

Abstract—This paper presents and discusses models of generic

mobile services. The primary goal is to gain understanding of the
challenges in designing, developing and deploying advanced mobile
data services. Two types of models are introduced. First, a
composition model describing the components of a generic mobile
service and the components relationships are given. Second,
distribution models describing the distributions of the components
in the former model across hosts, networks and domains are
presented. A brief mobility analysis is carried out, followed by a
discussion of mobility and service continuity dependency on the
service distribution. The functions necessary to provide service
continuity are identified and incorporated in a service continuity
layer.

Index Terms—Service continuity, service composition, service
distribution, generic mobile services, personalization, UML

I. INTRODUCTION
ILL now, the focus in mobile communications has been on
providing service continuity of communication services

when a mobile terminal is roaming between networks, i.e.
avoiding abrupt access. The underlying mechanism for achieving
service continuity is called handover or handoff. Handover was
first implemented between networks of same type, e.g. GSM and
is gradually extended to networks of different types, e.g.
handover between GSM and WLAN. With the increasing
number of devices that users have at disposition, it is quite
relevant to provide service continuity across heterogeneous
devices. A user having multiple devices at disposition may wish
to move a service from one device to another one to have better
user interface or simply to reduce the usage costs. For example, a
user, when arriving to the office, may want to transfer the
conversation session from the mobile phone to the multimedia
PC acting as an IP phone. The goal of this paper is examine how
service continuity can be provided. The paper adopts a formal

Jørstad, I. is with the Norwegian University of Science and Technology,
Department of Telematics, O.S. Bragstads Plass, 7491 Trondheim, Norway (e-
mail: ivar@ongx.org)

Do, T.v. is with Telenor R&D, Snarøyveien, Fornebu, Norway (e-mail: thanh-
van.do@telenor.com)

Dustdar, S. is with Vienna University of Technology
(dustdar@infosys.tuwien.ac.at)

and analytical approach. It starts with an analysis of current
services and derives the functions and capabilities that are
necessary to achieve service continuity.

II. MODELING MOBILE SERVICES
A high degree of mobility is a requirement for mobile

services; they should by definition be available at any time, any
place using any device with communication capabilities (thus
supporting many types of mobility [1]). However, it is more and
more important that access to mobile services can be moved
from one device to another with least possible interruption. To be
able to address these requirements and further study them, more
formal definitions of the composition and architecture of mobile
services are needed. This section starts with some definitions.

It is possible to model mobile services according to their
composition or their distribution. Whereas the compositional
model is concerned with the division of a service into discrete
components according to their nature and role, the distribution
model is concerned with the distribution of components of a
service across devices, networks and domains.

A. Composition Model
A generic mobile service is commonly modeled as consisting of
two basic components:

• Service Logic
• Service State/Data

Fig. 1 displays a UML (Unified Modeling Language [2])
Class Diagram showing the composition of a mobile service.

Service logic is the program code that constitutes the dynamic
behavior and provides the functions of a service. Usually, this
does not only consist of one autonomous unit, but in this model
the service logic represents the collection of program code for a
given service.

Service state contains data used in the execution of the service
logic and reflects the state of it. They are for example variable
values, temporal parameters, register values, stack values,
counting parameters, etc. In order to provide service continuity
and personalisation we propose to introduce two additional
service components as follows:

• Service Content
• Service Profile

Service content refers to data that are the product of service
usage. For example it can be a document written in a word

A Service Continuity Layer for Mobile Services
Ivar Jørstad, Do van Thanh, and Schahram Dustdar

T

IEEE Communications Society / WCNC 2005 2300 0-7803-8966-2/05/$20.00 © 2005 IEEE

processor or the entries in a calendar. Service content can be
produced or consumed by the user.

MobileService

ServiceLogic ServiceData ServiceContent ServiceProfile

1

1

1

1
1

1
1

1

UserServiceProfile DeviceServiceProfile

1 111

Fig. 1. Composition model of MobileService
A Service profile contains the settings that are related to the

user or/and the accessing device. A service profile can further be
divided into a User Service Profile and a Device Service Profile.
The User Service Profile contains the user’s settings that state
how a service should behave for a specific user (e.g. what
functions should be available), but it can also include personal
information about a user that is used in accordance with a service
(e.g. as input). The Device Service Profile states the properties
and qualities of a particular device (e.g. form factor), so that a
service can adapt (e.g. the presentation layer) to this device. The
User Service Profile is stored or linked to the User profile,
whereas the Device Service Profile is part of the Device profile.
The User profile can either be directly modified by the user or
indirectly through the usage of the service. Alternatively, it can
be implicitly altered by a separate service in the network
according to the continuous usage pattern of a specific user.
All of the components of a mobile service as defined above can
be subject to various distributions, as in any distributed system
[3]. The most common models to describe the distribution of
services are:

• Standalone (hereafter also called monolithic)
• Client-Server
• Peer-to-Peer
• Multiple distributed components

For each of these models it is possible to define finer grained,
specialized models, but the above mentioned models suffice for
this discussion.

B. Distribution Model
According to the Distributed Computing paradigm, the
distribution of a service/application should be hidden and the
mechanisms to support distribution are incorporated in the
Distributed Computing middleware such that the developer can
concentrate on the core functions of the application [4][5].
However, for mobile services, distribution plays a crucial role

that must be considered at service design. Indeed, when the user
is moving and is accessing services from different places, the
location of a service and its components relative to the user’s
location will have great influence on its availability, quality,
continuity, and personalization offerings.

Domain

Location HostUser

1

0..*

10..*

1 0..*

Fig. 2. Relationship between notions used in the distribution models
In order to model the distribution, we introduce the notions

that are depicted in Fig 2. A user can be at one location at a time
but one location may be visited by zero or more users. A location
may have zero or more hosts. One or more locations belong to a
domain. A domain is defined as a set of locations containing a
number of hosts that are controlled by an actor. The access to the
domain is controlled by this actor e.g. enterprise, home user,
telecom operator, etc.

1) Monolithic services
The first distribution model in Fig.3 depicts a system where all

components of the mobile service, i.e ServiceLogic, ServiceData,
ServiceProfile and ServiceContent are installed in the same host
which is located at the same location as the end-user. Such
services can be called monolithic, as they constitute a single,
autonomous unit.

Examples of this service type are word processors,
spreadsheets, stand-alone games, calculator, etc. As shown in
Fig. 3, if the user is at the same location as the host containing all
the service components, he will have access to the service

2) Thin-client/Server services
The previous model is very restricted. This is partly remedied

by the second model (Fig. 4) which splits the service logic into
two parts; one generic part (GenericServiceLogic) and one
specialized part (ServiceLogic). Service content, data and
profiles are all co-located with the specialized part. The generic
part is a thin-client presentation layer. Typical examples of the
GenericServiceLogic are Telnet or rlogin.

3) Client/Server services
In the third model (Fig. 5), a model similar to the previous is

defined. The difference is that while in the previous model, the
client application (GenericServiceLogic) was generic and used
for a lot of different services. In the client/server model,
ServiceLogic1 is a client application specialized for a particular
service.

IEEE Communications Society / WCNC 2005 2301 0-7803-8966-2/05/$20.00 © 2005 IEEE

Location 1 user

:ServiceLogic:ServiceData

:ServiceContent

:ServiceProfile
uses() uses()

initiates()

uses()

Host 1

Location 1 user

:ServiceLogic:ServiceData

:ServiceContent

:ServiceProfile
uses() uses()

initiates()

uses()

Host 1

Fig. 3. Distribution model for monolithic mobile services

Both components have their own service data, and
ServiceLogic2 has access to a service profile and the service
content as well. As an option, ServiceLogic1 can also keep its
own service profile and service content.

4) Multi-component services
A refinement, or rather specialization, of the previous model is

the multi-component service defined in the model in Fig. 6. In
addition to employing a client/server distribution, the server is
further divide into two components. Such specialisation of the
client/server model can proceed further, and therefore, such
services can also be called client/composite-server services.

5) Collaborative services
The last model defined here, is the model for collaborative

mobile services in Fig. 7. The special feature of this model, is
that several users exist in different locations, accessing
components on hosts in these locations and the service logic
components communicate across locations to support
collaborative work between the users. This model applies to
typical peer-to-peer services.

Location 1

Location 2

user

:GenericServiceLogic

:ServiceLogic:ServiceData

:ServiceContent

:ServiceProfile
uses() uses()

uses()

initiates()

initiates()

Host 1

Host 2

Location 1

Location 2

user

:GenericServiceLogic

:ServiceLogic:ServiceData

:ServiceContent

:ServiceProfile
uses() uses()

uses()

initiates()

initiates()

Host 1

Host 2

Fig. 4. Distribution model for thin-client/server mobile services

It is worth emphasizing that a service type is characterized by
both the service composition and the service distribution.

Location 2

:ServiceLogic2:ServiceData2

:ServiceContent1

:ServiceProfile1
uses() uses()

uses()

initiates()

Location 1

:ServiceLogic1:ServiceData1

:ServiceContent2

:ServiceProfile2
uses() uses()

user

uses()

initiates()

Host 2

Host 1

Location 2

:ServiceLogic2:ServiceData2

:ServiceContent1

:ServiceProfile1
uses() uses()

uses()

initiates()

Location 1Location 1

:ServiceLogic1:ServiceData1

:ServiceContent2

:ServiceProfile2
uses() uses()

user

uses()

initiates()

Host 2

Host 1

Fig. 5. Distribution model for client-server mobile services

C. Mobility Analysis
All the presented models are static and represent common

views of distributed systems that do not regard user mobility as
an issue. It is thus important to add and discuss the notion of
movement of the user between different Locations, and to
consider what effects these movements have on services of
various types. Two possible effects are that the service is not
available anymore in the new Location or that the service must
take on another distribution. For clarity, we introduce the
following axiom:

Location 2

:ServiceLogic2:ServiceData2

:ServiceContent1

:ServiceProfile1
uses() uses()

uses()

initiates()

Location 1

:ServiceLogic1:ServiceData1

:ServiceContent2

:ServiceProfile2
uses() uses()

user

uses()

initiates() Location 3

:ServiceData3

:ServiceLogic3

initiates()

uses()

Host 1

Host 2

Host 3Location 2Location 2

:ServiceLogic2:ServiceData2

:ServiceContent1

:ServiceProfile1
uses() uses()

uses()

initiates()

Location 1Location 1

:ServiceLogic1:ServiceData1

:ServiceContent2

:ServiceProfile2
uses() uses()

user

uses()

initiates() Location 3

:ServiceData3

:ServiceLogic3

initiates()

uses()

Host 1

Host 2

Host 3

Fig. 6. Distribution model for multi-component services

Axiom 1: “Mobility does not have any impact on service
availability and continuity as long as the user moves together
with all discrete components of the service.”
From this axiom, it follows that: “Only changes in relative
Location between user and parts of, or all discrete components
of a service have impact on service continuity in that particular
service.”

IEEE Communications Society / WCNC 2005 2302 0-7803-8966-2/05/$20.00 © 2005 IEEE

This means that the movements of the user will have different
impact on each service type due to their distribution.

Whereas concepts like personal mobility and device mobility
is usually concerned with the communication service at network
layer (OSI layer 3), service continuity is a concept that supports
for generic, data based services. Although mobility in the
network layer is not entirely settled, other facets of services must
also be considered. It is not given that the availability of a
network service (IP) automatically allows service continuity for
any service on a higher layer. Mobility and service continuity
should thus be considered as supplementary to each other.

Location 1 user1

:ServiceLogic1:ServiceData1

:ServiceContent1

:ServiceProfile1
uses() uses()

initiates()

uses()

Location 3 user3

:ServiceLogic3:ServiceData3

:ServiceContent3

:ServiceProfile3
uses() uses()

initiates()

uses()

Location 2 user2

:ServiceLogic2:ServiceData2

:ServiceContent2

:ServiceProfile2
uses() uses()

initiates()

uses()

collaborates()

collaborates()

collaborates()

Host 1

Host 3

Host 2

Location 1 user1

:ServiceLogic1:ServiceData1

:ServiceContent1

:ServiceProfile1
uses() uses()

initiates()

uses()

Location 3 user3

:ServiceLogic3:ServiceData3

:ServiceContent3

:ServiceProfile3
uses() uses()

initiates()

uses()

Location 2 user2

:ServiceLogic2:ServiceData2

:ServiceContent2

:ServiceProfile2
uses() uses()

initiates()

uses()

collaborates()

collaborates()

collaborates()

Host 1

Host 3

Host 2

Fig. 7. Distribution model for collaborative mobile services
Service continuity is a composite concept. Initially, the

concept can be broken into two types; seamless service
continuity and non-seamless service continuity. We define
seamless service continuity as:

“…the ability to pick up a service at a new Location, where
service abruptness is bounded by the time it takes the user to
move between the two Locations.”

Non-seamless service continuity is defined as:
“…the ability to pick up a service at a new Location, where
service usage can proceed from the ‘point’/state where it was left
at the previous Location, but where additional disruption is
introduced due to a required reorganization of the service
composition.”

1) The Notion of Movement in UML
The basis for the notation used in the following analysis is

UML collaboration diagrams. However, UML does not define a
notion for movement, which is one of the most critical aspects in
this analysis. The notion of movement is thus introduced using
the stereotype <<moves>> along with a unidirectional
association defining the direction of movement.

2) Service Type Specific Analysis

With service continuity defined, it is time to analyze service

types further to deduce the requirements for service continuity
support. The remainder of this section describes a usage scenario
for a specific service type, and in particular how the movement
of the user impacts the already defined service continuity aspects
of the service. Based on this analysis, the next section will
provide an initial framework for improved service continuity
support in generic mobile services. Due to space limitation, only
the client/server service type defined in Fig. 5 is considered.
Mobile agents and mobile code [6] are technologies that earlier
have been suggested as solutions to some of the challenges with
service continuity.

Consider a scenario where UserX is accessing a service S1 in
Location1 through Host1, using ServiceLogic1A. At one point,
UserX moves from Location1 to Location2. The question is then
how to ensure service continuity. There are two alternatives:

Location1 Location2

Location3

user user

<<moves>>

<<moves>>

Host1

Host2

Host1
:ServiceLogic1A

:ServiceLogic2

:ServiceLogic1A

initiates()

initiates()

Location1Location1 Location2Location2

Location3Location3

user user

<<moves>>

<<moves>>

Host1

Host2

Host1
:ServiceLogic1A

:ServiceLogic2

:ServiceLogic1A

initiates()

initiates()

Fig. 8. User moves together with Host to a new Location
1. If Host1 moves together with the user, as depicted in Fig.8,

there is no relative movement between the user and the service
components that he is directly accessing. Service continuity is
obtained by ensuring the continuity of communication between
ServiceLogic1A’s ServiceLogic2. This is the familiar case of
the terminal handover that mobile communications have focused
on. In these figures, other components of the service than
service logic are excluded to ensure clarity and avoid cluttering.
It is implicit that all the other components of the service are co-
existing with the service logic as earlier described.

2. If Host1 is not moving together with the user, depicted in
Fig. 9, it is obvious that it is not possible to realise seamless
service continuity but only non-seamless service continuity. To
be able to provide non-seamless service continuity, at Host2,
there must exist a copy or an instance of the ServiceLogic1A,
called ServiceLogic1B such that the user can initiate and
continue the service. Typical example of such a case is a web
browser, e.g. Internet Explorer which two instances are installed
on two PCs.

IEEE Communications Society / WCNC 2005 2303 0-7803-8966-2/05/$20.00 © 2005 IEEE

Location1 Location2

Location3

user user
<<moves>>

Host1

Host3

Host2
:ServiceLogic1A

:ServiceLogic2

:ServiceLogic1B

initiates()

initiates()

initiates() initiates()

Location1Location1 Location2Location2

Location3Location3

user user
<<moves>>

Host1

Host3

Host2
:ServiceLogic1A

:ServiceLogic2

:ServiceLogic1B

initiates()

initiates()

initiates() initiates()

Fig. 9. User moves without Host1 to a new Location and re-initiates the

service through a new Host2
Another possibility is that at Host2, an equivalent

implementation of ServiceLogic1A is available, called
ServiceLogic1C. Strictly speaking, the new implementation
should be compatible with ServiceLogic1A to ensure complete
service continuity. That means, the interface between
ServiceLogic1C and ServiceLogic2 must be identical to the
interface between ServiceLogic1A and ServiceLogic2 (e.g. the
user changes from Internet Explorer in Location1 to Opera in
Location2, and both speaks HTTP). To provide continuity, the
ServiceLogic1B or ServiceLogic1C must be able to
communicate with the Service Profile, Service Content and most
importantly the Service State in order to resume the service from
the point where the user changed from Host1 to Host2. A
“Handover Manager” function is required and will be considered
in the next section.

III. SUPPORT FOR SERVICE CONTINUITY
As we have seen, particularly two properties of mobile

services influence service continuity:
• Service type (defined by service composition and

distribution)
• Movement pattern of user

The second property that should be considered is the
movement pattern of the user. Because service continuity is
influenced by the user moving from one Location to another, it is
important to analyze the ways of movement that are possible,
which of them poses greatest requirements on the technology and
what these requirements are.

• User moves between hosts
• User moves across locations
• User moves across domains

 Movement between devices can further be divided into
movement between devices of the same type or movement
between devices of distinctive types.

A. Service Continuity Layer
As a result of the analysis performed in the previous sections,

several functions that must be part of a service continuity layer

can be identified. The service continuity layer can be seen as a
management layer with support functions for realizing maximum
service continuity and availability of generic services due to user
movement relative to service components. The respective
elements will now be listed and the tasks of each element will be
briefly explained. The elements of the service continuity layer
are:

1. Monitor: A continuously updated “map” of
surrounding networks, domains and hosts

2. Handover Manager: High-level service handover
3. Interoperability Evaluator
4. Service Composition Module
5. Input/Output Redirector

Service continuity should be supported by appropriate
middleware. Others have argued that the application layer is
suitable for providing flexible solutions to handling service
continuity and mobility issues [7]. A service continuity layer
needs to have access to relevant information from the application
layer (e.g. current state of service), but also from the lower layers
(e.g. to infer decisions about network resources). The goal for the
components mentioned above and described next, is to allow the
system, not the user, to decide when to, and take care of how to,
change the distribution of a service to accommodate movements
of the user and maintaining service continuity and availability.

1) Monitor: Resource Map
There is a need for mechanisms and methodologies for

describing surroundings of a host more detailed than only nodes
in the current network (e.g. WLAN zone), which can be deduced
from ARP requests on an Ethernet (i.e., neighbour discovery).
There is a need for describing network boundaries, domain
boundaries, restrictive elements (middleboxes [8]) etc. These
must be supplied to the service continuity layer such that it can
decide possible redistributions of a service to provide service
continuity.

One protocol that can be part of such a protocol is defined by
IETF in STUN [9] (Simple Traversal of User Datagram Protocol
Through Network Address Translators).

2) Handover Manager: High-level Service Handover
High-level service handover has earlier been considered in

[10]. Handover between cells in mobile telecom systems (GSM)
is based on measurements of the surroundings (e.g. of received
signal strength level) for the system to be able to act proactively
as handover becomes necessary to provide a sustained service.
Although a soft handover is not necessarily required for service
continuity in data based services, the idea of monitoring
surroundings could be applied here also, and performed by the
service continuity layer. The monitor together with the handover
manager can instruct the service composition module to design
and implement a new service composition of an existing service
as soon as it is recognized that a handover will be necessary, thus
decreasing the abruptness time in service usage. Similarly, the

IEEE Communications Society / WCNC 2005 2304 0-7803-8966-2/05/$20.00 © 2005 IEEE

user can be warned if the service continuity layer sees no
possibility to provide sustained access. Otherwise, the service
handover should be automatic without any need for the user to be
notified or take any action.

3) Interoperability Evaluator: Compatibility Matching
If a service is to be reorganized based on decisions by the

monitor, a new service will be composed using either a
replication of, or an equivalent of, each of the current
components of the service. To ensure sustained service access, it
must be ascertained that potential components for the new
composition are interoperable with, and provide a satisfactorily
equivalent interface as the current components. The task of the
interoperability evaluator is thus to match compatible
components based on both their interfaces and their behavior.

4) Service Composition
Based on what the Service Continuity Layer knows about the

systems and the restrictions, it can dynamically compose a new
service by using only components that have been validated by
the element described in the previous subsection. In general, and
as specified for XML Web Services, service composition can be
either choreographed or orchestrated [11]. Put simple,
choreography means that service components interact
dynamically at runtime, without any coordinator. With
orchestration a component acts as a coordinator and controls the
process flow back and forth between service components. The
former is more complex to realize, because it requires a lot of
additional logic in each service component. The second can
theoretically be applied to existing service components without
changing them. Thus, orchestration seems to be the most feasible
for the service continuity layer considered in this paper.

5) Input/Output Redirection between service components
Input/Output (I/O) redirection can be used between service

logic components in a mobile service to avoid moving entire
components around, when requirements otherwise would suggest
this as a solution. A mechanism for performing the actual
redirection must exist, and in addition, a generic way of
representing I/O for transport between services must be defined
to simplify the interfaces between service components. These
challenges are already partly considered in orchestration and
choreography of Web Services.

B. Conclusion
This paper initially describes the composition of generic

mobile services and then provides an overview of possible
distribution models for such services. The primary goal is to
increase the understanding of how mobile services are organized
(composed and distributed), in order to determine how support
for service continuity and availability can be increased for these
services. Having defined a possible composition and
distributions of mobile services, the paper proceeds with a user-
movement based analysis of one of the models. For the model

chosen, it is suggested that service continuity can be assured if
either a) a new instance of the initial service logic is available in
the new location or b) a re-implementation of the initial service
logic is available in the new location, and c) the communication
between ServiceLogic1A and/or B and ServiceLogic2 can be
reinitiated.

The result from this analysis suggests the requirements for
ensuring support for service continuity in mobile services. This
functionality is generalized and grouped into a Service
Continuity Layer which consists of a) resource map of
surroundings, b) high level service handover functionality, c)
interoperability evaluation and compatibility matching, d)
service composition and e) generic i/o redirection between
service components (service logic).

To be able to describe and analyze mobile services, where
movements of the user have great impact on the support for
service continuity, a notion and a way of describing movement in
the modeling phase is needed. Also, the notion of Location,
Domain and Host is lacking. As part of future work, such a
notion, for example for UML, should be elaborated. The user-
movement based analysis should be extended, and further
refinements of the Service Continuity Layer is considered future
work, and so is the design and development of a prototype.

REFERENCES
[1] Jun-Zhao Sun & Jaakko Sauvola, On Fundamental Concept of Mobility for

Mobile Communications, PIMRC 2002
[2] Martin Fowler, UML Distilled: A brief guide to the standard object

modeling language, 3rd Edition, ISBN 0-321-19368-7, 2004
[3] George Coulouris et. al, Distributed Systems: Concepts and Design, 3rd

Edition, ISBN 0-201-619-180, Addison-Wesley, Pearson Education, 2001
[4] ITU-T X.901 | ISO/IEC 10746-{1,2,3,4} Open Distributed Processing

Reference Model Part 1,2,3 AND 4
[5] Kerry Raymond, Reference Model of Open Distributed Processing (RM-

ODP): Introduction - kerry@dstc.edu.au - CRC for Distributed Systems
Technology -Centre for Information Technology Research - University of
Queensland Brisbane 4072 Australia

[6] Stefano Camapdello & Kimmo Raatikainen, Agents in Personal Mobility,
Proceedings of the First International Workshop on Mobile Agents for
Telecommunication Application (MATA'99). Ottawa Canada October 6-8
1999. World Scientific, pp. 359-374

[7] Proceedings of the Italian Workshop “From Objects to Agents: Intelligent
Systems and Pervasive Computing” (WOA’03), Italy, ISBN 88-371-1413-
3, September 10-11, 2003

[8] IETF, RFC 3303: Middlebox communication architecture and framework,
August 2002

[9] IETF, RFC 3489, STUN – Simple Traversal of User Datagram Protocol
(UDP) Through Network Address Translators (NATs), March 2003

[10] Thomas Strang, Claudia Linnhoff-Popien, Matthias Roeckl, Highlevel
Service Handover through a Contextual Framework, MoMuC 2003, 8th
International Workshop on Mobile Multimedia Communications,
Munich/Germany, October 2003

[11] Chris Peltz, Web Services Orchestration: A review of emerging
technologies, tools, and standards, Hewlett Packard, Co., January 2003

IEEE Communications Society / WCNC 2005 2305 0-7803-8966-2/05/$20.00 © 2005 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004
	nd: nd
	header: Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE

