional prepended field called
color that specifies the actual length of a NIx. Fig. 2 shows
the NIx structure. A NIx has a color field and a neighbor
index field. The color field specifies the number of bits for
the neighbor index field. The neighbor index field represents
the actual index of the neighbor table. The next hop can be
determined from this index value at each forwarding node.
The length of the color field is fixed (currently 4) while the
index field length is variable. The value to be stored in the
color field Nb can be computed from (1).

Nb = �log2index� + 1 (1)

where index ∈ {1, 2, 3, . . .}. The index starts from one due to
the presence of a hidden bit [16] in the neighbor index field,
where the bit 1 is assumed to always precede the number
specified in the neighbor index field. Thus, the actual length
of the index field is Nb − 1 bits since the color Nb counts
the hidden bit, and the index value is obtained by prepending
the hidden bit 1 to the number extracted from the index field.
Given a 4-bit color, the length of the index field can range
from zero to 14 bits.

The 4-bit width of the color field means that a node can
accommodate up to 32K (215) neighbors. Even though this
number seems to be large enough to handle every node as
a routing neighbor in a realistic mobile ad hoc network, a
slight increase in the color field will give us more space. For
example, if we have 5 bits for the color field rather than the 4
(only one bit increase), a node will be able to accommodate
up to about two billion (231) neighbors.

A NV is simply a sequence of NIxes with a NV length
field. The NV length field represents the number of bits of
the NV excluding the length field itself. The length of the NV
decreases while a packet with a NV is routed along a path,
since each NIx is removed from the NV as it is used. The
NV length field also can be used to check whether or not the
NV is valid. If the NV length is not positive, then the NV is
invalid and cannot be used for routing. Thus, the packet with
the invalid NV should be dropped immediately.

2) Neighbor Table: Each neighbor table entry consists of
three fields: next hop, interface number, and lifetime. The
entries are indexed by the NIx value, and thus have O(1) access
time. In routing table based approaches, O(logN) access time
is typical.

The next hop field contains the MAC address of the next-
hop neighbor’s interface. This MAC address uniquely identi-
fies a neighbor’s interface, and it is used as a link layer unicast
address. The interface number specifies which interface to
use for communicating with the relevant neighbor. In general,
this interface is the one from which a node received routing
protocol messages. The lifetime value specifies how long the
associated entry will remain valid. An entry is deleted when
the lifetime expires. Also an entry can be invalidated even
though the lifetime has not expired if the neighbor is no longer
reachable.

3) NV-FIB: A NV-FIB is a table storing NVs and the
relevant information. When there is a request for sending a
data packet, DNVR searches its NV-FIB for a NV with the
packet destination. A NV-FIB is indexed by a path id. A path
id is a set of a source IP address, a destination IP address, and
a NV reply number. The NV reply number is generated only
by a node that replies to NV request messages. Whenever a
node replies with a NV reply, it increments its own NV reply
number by at least one and puts the value in the returned
message. In DNVR, a path can be uniquely identified by this
path id.

Each NV-FIB entity has 5 elements: path id, NV, metric,
state, and lifetime. The NV is a representation of the path
identified by the path id. The metric field holds the correspon-
dent information regarding the path such as hop count, load
factor, etc. The state field indicates the validity of the NV. If
it is invalid, the NV cannot be used to route data packets, but
can be used for route maintenance purposes.

The meaning of the lifetime depends on the state field. A
NV is invalidated when (i) the lifetime expires with a valid
state, or (ii) the link to the next hop is determined to be broken.
As soon as the NV switches to the invalid state, the lifetime
field is refreshed with a new value. When this new lifetime
expires, the NV is deleted permanently.

B. NIx-Vector Creation

The NV creation process relies on a flooding scheme using
local broadcasts as do most ad hoc routing protocols [3],
[4]. Even though recent studies [11] indicate inefficacy and
unreliability of local broadcasts, the main focus of this work
does not lie on the topic.

A NV creation process is invoked when a node has packets
to send and does not have a NV for the destination. The node
then stores the packets in a buffer for pending packets and
initiates a NV creation process by broadcasting a NV request
(NVREQ) message. When a node receives a NVREQ and it
is the specified destination, it returns a NV reply (NVREP)
message to the source. Otherwise, the node propagates the
NVREQ by broadcasting or unicasting if the request has not

IEEE Communications Society / WCNC 2005 1997 0-7803-8966-2/05/$20.00 © 2005 IEEE

been processed by the node before. This action is described
in detail later.

In this paper, we assume that every link involved in a
network is bidirectional. In other words, we assume that the
link layer protocol does not allow packet transmission over
unidirectional links. The IEEE 802.11 [15] falls into this
category. Thus, symmetric routing is a basic assumption where
the reverse of a path from node A to node B is the path from
B to A.

1) Detailed Operation: A NVREQ message carries a
source IP address; a destination IP address; a NVREQ se-
quence number; routing metric information; a reverse NV;
and the MAC address of a forwarding node’s interface. When
a node receives a NVREQ message, it first checks if it has
already processed the request by examining a unique NVREQ
identifier, a pair of <source IP address, NVREQ sequence
number>. If the node has already processed the request,
it drops the request and does not re-broadcast the packet.
Otherwise, the node then processes the routing metric field
of the NVREQ by incrementing the hop count by one.

The node then reads the MAC address of the forwarding
(previous hop) node’s interface from the NVREQ and adds it
to the neighbor table. This action naturally returns a neighbor
table index for the added node. This index is converted to a NIx
as follows: the number of bits for the index, Nb, is computed
by (1), and Nb is then prepended at the index as color. This
NIx is concatenated to the reverse NV field of the NVREQ.
The reverse NV is used to return a NVREP to the source
later. The node then replaces the corresponding field of the
NVREQ with the MAC address of its interface from which it
received the request and re-broadcasts the request through the
interface. This process is repeated until the NVREQ reaches
the destination node.

When the NVREQ arrives at a node that is not the request
target but does have a NV for the target, DNVR shows
different behavior from other on-demand routing protocols. In-
stead of immediately replying to the request, the intermediate
node forwards the request by unicasting to the target using
the stored NV. By doing so, the stored route information is
validated before it can be used, and the up-to-date network
topology can be probed. On the other hand, the immediate
reply relies on the stored route state that may be inaccurate,
and it can incur additional packet drops and delays. In the new
scheme, the unicast NVREQ message serves as a probe. If the
packet carrying the NVREQ successfully reaches the target, it
means that the probed path is still valid and the corresponding
NV can be used for routing. Otherwise, that path is no longer
valid, and thus other paths should be found. Moreover, with
this method, more accurate route metrics (other than hop
count) can be obtained since every reply comes from the target
through all the intermediate nodes on the path.

It appears at first glance that this different behavior of
validating the stored route information will take additional
time to acquire a route and consequently cause more packet
latency. Even though it might slightly increase the route
acquisition time, it does not contribute to the overall delay

S A D

NVREP <S,D,n>

downstream
path id = <S,D,n>

upstream
path id = <D,S,n>

Fig. 3. Forward and reverse NVs

performance of the protocol very much while resulting in
higher packet delivery performance. This is verified through
the simulation, which is presented later.

When the NVREQ message finally reaches the destination, a
NVREP message is constructed and returned to the originator
of the request. DNVR adopts a conservative route discovery
strategy. Whenever a destination node replies to a NVREQ, it
records how many times it replied to the same NVREQ, and
checks if the value does not exceed a reply threshold value. If
the node already replied the threshold value times, it simply
drops the request. By doing so, only a few paths are maintained
per destination in DNVR. For example, if a node has a reply
threshold value one, the node replies only to the NVREQ that
arrives first.

A NVREP message carries a source IP address; a destination
IP address; a NV reply number; routing metric information;
a NV; and the MAC address of a forwarding node’s inter-
face. Before constructing the NVREP, the destination node
constructs a NIx from the NVREQ and completes the reverse
NV by concatenating the NIx. The destination then puts in
the corresponding field of the NVREP the MAC address of
its interface from which it received the request. The routing
metric information is copied to the relevant field of the NVREP
from the NVREQ, and the NV reply number maintained at the
node is incremented and put in the corresponding field of the
NVREP. Finally, the reverse NV in the NVREQ is copied to
the NV routing header of the NVREP, which is used to return
the NVREP to the requester. This routing action using NV is
detailed in the later section.

While the NVREP is routed along the reverse path from
the destination to the source, the requested NV is constructed.
Each node on the path reads the MAC address field of the
NVREP and adds it to the neighbor table. The resulting NIx
is concatenated to the NV field of the NVREP. The NV
and the reverse NV (the NV in the routing header) are then
copied and stored at the NV-FIB of each intermediate node.
The NV represents the requested downstream path while the
reverse NV represents the upstream of the path. Each NV is
stored with a corresponding path id (Fig. 3). This process is
repeated until the NVREP arrives at the request originator. The
requester extracts the NV from the NVREP and stores it with
the corresponding information at the NV-FIB. The requester
then can transmit the pending packets to the destination using
that stored NV.

2) Loop Freedom: For loop detection, it is enough to
uniquely identify a NVREP. A NVREP can be identified by its
requester, the responder, and the NVREP number, i.e., a triple
<source IP address, destination IP address, NVREP number>,
which is a path id (Section III-A.3). Let us suppose that node

IEEE Communications Society / WCNC 2005 1998 0-7803-8966-2/05/$20.00 © 2005 IEEE

S L D
(1) NVREP <S,D,n>

(2)

(3)

Fig. 4. Loop detection in DNVR

S requested a NV for node D, and thus D replies with a
NVREP number n (Fig. 4). In this example, the NVREP can
be identified by < S,D, n >. Each intermediate node on the
path stores a relevant routing state with the path id when it
receives the NVREP as described in Section III-B.1.

If a node, say L, finds a state already existing with the
same path id while processing the NVREP, it assumes a loop
is detected and does not forward the NVREP toward the
requester S. The routing states that have been stored at other
nodes between L and D on the path are never brought up to
the active state and eventually removed. Thus, any route with
loops is neither found nor used in DNVR.

C. Routing using NIx-Vector

A NV is a compact representation of a path, where the NV
is a sequence of NIx values. As explained in Section III-A.1,
a NIx consists of a 4-bit color field and a neighbor index field
with variable length.

When a node receives a data packet, it first reads the 4-bit
color field from the NIx. Let us call the value of the color field
Nb. The node then reads Nb − 1 bits afterward. The hidden
bit 1 is then prepended to the extracted bits, and the resulting
bits constitute the neighbor index for the next-hop neighbor.
This neighbor index returns the MAC address of the next-hop
node’s interface from the neighbor table. After the node gets
the MAC address, it forwards the packet to the corresponding
neighbor by link layer unicast if the packet is not destined for
the node.

D. Mobility Management

The mobility management function of DNVR can be de-
composed into two parts: route maintenance and neighbor
management. The route maintenance deals with how to detect
a routing failure, to report the error to corresponding nodes,
and to find a new route. The neighbor management is con-
cerned with how to detect a neighbor and when to add or
invalidate a neighbor in the neighbor table at each node. The
detailed operation is discussed in the following sections.

1) Route Maintenance: DNVR assumes notification of
packet transmission failure from the link layer. In other
words, it utilizes the link layer notification function in case a
packet transmission fails. However, if this link layer feedback
function cannot be supported for some reason, DNVR can
optionally utilize overheard packets to detect the routing
failure.

When a node detects a broken link, it notifies correspond-
ing nodes of the failure by originating NV error (NVERR)

messages. This error message contains (i) the path id for the
path that has been invalidated due to the error and (ii) the
IP address of the node that detected the routing failure. The
error detecting node searches its NV-FIB for NVs containing
this dead link. Each found NV is invalidated, and the source
of that invalidated NV is notified with the NVERR message
of the failure. In order to return the NVERR, the path id
for the reverse path (upstream to the source) is constructed
by exchanging the source with the destination part of the
downstream path id, and then the error detecting node searches
its NV-FIB by the reversed path id to retrieve the NV for the
upstream path. That found NV is used to forward the NVERR
to the source.

When each intermediate node receives the NVERR, it first
checks if it has a stored NV with the path id specified in the
NVERR, and then invalidates the NV if it has one. Finally,
the source node becomes aware of the routing failure and
invalidates the corresponding NV as soon as it receives the
NVERR. The source node will invoke a new NV creation
process if there are more data packets for the destination.

2) Neighbor Management: In DNVR, routing neighbors at
each node are managed in a reactive fashion. It does not
actively detect neighbors nor monitor the current state of
existing neighbors. The neighbors are passively detected and
monitored.

A neighbor is detected and added to the neighbor table only
during a NV creation phase. Once a neighbor is detected and
added, that neighbor can be used as a next hop for routing.
The lifetime value is refreshed whenever the neighbor is used
for routing. A neighbor is invalidated when the lifetime for
the neighbor expires, or the node experiences a transmission
failure over the link to the neighbor. This action results from
three possibilities: (i) the neighbor is no longer used for
routing, or (ii) the neighbor has moved out of the node’s
transmission range, or (iii) the link to the neighbor is highly
congested. In either case, the node invalidates the neighbor. In
case of (ii) or (iii), the node will detect a failure to route a
packet and send a NVERR message toward the source node
for the packet.

IV. PERFORMANCE COMPARISON

This section compares the performance of DNVR and DSR.
The simulation models for the MAC and the routing protocols
are explained, and the performance results are presented and
discussed.

A. The Simulation Environment

All of our simulations were performed using the Georgia
Tech Network Simulator (GTNetS) [13]. GTNetS is a scalable
simulation tool designed specifically to support large–scale
simulations. The design of the simulator closely matches
the design of real network protocol stacks and hardware.
Moreover, the simulator is implemented completely in object-
oriented C++, which leads to easy extension for new or
modified behavior of existing simulation models. For more
information, refer to the GTNetS web page at [14].

IEEE Communications Society / WCNC 2005 1999 0-7803-8966-2/05/$20.00 © 2005 IEEE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Mobility factor

(a) PDF

P
ac

ke
t d

el
iv

er
y

fr
ac

tio
n

DSR
DNVR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Mobility factor

(b) Latency

E
nd

−
to

−
en

d
de

la
y

(m
se

c)

DSR
DNVR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mobility factor

(c) Overhead

N
or

m
al

iz
ed

 to
ta

l o
ve

rh
ea

d

DSR
DNVR

Fig. 5. 20 flows

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Mobility factor

(a) PDF

P
ac

ke
t d

el
iv

er
y

fr
ac

tio
n

DSR
DNVR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Mobility factor

(b) Latency

E
nd

−
to

−
en

d
de

la
y

(m
se

c)

DSR
DNVR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mobility factor

(c) Overhead

N
or

m
al

iz
ed

 to
ta

l o
ve

rh
ea

d

DSR
DNVR

Fig. 6. 40 flows

The distributed coordination function (DCF) of the IEEE
802.11 [15] standard was used as the MAC protocol in the
simulation. Each routing protocol model has a send buffer of
64 data packets with 30 sec timeout. After the timeout, the
packet is expunged from the send buffer. The send buffer holds
pending packets while waiting for route reply. In addition, each
wireless interface of a node has a queue known as interface
queue. The interface queue can hold maximum 50 packets.
This queue gives higher priority to routing protocol messages
than data packets.

We constructed 150 different scenarios for the simulations.
Each scenario is a set of mobility patterns, traffic patterns,
number of traffic flows, and pause time. The mobility model
used was random-waypoint [9]. To measure the performance
of the protocols, a 200-node model was used. 2 We used 20 and
40 traffic flows with a rate of 4 and 2 packets/sec respectively.
All traffic was created with a constant-bit-rate (CBR) data
source, and all packets were 512 bytes.

In the simulation, each mobile node is placed within a
rectangle of 3200 m × 900 m. Initially a mobile stays in a
randomly selected location during the pause time, then selects
a random target and moves to the destination with a uniformly
distributed speed between 0 and 20 m/sec. Once it reaches the
target, the mobile stays again during the pause time. Each

2DSR is designed for networks of up to about 200 nodes [10]. For a fair
comparison, we did not perform experiments for larger networks.

simulation executed for 500 simulated seconds.

B. Performance Results

To reflect various aspects of the routing protocols, following
performance metrics were used:

• Packet delivery fraction (PDF)
• Packet latency (end-to-end delay) 3

• Normalized total overhead (byte count)
The packet delivery fraction is the ratio of the number

of received data packets at the destinations to the number
of data packets generated by the CBR sources. This metric
captures the throughput of the network. The packet latency is
the average time taken to transfer a data packet from a CBR
source to its target. The route acquisition time is also reflected
in the packet latency.

In order to capture the routing overhead, the normalized
total overhead is introduced. The total overhead is the byte
count for the routing messages and the header of data packets.
The header includes the IP header and the routing header of
DSR and DNVR. Then, the total overhead is normalized to
the byte count of the received data packets. Hence, this metric
represents the efficiency of a routing protocol, and it is a
measure of how many bytes of routing overheads are needed
to receive a byte of data.

3We did not model the ARP effect in the simulation. It might cause
additional delays for protocols that need address resolution if modeled.

IEEE Communications Society / WCNC 2005 2000 0-7803-8966-2/05/$20.00 © 2005 IEEE

In the simulation results, each data point represents an
average of 30 runs with different mobility patterns and traffic
patterns. To insure a fair comparison however, an identical set
of mobility and traffic patterns was applied to both routing
protocols in each simulation. Each result is plotted over the
mobility factor. The mobility factor was introduced to repre-
sent the network mobility with respect to the pause time. It is
defined as (simulated time−pause time)/simulated time.
Thus, the value 0 means no mobility, and the value 1 the
highest mobility.

As shown in Fig. 5(a) and Fig. 6(a), both protocols show
above 90 % PDF with no mobility. As the network mobility
increases, however, the two protocols show much different
aspects. The PDF differential becomes even bigger as the
network mobility and the traffic volume increase, which shows
that DNVR scales better than DSR with respect to mobility and
traffic volume. With the highest mobility, the PDF of DNVR
is 37 % higher than that of DSR for 20 flows, and 46 %
higher for 40 flows. On the average, DNVR demonstrated 23
% higher PDF than DSR.

As can be seen in Fig. 5(b) and Fig. 6(b), DNVR shows
smaller packet latency for every mobility factor. The delay
performance gap becomes bigger as mobility increases. DNVR
demonstrated up to 23 % smaller delay than DSR. On the
average, DNVR showed about 18 % smaller delay than DSR.
It also turned out that DNVR consumed about 35 % less time
to acquire routes than DSR even if the detailed result is omitted
due to lack of space. But the portion of each protocol’s route
acquisition time out of the total delay was similar, which was
around 30 %.

Fig. 5(c) and Fig. 6(c) reveal that the efficiency of both
protocols is very similar. As can be seen in Fig. 5(c), the
total overhead of DNVR is somewhat lower than that of DSR
for 20 flows without regard to mobility. Fig. 6(c) shows that,
for 40 flows, DNVR produces a little bit lower overhead
than DSR with mid mobility, and slightly higher overhead
with high mobility. In the presence of high mobility and a
large volume of traffic, it is possible that the network seems
partitioned temporarily to the routing protocol when it fails to
find a route to a specific destination. In this case, on-demand
routing protocols attempt route request retries repeatedly. DSR
experiences these route discovery failures less frequently than
DNVR due to the high hit rate of route caches even though
these replies from route caches contain stale routes. On the
other hand, DNVR issues and consequently propagates more
route request messages in this case. This is the reason that
DNVR shows a little bit higher total overhead in the case.
On the average, DNVR showed 10 % lower overhead than
DSR for 20 flows, and 4 % higher for 40 flows. Overall,
both protocols demonstrated very similar protocol efficiency
without regard to mobility and traffic volume.

V. CONCLUSIONS

We presented a new routing method for mobile ad hoc
networks. DNVR behaves in a reactive fashion to acquire loop-
free routes and maintain them as do other reactive routing

protocols. However, it is differentiated from other existing
on-demand routing protocols in that (i) the stored route
information is validated before being used, and the up-to-
date network topology is probed in an efficient way during
NV creation, (ii) the routing states are managed in a timely
fashion, (iii) a conservative route discovery strategy is adopted
by suppressing route requests, and thus only a few routes are
maintained per destination, (iv) address resolution is obviated
by using a NIx and MAC addresses for routing purposes, and
(v) a NV routing header is a compact form of a source route,
which significantly reduces the packet overhead due to source
routing. By virtue of these features, DNVR provides more
stable and scalable performance with respect to network size,
mobility, and traffic volume.

We showed via simulation that our method scales well to a
large network under various scenarios especially with a high
degree of mobility and a large volume of traffic. We compared
DNVR to DSR through extensive simulations and showed that
DNVR is as efficient as DSR in terms of normalized total
overhead while achieving higher packet delivery and smaller
packet latency in most cases. We believe that DNVR can be
another design choice among the existing on-demand routing
protocols for mobile ad hoc networks in that it is designed to
provide scalability, high bandwidth efficiency as well as low
overhead.

REFERENCES

[1] S. Corson and J. Macker, “Mobile ad hoc networking (MANET): routing
protocol performance issues and evaluation considerations,” RFC 2501,
IETF, January 1999.

[2] H.-Y. Hsieh and R. Sivakumar, “On using the ad-hoc network model in
cellular packet data networks,” ACM MobiHoc 2002, June 2002.

[3] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc wireless
networks,” Mobile Computing, edited by T. Imielinski and H. Korth, Ch.
5, pp. 153-181, Kluwer Academic Publishers, 1996.

[4] C. Perkins and E. Royer, “Ad hoc on-demand distance vector routing,”
IEEE WMCSA’99, February 1999.

[5] Y.-C. Hu and D. Johnson, “Implicit source routes for on-demand ad hoc
network routing,” ACM MobiHoc 2001, October 2001.

[6] V. Park and S. Corson, “A highly adaptive distributed routing algorithm
for mobile wireless networks,” IEEE INFOCOM’97, April 1997.

[7] G. Riley, M. Ammar, and E. Zegura, “Efficient routing using NIx-
Vectors,” IEEE HPSR 2001, May 2001.

[8] D. Plummer, “An ethernet address resolution protocol: or converting
network protocol addresses to 48.bit ethernet address for transmission
on ethernet hardware,” RFC 826, IETF, November 1982.

[9] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, “A per-
formance comparison of multi-hop wireless ad hoc network routing
protocols,” ACM MobiCom’98, October 1998.

[10] D. Johnson, D. Maltz, and Y.-C. Hu, “The dynamic source routing
protocol for mobile ad hoc networks (DSR),” Internet Draft, IETF,
February 2003, work in progress.

[11] S. Das, C. Perkins, and E. Royer, “Performance comparison of two on-
demand routing protocols for ad hoc networks,” IEEE INFOCOM 2000,
March 2000.

[12] C. Carter, S. Yi, and R. Kravets, “ARP considered harmful: manycast
transactions in ad hoc networks,” IEEE WCNC 2003, March 2003.

[13] G. Riley, “The Georgia Tech Network Simulator,” ACM SIGCOMM
MoMeTools’03, August 2003.

[14] http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS
[15] IEEE Computer Society, “802.11: Wireless LAN medium access control

(MAC) and physical layer (PHY) specifications,” June 1997.
[16] IEEE Standards Committee 754, “IEEE standard for binary floating-

point arithmetic,” ANSI/IEEE standard 754-1985, ANSI/IEEE, New
York, 1985, reprinted in SIGPLAN notices, 22(2):9-25, 1987.

IEEE Communications Society / WCNC 2005 2001 0-7803-8966-2/05/$20.00 © 2005 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004
	nd: nd
	header: Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE

