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Abstract— Wireless ad hoc networks with Bernoulli nodes provide a
unified model of various important problems including fault-tolerance,
randomized construction of virtual backbone, randomized broadcast
routing, and randomized wake/sleep management. We assume that the
wireless ad hoc network consists of n nodes which are distributed
independently and uniformly in a unit-area disk and are active (or
available) independently with some constant probability p. Let ρn denote
the random variable which is the smallest transmission range at which
the active nodes form a connected network, and ρ′n denote the random
variable which is the smallest transmission range at which the active
nodes form a connected network and each inactive node is adjacent to at
least one active node. ρn is referred to as the critical transmission range
for connectivity of active nodes, and ρ′n is referred to as the critical
transmission range for connectivity of all nodes. In this paper, we derive
the precise asymptotic distributions of ρn and ρ′n.

I. INTRODUCTION

A wireless ad hoc network is a collection of radio devices
(transceivers) located in a geographic region. Each node is equipped
with an omnidirectional antenna and has limited transmission power.
A communication session is established either through a single-hop
radio transmission if the communication parties are close enough,
or through relaying by intermediate devices otherwise. Because of
the no need for a fixed infrastructure, wireless ad hoc networks
can be flexibly deployed at low cost for varying missions such as
decision making in the battlefield, emergency disaster relief and
environmental monitoring. In most applications, the ad hoc wireless
devices are deployed in a large volume. The sheer large number of
devices deployed coupled with the potential harsh environment often
hinders or completely eliminates the possibility of strategic device
placement, and consequently, random deployment is often the only
viable option. In some other applications, the ad hoc wireless devices
may be continuously in motion or be dynamically switched to on or
off. For all these applications, it is natural to represent the ad hoc
devices by a finite random point process over the (finite) deployment
region. Correspondingly, the wireless ad hoc network is represented
by a random graph.

The classic random graph model due to Erdős and Rényi (1960)
[4], in which each pair of vertices are joined by an edge indepen-
dently and uniformly at some probability, is not suited to accurately
represent networks of short-range radio nodes due to the presence
of local correlation among radio links. This motivated Gilbert (1961)
[5] to propose an alternative random graph model for radio networks.
Gilbert’s model assumes that all devices, represented by an infinite
random point process over the entire plane, have the same maximum
transmission radius r and two devices are joined by an edge if and
only if their distance is at most r. For the modelling of wireless ad hoc
networks which consist of finite radio nodes in a bounded geographic
region, a bounded (or finite) variant of the standard Gilbert’s model

has been used by Gupta and Kumar (1998) [6] and others. In this
variant, the random point precess representing the ad hoc devices
is typically assumed to be a uniform n-point process Xn over a
unit-area disk or square by proper scaling, and the wireless ad hoc
network, denoted by Gr (Xn), is exactly the r-disk graph over Xn.
To distinguish the random graph Gr (Xn) from the classic random
graph due to Erdős and Rényi, it is referred to as a random geometric
graph.

In this paper, we consider an extension to the random geometric
graph Gr (Xn) by introducing an additional assumption that all nodes
are active (or available) independently with probability p for some
constant 0 < p ≤ 1. These nodes are referred to as Bernoulli nodes
since the availability of these nodes follows the Bernoulli model with
parameter p. Two natural random geometric graphs can be defined
over wireless ad hoc networks of Bernoulli nodes. The first one,
denoted by Hr (Xn), is the r-disk graph over the active nodes. In
other words, Hr (Xn) is the subgraph of Gr (Xn) induced by the
active nodes. The second one, denoted by H′

r (Xn), is the subgraph
of Gr (Xn) which consists of all edges of Gr (Xn) incident to at
least one active node. In other words, H′

r (Xn) can be obtained from
Gr (Xn) by removing all edges whose endpoints are both inactive
nodes. Let ρn denote the random variable which is the smallest r
such that the graph Hr (Xn) is connected, and ρ′

n denote the random
variable which is the smallest r such that the graph H′

r (Xn) is
connected. ρn is referred to as the critical transmission ranges for
connectivity of active nodes, and ρ′

n is referred to as the critical
transmission ranges for connectivity of all nodes. In this paper, we
shall derive the precise asymptotic distributions of ρn and ρ′

n when
the deployment region is a unit-area disk. The same asymptotic
distributions hold when the deployment region is a unit-area square,
and can be obtained in the similar but slightly simpler approach.

The Bernoulli node model can be used to reinterpret various
network design problems arising from wireless ad hoc networks, and
the probability distributions derived in this paper offered a unified
and complete solution to these problems. Below we list some which
have received much interests recently:

• Fault-tolerance: In a practical wireless ad hoc network, due to
either internal breakdown or harsh environment, a node may
fail with some constant probability p. The failure nodes will not
take part in routing/relaying and thus may affect the connectivity
of the network formed by the “good” nodes. By modelling all
nodes with the Bernoulli model with parameter p, the network
connectivity can tolerate such random failures if and only if the
graph Hr (Xn) is connected.

• Randomized construction of virtual backbone: A virtual back-
bone is a connected dominating set of the network topology. A
node is said to be a dominator if it belongs to the virtual back-
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bone and a dominatee otherwise. In a randomized construction
of virtual backbone, each node volunteers to be a dominator
independently and uniformly with constant probability p. By
modelling all nodes with the Bernoulli model with parameter p,
the dominators form a virtual backbone if and only if the graph
H′

r (Xn) is connected.
• Randomized broadcast routing: In a randomized broadcast

routing, each node volunteers to relay a broadcast message
independently and uniformly with constant probability p. By
modelling all nodes with the Bernoulli model with parameter
p, the broadcast message can reach all nodes if and only if the
graph H′

r (Xn) is connected.
• Randomized wake/sleep management: For the purpose of energy

conservation, a randomized awake/sleep management lets each
node wake independently and uniformly with some constant
probability p. To maintain the network connectivity, all awake
nodes should form a connected graph and every asleep node
must be adjacent to some awake node. By modelling all nodes
with the Bernoulli model with parameter p, the network con-
nectivity is maintained if and only if the graph H′

r (Xn) is
connected.

In what follows, ‖x‖ is the Euclidean norm of a point x ∈ R
2. |A|

and diam (A) are shorthand for 2-dimensional Lebesgue measure
(or area) and diameter respectively of a measurable set A ⊂ R

2.
All integrals considered will be Lebesgue integrals. The topological
boundary of a set A ⊂ R

2 is denoted by ∂A. The disk of radius
r centered at x is denoted by D (x, r). The special unit-area disk
centered at the origin is denoted by Ω. For any set S and positive
integer k, the k-fold Cartesian product of S is denoted by Sk. An
event is said to be asymptotic almost sure (abbreviated by a.a.s.)
if it occurs with a probability converges to one as n → ∞. An
event is said to be asymptotic almost rare (abbreviated by a.a.r.) if it
occurs with a probability converges to zero as n → ∞. The symbols
O, o,∼ always refer to the limit n → ∞. To avoid trivialities, we
tacitly assume n to be sufficiently large if necessary. For simplicity
of notation, the dependence of sets and random variables on n will
be frequently suppressed.

The remaining of this paper is organized as follows. In section
II, we describe some related works on random geometric graphs. In
section III, we present several useful geometric results and integrals.
In Section IV, we derive the asymptotic distributions of ρn and ρ′

n.
Finally we summarize this paper in Section V.

II. RELATED WORKS

The connectivity of the random geometric graph Gr (Xn) has been
studied by Dette and Henze (1989) [3] and Penrose (1997) [10]. For

r =
√

ln n+ξ
πn

where ξ is a constant, Dette and Henze (1989) [3]
showed that the graph Gr (Xn) has no isolated nodes with probability
exp

(
−e−ξ

)
asymptotically. Eight years later, Penrose (1997) [10]

established that if a random geometric graph Gr (Xn) has no isolated
nodes, then it is almost surely connected. These results are the exact
analogue of the counterpart in classic random graphs. However, as
pointed out by Bollobás (2001) [1], we should not be misled by the
remembrance: the proof for the random geometric graph is much
harder.

Other earlier simulation studies and/or loose analytical results on
asymptotic critical transmission radius for connectivity of Gr (Xn)
can be found in [2], [8], [9], [12], [13].

Recently, Yi et al. (2003) [14] studied the probability distributions
of the number of isolated nodes in Hr (Xn) and H′

r (Xn) respec-
tively.

Theorem 1: Let r =
√

ln n+ξ
πpn

. Then the total number of isolated

nodes in Hr (Xn) is asymptotically Poisson with mean pe−ξ, and
the total number of isolated nodes in H′

r (Xn) is also asymptotically
Poisson with mean e−ξ.

Let σn denote the random variable which is the smallest r such that
the graph Hr (Xn) has no isolated nodes, and σ′

n denote the random
variable which is the smallest r such that the graph H′

r (Xn) has no
isolated nodes. The following theorem on the asymptotic distributions
of σn and σ′

n is an immediate consequence of Theorem 1.

Theorem 2: Let rn (ξ) =
√

ln n+ξ
πpn

for some constant ξ. Then

Pr (σn ≤ rn (ξ)) ∼ exp
(
−pe−ξ

)
,

Pr
(
σ′

n ≤ rn (ξ)
) ∼ exp

(
−e−ξ

)
.

III. GEOMETRY OF DISKS

The results in this section are purely geometric, with no proba-
bilistic content. Let r be the transmission radius of the nodes. For
any finite set of nodes {x1, · · · , xk} in Ω, we use Gr (x1, · · · , xk)
to denote the graph over {x1, · · · , xk} in which there is an edge
between two nodes if and only if their Euclidean distance is at most
r. For any positive integers k and m with 1 ≤ m ≤ k, let Ckm denote
the set of (x1, · · · , xk) ∈ Ωk satisfying that G2r (x1, · · · , xk) has
exactly m connected components.

We partition the unit-area disk Ω into three regions, Ω (0), Ω (1)
and Ω (2) as shown in Fig. 1: Ω (0) is the disk of radius 1/

√
π − r

centered at the origin; Ω (1) is the annulus of radii 1/
√

π − r and√
1/π − r2 centered at the origin; and Ω (2) is the annulus of radii√
1/π − r2 and 1/

√
π centered at the origin. Then,

|Ω (0)| =
(
1 −√

πr
)2

,

|Ω (1)| = 2πr
(
1/

√
π − r

)
,

|Ω (2)| = πr2.
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Fig. 1. The partition of the unit-area disk Ω.

For any set S ⊆ Ω and r > 0, the r-neighborhood of S is the
set
⋃

x∈S D (x, r) ∩ Ω. We use νr (S) to denote the area of the r-
neighborhood of S, and sometimes by slightly abusing the notation,
to denote the r-neighborhood of S itself. Obviously, for any x ∈ Ω,
νr (x) ≥ πr2/3. If x ∈ Ω (0), νr (x) = πr2. If x ∈ Ω (1), then it
was proved in [14] that

νr (x) ≥ πr2

2
+

(
1√
π

− ‖x‖
)

r.

IEEE Communications Society / WCNC 2005 2220 0-7803-8966-2/05/$20.00 © 2005 IEEE

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 07:05:10 UTC from IEEE Xplore.  Restrictions apply. 



The next lemma proved in [14] gives a lower bound on the area of the
r-neighborhood of more than one nodes, and implies the following
corollary whose proof was also given in [14].

Lemma 3: Assume that

r ≤ 1/
√

π

12/π + π/12
≈ 0.245/

√
π.

Let x1, · · · , xk be a sequence of k ≥ 2 nodes in Ω such that x1

has the largest norm, and ‖xi − xj‖ ≤ 2r if and only if |i − j| ≤ 1.
Then

νr (x1, · · · , xk) ≥ νr (x1) +
π

12
r

k−1∑
i=1

‖xi+1 − xi‖ .

Corollary 4: Assume that

r ≤ 1/
√

π

12/π + π/12
≈ 0.245/

√
π.

Then for any (x1, · · · , xk) ∈ Ck1 with x1 being the one of the
largest norm among x1, · · · , xk,

νr (x1, · · · , xk) ≥ νr (x1) +
π

12
r max

2≤i≤k
‖xi − x1‖ .

The following two lemmas proved in [14] will also be used in this
paper.

Lemma 5: For any z ∈
[
0, 1

2

]
, e−z−z2 ≤ 1 − z ≤ e−z.

Lemma 6: Let r =
√

ln n+ξ
πpn

for some constant ξ. Then for any
fixed integer k ≥ 1,

nk

∫
Ωk

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi ∼ e−kξ,

nk

∫
Ωk

(1 − pνr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi ∼ e−kξ.

In the remaining of this section, we introduce two new technical
lemmas that will be used later in this paper. Due to limitation on
paper length, proofs will not be given here.

Lemma 7: Assume that r ≤ 0.05/
√

π. Then for any A ⊂ Ω with
diameter � ≤ 0.425/

√
π,

νr (A) ≥ νr (x) + |A| + 1

6
min

{
πr2, �r

}
,

where x is a point in A with the largest norm.

For any set A ⊆ Ω, the closure of each connected component of the
set Ω\A referred to as a hole component of A. An illustration of the
hole components is given in Fig. 2. The next lemma gives a property
of a closed connected set and its complementary components.
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Fig. 2. The hole components (indicated by the white regions) of a set A
(indicated by the shaded region).

Lemma 8: Let A ⊆ Ω be a closed connected set, and � =
min (diam (A) , 0.5/

√
π). If there is a hole component of A whose

diameter is at least �, then the boundary of A contains a curve which
is inside the interior of Ω and whose diameter is at least �.

IV. CRITICAL TRANSMISSION RANGES FOR CONNECTIVITY

The main result of this section is the following theorem.

Theorem 9: The two events ρn = σn and ρ′
n = σ′

n are both a.a.s..

Theorem 9 implies that ρn has the same asymptotic distribution
as σn, and ρ′

n has the same asymptotic distribution as σ′
n . Thus,

together with Theorem 2, the precise asymptotic distributions of ρn

and ρ′
n are derived.

To prove Theorem 9, we introduce three events. Throughout of this

section, we let rn (ξ) =
√

ln n+ξ
πpn

. For any two real constants α < β,
let Kn (α, β) be the event that some active node of Xn is isolated in
Hrn(α) (Xn) but has at least two (active) neighbors in Hrn(β) (Xn).
In other words, Kn (α, β) is the event that for some active node X
of Xn, the disk D (X, rn (α)) contains no other active nodes of Xn

except X and the annulus D (X, rn (β)) \ D (X, rn (α)) contains
at least two active nodes of Xn. For any positive constant µ and
any real constant ξ, let En (µ; ξ) be the event that Hrn(ξ) (Xn) has
a connected component of at least two nodes whose diameter is at
most µrn (ξ), and let Fn (µ; ξ) be the event that Hrn(ξ) (Xn) has at
least two components whose diameters are both more than µrn (ξ).
The proof of Theorem 9 shall be based on the following three lemmas
and is similar to but more involved than that in [11].

Lemma 10: For any two real constants α < β, we have

lim
n→∞

Pr (Kn (α, β)) ≤ p (β − α)2 e−α.

Lemma 11: For any µ > 0 and any ξ, En (µ; ξ) is a.a.r..

Lemma 12: For µ = 32
√

2 + 0.5 ≈ 45.755 and any ξ, Fn (µ; ξ)
is a.a.r..

The proofs of these three lemmas are quite lengthy and involves
intensive probabilistic arguments and calculations. In order to gain a
big picture of their relevance to Theorem 9, we postpone their proofs
and shall first give the proof of Theorem 9 using these three lemmas.

Proof: [Proof of Theorem 9]We first show that the event ρn =
σn is a.a.s.. It is obvious that σn ≤ ρn. We prove that σn < ρn is
an a.a.r. event using a “squeezing” argument as in [11]. Let ε > 0.
Choose a sequence of strictly increasing numbers ξ1, ξ2, · · · , ξk such
that

e−pe−ξ1
< ε,

e−pe−ξk
> 1 − ε,

pe−ξ1

k−1∑
i=1

(ξi+1 − ξi)
2 < ε.

Let µ = 32
√

2 + 0.5 ≈ 45.755. We claim that the event σn < ρn

implies the event

(σn ≤ rn (ξ1)) ∪ (σn > rn (ξk)) ∪
(

k⋃
i=1

En (µ; ξi)

)

∪
(

k⋃
i=1

Fn (µ; ξi)

)
∪
(

k−1⋃
i=1

Kn (ξi, ξi+1)

)
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Suppose that the event σn < ρn occurs. The claim holds if either
σn ≤ rn (ξ1) or σn > rn (ξk). So we assume that rn (ξ1) < σn ≤
rn (ξk). We consider two cases.

Case 1: σn ≤ rn (ξi) < ρn for some 1 < i ≤ k. Then the
graph Hrn(ξi) (Xn) contains no isolated nodes but is disconnected.
So Hrn(ξ) (Xn) contains at least two connected components, none
of which is a singleton. According to whether the smallest of the
diameters of these connected components is less than, or no less than,
µrn (ξi), this implies that En (µ; ξi) or Fn (µ; ξi) occurs. Thus, our
claim holds in this case.

Case 2: rn (ξi) < σn < ρn ≤ rn (ξi+1) for some 1 ≤ i < k. Let
XY be the (unique) longest edge of the minimum spanning tree of
the active nodes of Xn, i.e., ‖XY ‖ = ρn. Then both X and Y have
at least two neighbors in Hrn(ξi+1) (Xn). Indeed, X has one active
neighbor at a distance of at most σn, and another neighbor Y at the
distance ρn ≤ rn (ξi+1). The same argument holds for Y. If either
X or Y is isolated in Hrn(ξi) (Xn), then the event Kn (ξi, ξi+1)
occurs and thus our claim holds. So we assume that neither X
nor Y is isolated in Hrn(ξi) (Xn). Since ρn > rn (ξi), X and Y
must belong to different connected components of Hrn(ξi) (Xn) and
neither of these two components is a singleton. According to whether
the diameters of these two connected components are both more than
µrn (ξi) or not, this implies that Fn (µ; ξi) or En (µ; ξi) occurs. So
our claim also holds in this case.

By Lemma 11 and Lemma 12, En (µ; ξi) and Fn (µ; ξi) are a.a.r.
events for each 1 < i ≤ k. By Theorem 2,

limPr (σn ≤ rn (ξ1)) = e−pe−ξ1
< ε,

limPr (σn > rn (ξk)) = 1 − e−pe−ξk
< ε.

By Lemma 10,

lim Pr

(
k−1⋃
i=1

Kn (ξi, ξi+1)

)
≤

k−1∑
i=1

lim Pr (Kn (ξi, ξi+1))

≤
k−1∑
i=1

pe−ξi(ξi+1 − ξi)
2 ≤ pe−ξ1

k−1∑
i=1

(ξi+1 − ξi)
2 < ε.

Therefore,

lim Pr (σn < ρn) < 3ε.

Since ε > 0 is arbitrary, the event σn < ρn is a.a.r.. Thus ρn = σn

is a.a.s..

Next, we show that the event ρ′
n = σ′

n is a.a.s.. Note that ρ′
n =

max {ρn, σ′
n}. Since the event ρn = σn is a.a.s., the event ρ′

n =
max {σn, σ′

n} is also a.a.s. As σn ≤ σ′
n, max {σn, σ′

n} = σ′
n.

Therefore, the event ρ′
n = σ′

n is a.a.s..

The remaining of this section is devoted to the proofs of Lemma
10, Lemma 11, and Lemma 12. Among them, the proof of Lemma
10 is the simplest and hence is given first.

Proof: [Proof of Lemma 10]For any 3 ≤ i ≤ n, let Ki
n (α, β)

be the event that {X1, · · · , Xi} is the set of active nodes, the
disk D (X1, rn (α)) contains no nodes in {X2, · · · , Xi} and the
annulus D (X1, rn (β))\D (X1, rn (α)) contains at least two nodes
in {X2, · · · , Xi}. By symmetry,

Pr (Kn (α, β)) ≤
n∑

i=3

(n

i

)
i Pr

(
Ki

n (α, β)
)

.

For any x ∈ Ω,

Pr
(
Ki

n (α, β) | X1 = x
)

= piqn−i
i−1∑
j=2

(i − 1

j

) (
νrn(β) (x) − νrn(α) (x)

)j
· (1 − νrn(β) (x)

)i−1−j

=
(
νrn(β) (x) − νrn(α) (x)

)2
piqn−i

i−1∑
j=2

(i − 1) (i − 2)

j (j − 1)

(i − 3

j − 2

)
· (νrn(β) (x) − νrn(α) (x)

)j−2 (
1 − νrn(β) (x)

)i−1−j

≤
(
πrn (β)2 − πrn (α)2

)2
piqn−i (i − 1) (i − 2)

i−1∑
j=2

(i − 3

j − 2

)
· (νrn(β) (x) − νrn(α) (x)

)j−2 (
1 − νrn(β) (x)

)i−1−j

=

(
β − α

n

)2

pi−2qn−i (i − 1) (i − 2)
(
1 − νrn(α) (x)

)i−3
.

Hence,

Pr
(
Ki

n (α, β)
)

=

∫
Ω

Pr
(
Ki

n (α, β) | X1 = x
)
dx

≤
(

β − α

n

)2

pi−2qn−i (i − 1) (i − 2)

·
∫
Ω

(
1 − νrn(α) (x)

)i−3
dx.

Therefore,

Pr (Kn (α, β)) ≤
n∑

i=3

(n

i

)
i Pr

(
Ki

n (α, β)
)

≤
(

β − α

n

)2 n∑
i=3

(n

i

)
i (i − 1) (i − 2) pi−2qn−i

·
∫
Ω

(
1 − νrn(α) (x)

)i−3
dx

= p

(
β − α

n

)2

n (n − 1) (n − 2)

∫
Ω

(
1 − pνrn(α) (x)

)n
dx

≤ p (β − α)2
(

n

∫
Ω

(
1 − pνrn(α) (x)

)n
dx

)
∼ p (β − α)2 e−α,

where the last asymptotic equality follows from Lemma 6.

The proofs of Lemma 11 and Lemma 12 shall use a tessellation
technique. Given a positive number a, a (square) a-tessellation divides
the plane into squares of side a with the origin being a corner point of
a square. Each square in the tessellation, also referred to as a cell, is
said to be full if it is entirely contained in Ω. For any set τ of squares,
let Aτ be the union of the squares in τ . For any set τ of squares and
any point x, let Aτx be intersection of Aτ and the disk D (o, ‖x‖).
For any set τ of squares, let Gτ be the graph over τ in which there
is an edge between two squares if and only if the two squares share
a side or a corner point. A set τ of squares is said to be *-connected
if the graph Gτ is connected. Let T ∗

a,i denote the collection of *-
connected sets which consists of i full squares in the a-tessellation.
By the argument of Peierls [7], there exists two positive constant c
and γ such that the cardinality of T ∗

a,i is upper-bounded by ceγi/a2.

Proof: [Proof of Lemma 12]Fix µ = 32
√

2 + 0.5 ≈ 45.755
and a constant ξ. We also write rn (ξ) simply by r. Consider an
(r/8)-tessellation of the plane. Let F ′ denote the event that no active
nodes fall in some set of at least k = 256 *-connected full cells.
We claim that Fn (µ; ξ) ⊆ F ′. Suppose Fn (µ; ξ) occurs. Let U1

and U2 are connected components of Hr (Xn) whose diameters are
more than µr. Let S1 and S2 be the r/2-neighborhoods of U1 and
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U2 respectively. Then they are disjoint and both have diameter more
than µr. By symmetry, we assume that diam (S1) ≤ diam (S2).
Then

diam (S2) ≥ diam (S1) ≥ min
{
diam (S1) , 0.5/

√
π
}

.

By Lemma 8, the boundary of S1 contains a piece C which is con-
tained in the interior of Ω (except the endpoints) and whose two end-
points are separated by a distance at least min

{
diam (S1) , 1

2
√

π

}
.

Note that for sufficiently large n, µr < 1
2
√

π
and thus the distance

between the two endpoints of C is greater than µr. Since C is
contained in the interior of Ω, each point of C is at a distance
of exactly r/2 from U1. Now move each point of C towards the
origin by a distance of r/4 and let C′ be the resulting piece. Then
the distance between C′ and U1 is between r/4 and 3r/4, and the
distance between C′ and ∂Ω is at least r/4. The distance between
the two endpoints of C′ is greater than (µ − 0.5) r. Consider any
cell which has non-empty intersection with C′. It must be entirely
contained in Ω. It is also entirely contained in the r-neighborhood of
U1 but has no intersection with U1. Thus, it contains no active node.
Let τ denote the set of these cells which have non-empty intersection
with C′. Then, these cells are *-connected. In addition, the cardinality
of τ is at least

(µ − 0.5) r√
2r/8

=
8 (µ − 0.5)√

2
= 256.

Thus, the event F ′
n occurs, and hence our claim holds. Consequently,

it suffices to show that F ′
n is an a.a.r. event.

For any τ ∈ T ∗
r/8,i, since |Aτ | = i(r/8)2 we have

Pr (no active node falls in Aτ ) =
n∑

j=0

(n

j

)
pjqn−j(1 − i (r/8)2)j

= (1 − pi (r/8)2)n.

Thus,

Pr
(
F ′

n

) ≤∑
i≥k

∑
τ∈T ∗

r/8,i

Pr (no active node falls in Aτ )

≤
∑
i≥k

cr−2eγi(1 − pi (r/8)2)n ≤ cr−2
∑
i≥k

e−i(np(r/8)2−γ).

Note that if n is big enough,

np (r/8)2 − γ ≥ π

4
np (r/8)2 .

Thus, for sufficiently large n,

Pr
(
F ′

n

) ≤ cr−2
∑
i≥k

e−
π
4 npi(r/8)2

= cr−2 e−
π
4 npk(r/8)2

1 − e−
π
4 np(r/8)2

≤ cr−2 e−nπpr2

1 − e−
π
4 np(r/8)2

= cπpe−ξ 1

(log n + ξ)
(
1 − e−

π
4 np(r/8)2

) = o (1) .

Hence F ′
n is an a.a.r. event and the lemma follows.

Finally, we give the proof of Lemma 11.

Proof: [Proof of Lemma 11]Fix a constant ξ, and we write
rn (ξ) simply by r. Let µ0 = 1/24. We first prove that En (µ0; ξ)
is an a.a.r. event. For any 2 ≤ j ≤ n, let Sj denote the set of
(x1, · · · , xj) ∈ Ωj such that (1) the diameter of the set {x1, · · · , xj}
is at most µ0r, (2) x1 is the one with the largest norm among
{x1, · · · , xj}, (3) x2 is the one with the largest distance from
x1 among {x2, · · · , xj}, and (4) the r-graph over x1, · · · , xj is
connected. For any 2 ≤ j ≤ i ≤ n, let E′

ij be the event
{X1, · · · , Xi} is the set of active nodes of Xn, (X1, · · · , Xj) ∈

Sj , and {Xj+1, · · · , Xi} fall outside of the r-neighborhood of
{X1, · · · , Xj}. By symmetry,

Pr (En (µ0; ξ)) ≤
n∑

i=2

i∑
j=2

(n

i

)(i

j

)
j (j − 1) Pr

(
E′

ij

)
= n (n − 1)

n∑
i=2

(n − 2

i − 2

) i∑
j=2

(i − 2

j − 2

)
Pr
(
E′

ij

)
.

By Corollary 4 for any (x1, · · · , xj) ∈ Sj ,

Pr
(
E′

ij | (X1, · · · , Xj) = (x1, · · · , xj)
)

= piqn−i (1 − νr (x1, · · · , xj))
i−j

≤ piqn−i
(
1 −

(
νr (x1) +

π

12
r ‖x2 − x1‖

))i−j
,

Hence,

Pr
(
E′

ij

)
=

∫
Sj

Pr
(
E′

ij | (X1, · · · , Xj) = (x1, · · · , xj)
)

dx1 · · · dxj

≤ piqn−i

∫
Sj

(
1 −

(
νr (x1) +

π

12
r ‖x2 − x1‖

))i−j
dx1 · · · dxj

≤ piqn−i

∫
Ω

dx1

·
∫

B(x1,µ0r)

(
1 −

(
νr (x1) +

π

12
r ‖x2 − x1‖

))i−j

·
(
π ‖x2 − x1‖2

)j−2
dx2

= 2πpiqn−i

∫
Ω

dx

·
∫ µ0r

0

(
1 −

(
νr (x) +

π

12
rρ
))i−j (

πρ2
)j−2

ρdρ

Therefore,

Pr (En (µ0; ξ))

≤ n (n − 1)

n∑
i=2

(n − 2

i − 2

) i∑
j=2

(i − 2

j − 2

)
2πpiqn−i

∫
Ω

dx

·
∫ µ0r

0

(
1 −

(
νr (x) +

π

12
rρ
))i−j (

πρ2
)j−2

ρdρ

= 2πp2n (n − 1)

∫
Ω

dx

·
∫ µ0r

0

(
1 − pνr (x) − p

( π

12
rρ − πρ2

))n−2
ρdρ

≤ 2πp2n (n − 1)

∫
Ω

dx

∫ µ0r

0

(
1 − pνr (x) − π

24
prρ

)n−2
ρdρ

∼ 2πp2n (n − 1)

∫
Ω

dx

∫ µ0r

0

(
1 − pνr (x) − π

24
prρ

)n
ρdρ

≤ 2πp2n (n − 1)

∫
Ω

dx

∫ µ0r

0
e−npνr(x)− π

24 prρρdρ

≤ 2πp2

(
n

∫
Ω

e−npνr(x)dx

) (
n

∫ µ0r

0
e−

π
24 prρρdρ

)
= o (1) ,

where the last equality follows from Lemma 6, and the fact that

n

∫ µ0r

0
e−

π
24 prρρdρ = o (1) .

Thus, Pr (En (µ0; ξ)) = o (1).
Now we fix a constant µ > µ0 and show that the event En (µ; ξ)\

En (µ0; ξ) is also a.a.r.. We introduce another event Ẽ as follows.
Let ε = 0.75

2+576π
and consider an εr-tessellation of the plane. For

any x ∈ Ω, let Cr (x) denote the collections of subsets τ of squares
in the εr-tessellation satisfying that x ∈ Aτ ⊆ D (x, (µ + ε)r) and
diam(Aτx) ≥ µ0r. Then Ẽ is defined to be the event that there exists
an active node X such that all active nodes fall outside of the region
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ν(1−2ε)r (AτX) \ AτX for some τ ∈ Cr (X) where ν(1−2ε)r (AτX)
represents the (1 − 2ε)r-neighborhood of AτX by a slight abuse of
the notation. We claim that

En (µ; ξ) \ En (µ0; ξ) ⊆ Ẽ.

Suppose En (µ; ξ) \ En (µ0; ξ) occurs. Let U be a connected
component of Hr (Xn) whose diameter is more than µ0r but at most
µr. Let τ be the set of cells containing the points of U and X be the
node in U which has the largest norm. Clearly, τ ∈ Cr (X). Since
ν(1−2ε)r (AτX) is contained in the r-neighborhood of U , no active
node lies in ν(1−2ε)r (AτX)\AτX . Thus Ẽ also occurs. So our claim
is true. Hence it suffices to show that Ẽ is a.a.r..

For any 1 ≤ i ≤ n, let Ẽi be the event {X1, · · · , Xi} is the set
of active nodes none of which falls in ν(1−2ε)r (AτX1) \ AτX1 for
some τ ∈ Cr (X). By symmetry,

Pr
(
Ẽ
)
≤

n∑
i=1

(n

i

)
i Pr (Ei) = n

n∑
i=1

(n − 1

i − 1

)
Pr (Ei) .

Next, we derive an upper bound on Pr
(
Ẽi

)
. Fix an x ∈ Ω. By

a straightforward area argument, the number of squares which are
contained in D (x, (µ + ε)r) is bounded by a constant (independent
of x). Thus the cardinality of Cr (x) is also bounded by a constant.
Assume that n is sufficiently large n such that

(1 − 2ε) r ≤ 0.05/
√

π, and (µ + ε)r ≤ 0.425/
√

π.

Then by Lemma 7 for any τ ∈ Cr (x),∣∣ν(1−2ε)r (Aτx) \ Aτx

∣∣ = ν(1−2ε)r (Aτx) − |Aτx|
≥ ν(1−2ε)r (x) +

1

6
min

{
π ((1 − 2ε) r)2 , µ0r ((1 − 2ε) r)

}
= ν(1−2ε)r (x) +

1

144
(1 − 2ε) r2

≥ νr (x) − π
(
r2 − ((1 − 2ε) r)2

)
+

1

144
(1 − 2ε) r2

≥ νr (x) − 4πεr2 +
1

144
(1 − 2ε) r2

= νr (x) +
1 − (2 + 576π) ε

144
r2 = νr (x) + (r/24)2 .

Thus,

Pr
(
Ẽi | X1 = x

)
≤

∑
τ∈Cr(x)

piqn−i
(
1 −

∣∣∣((Aτx)(1−2ε)r ∩ Ω
)
\ Aτx

∣∣∣)i

≤ Θ(1) piqn−i
(
1 −

(
νr (x) + (r/24)2

))i
.

Therefore,

Pr
(
Ẽi

)
=

∫
Ω

Pr
(
Ẽi | X1 = x

)
dx

≤ Θ (1) piqn−i

∫
Ω

(
1 −

(
νr (x) + (r/24)2

))i
dx.

So we have

Pr
(
Ẽ
)
≤ n

n∑
i=1

(n − 1

i − 1

)
Pr
(
Ẽi

)
≤ Θ (1) n

∫
Ω

n∑
i=1

(n − 1

i − 1

)
piqn−i

(
1 −

(
νr (x) + (r/24)2

))i
dx

= Θ(1) n

∫
Ω

(
1 − p

(
νr (x) + (r/24)2

))n−1
dx

∼ Θ (1) n

∫
Ω

(
1 − p

(
νr (x) + (r/24)2

))n
dx

≤ Θ (1) n

∫
Ω

e−np(νr(x)+(r/24)2)dx

= Θ(1) e−np(r/24)2
(

n

∫
Ω

e−npνr(x)dx

)
= o (1) .

V. CONCLUSION

Motivated by various design issues such as fault-tolerance, ran-
domized construction of virtual backbone, randomized broadcast
routing, and randomized wake/sleep management, we study the
critical transmission ranges for connectivity in wireless ad hoc works
with Bernoulli nodes. Specifically, we assume that the wireless ad hoc
network consists of n nodes which are distributed independently and
uniformly in a unit-area disk or square and are active independently
with some constant probability p. The critical transmission range ρn

for connectivity of active nodes is the smallest transmission range
at which the active nodes form a connected network. The critical
transmission range ρ′

n for connectivity of all nodes is the smallest
transmission range at which the active nodes form a connected
network and each inactive node is adjacent to at least one active node.
The critical transmission range σn for no isolated active nodes is the
smallest transmission range at which each active node is adjacent
to some other active node. The critical transmission range σ′

n for
connectivity of all nodes is the smallest transmission range at which
each active node is adjacent to some other active node and each
inactive node is adjacent to at least one active node. In this paper,
we proved that the two events ρn = σn and ρ′

n = σ′
n are both

a.a.s.. Based on this property, we derived the precise asymptotic
distributions of ρn and ρ′

n.

As a future work, we would like to study the asymptotic critical
transmission range of wireless ad hoc networks with Bernoulli links.
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