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ABSTRACT

The paper considers adaptive beamforming assisted receiver for

multiple antenna aided multiuser systems that employ binary phase

shift keying (BPSK) modulation. The standard minimum mean

square error (MMSE) design is based on the principle of minimis-

ing the mean square error (MSE) between the beamformer’s desired

output and complex-valued beamformer output. Since the desired

output for BPSK systems is real-valued, minimising the MSE be-

tween the beamformer’s desired output and real-part of the beam-

former output can significantly improve the bit error rate (BER) per-

formance, and we refer to this alternative MMSE design as the real-

valued MMSE (RV-MMSE) to contrast to the standard complex-

valued MMSE (CV-MMSE). The minimum BER (MBER) design

however still outperforms the RV-MMSE solution, particularly for

overloaded systems where degree of freedom of the antenna array

is smaller than the number of BPSK users. Adaptive implementa-

tion of this RV-MMSE design is realised using a least mean square

(LMS) type adaptive algorithm, which we refer to as the RV-LMS,

in comparison to the standard CV-LMS algorithm. The RV-LMS

adaptive beamformer has the same computational complexity as the

adaptive least bit error (LBER) algorithm, imposing half of the com-

putational requirements of the CV-LMS algorithm.

I. INTRODUCTION

The ever-increasing demand for mobile communication capacity

has motivated the development of adaptive antenna array assisted

spatial processing techniques [1]–[10] in order to further improve

the achievable spectral efficiency. A technique that has shown real

promise in achieving substantial capacity enhancements is the use

of adaptive beamforming with antenna arrays. Through appropri-

ately combining the signals received by the different elements of an

antenna array, adaptive beamforming is capable of separating sig-

nals transmitted on the same carrier frequency, and thus provides a

practical means of supporting multiusers in a space division mul-

tiple access scenario. Classically, the beamforming process is car-

ried out by minimising the mean square error (MSE) between the

desired output and the actual array output. For a communication

system, however, it is the bit error rate (BER) that really matters.

Adaptive beamforming based on directly minimising the system’s

BER has been proposed for binary phase shift keying (BPSK) and

quadrature phase shift keying modulation schemes [11],[12].

This paper specifically considers adaptive beamforming for

BPSK systems. The standard minimum MSE (MMSE) design [13]

seeks the complex-valued (CV) beamformer’s weight vector that
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minimises the MSE between the beamformer’s desired output and

the CV beamformer output. We will refer to this MMSE solution

as the CV-MMSE. A practical rule is that, the number of antennas

should not be smaller than the number of users supported, and the

CV-MMSE beamforming has the capacity of supporting up to the

same number of users as the number of antenna elements as this will

ensure a sufficient degree of freedom to cancel the interfering sig-

nal sources. For BPSK systems, however, the beamformer’s desired

output, namely the desired user’s transmitted symbol, is real-valued

(RV). We show that by minimising the MSE between the beam-

former’s desired output and the real part of the beamformer output,

the achievable system’s BER performance can significantly be en-

hanced. We will refer to this alternative MMSE design as the RV-

MMSE, in contrast with the standard CV-MMSE. Moreover, using

the RV-MMSE design, the system should be capable of supporting

up to twice the number of users as the number of antenna elements,

since the signal of each antenna array element is two-dimensional

or CV. A drawback of this RV-MMSE design is that, unlike the case

of the CV-MMSE solution, there exists no closed-form solution and

numerical optimisation based on gradient algorithm has to be ap-

plied to arrive at a numerical solution.

The minimum BER (MBER) beamforming design [11] is the true

optimal solution and it generally outperforms the RV-MMSE solu-

tion, particularly for overloaded systems where degree of freedom

of the antenna array is smaller than the number of BPSK users. The

CV-MMSE solution can adaptively be implemented using the least

mean square (LMS) algorithm [13], and we will refer to this stan-

dard LMS algorithm as the CV-LMS. We derive an adaptive im-

plementation of the RV-MMSE design based on a LMS-type adap-

tive algorithm, which we refer to as the RV-LMS. The computa-

tional complexity of this RV-LMS algorithm is similar to that of the

adaptive MBER algorithm known as the least bit error rate (LBER)

[11],[14], imposing only half of the computational requirements of

the CV-LMS algorithm.

II. SYSTEM MODEL

The system consists of M users, and each user transmits a BPSK

signal on the same carrier frequency ω = 2πf . The receiver is

equipped with a linear antenna array consisting of L uniformly

spaced elements. Assume that the channel is narrow-band which

does not induce intersymbol interference. Then the symbol-rate re-

ceived signal samples can be expressed as

xl(k) =

M
∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at element l
for source i with θi being the direction of arrival for source i, nl(k)
is a complex-valued Gaussian white noise with E[|nl(k)|2] = 2σ2

n,
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TABLE I

LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL FOR THE SIMULATION.

user i 1 2 3 4 5 6 7 8 9 10

AOA θ 0◦ 10◦ −20◦ 30◦ −45◦ 50◦ 60◦ −55◦ −35◦ −60◦

Ai is the channel coefficient for user i, and bi(k) is the kth symbol

of user i which takes the value from the BPSK symbol set {±1}.

Source 1 is the desired user and the rest of the sources are interfering

users. The desired-user signal to noise ratio is SNR= |A1|2σ2
b/2σ2

n

and the desired signal to interferer i ratio is SIRi = A2
1/A

2
i , for

2 ≤ i ≤ M , where σ2
b = 1 is the symbol energy. The received

signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is given by

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (2)

where n(k) = [n1(k) n2(k) · · ·nL(k)]T , the system matrix P =
[p1 p2 · · ·pM ] = [A1s1 A2s2 · · ·AMsM ] with the steering vec-

tor for source i si = [ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T , and the

transmitted user symbol vector b(k) = [b1(k) b2(k) · · · bM (k)]T .

A linear beamformer is employed, whose soft output is given by

y(k) = w
H
x(k) = w

H(x̄(k) + n(k)) = ȳ(k) + e(k) (3)

where w = [w1 w2 · · ·wL]T is the beamformer weight vector

and e(k) is Gaussian distributed with zero mean and E[|e(k)|2] =
2σ2

nwHw. The beamformer’s hard decision is given by

b̂1(k) = sgn(yR(k)), (4)

where b̂1(k) is the estimate of b1(k) and yR(k) = ℜ[y(k)] denotes

the real part of y(k).

III. BEAMFORMER DESIGNS

The task of designing the beamformer (3) is to choose the beam-

former’s weight vector w according to some design criterion.

A. Complex-Valued Minimum Mean Square Error Design

Classically, the beamformer’s weight vector w is determined by

minimising the MSE metric of

JMSE(w) = E[|b1(k) − y(k)|2]. (5)

Setting the gradient of JMSE(w)

∇JMSE(w) = −2p1 + 2
(

PP
H + 2σ2

nIL

)

w (6)

to zero leads to the following closed-form CV-MMSE solution [13]

wCMMSE =
(

PP
H + 2σ2

nIL

)−1
p1, (7)

where IL denotes the L × L identity matrix. An adaptive imple-

mentation of the CV-MMSE solution can readily be realised using

the CV-LMS algorithm [13]

w(k + 1) = w(k) + µ (b1(k) − y(k))∗ x(k), (8)

where µ is the step size.

B. Real-Valued Minimum Mean Square Error Design

For BPSK systems, the beamformer’s desired output b1(k) is RV.

The CV-MMSE solution minimises the MSE (5), which can be de-

composed into

JMSE(w) = E[(b1(k) − yR(k))2] + E[y2
I (k)]

= JrpMSE(w) + JipMSE(w), (9)

where yI(k) = ℑ[y(k)]. It is clearly that the CV-MMSE solution

attempts to simultaneously minimise the MSE between the desired

signal and the real part of the beamformer’s output as well as the

energy of the imaginary part of the beamformer’s output. How-

ever, the beamformer’s decision depends only on yR(k). Minimis-

ing JipMSE(w) does not contribute to improving the beamformer’s

performance. Rather it imposes a unnecessary constraint on the so-

lution and wastes the antenna array resource.

It is also clear that a more intelligent way of designing the beam-

former is to minimise the MSE between the desired output and the

real part of the beamformer’s output

JrpMSE(w) = E[(b1(k) − yR(k))2]. (10)

The RV-MMSE solution is defined by

wRMMSE = arg min
w

JrpMSE(w). (11)

The gradient of JrpMSE(w) is

∇JrpMSE(w) = E[−(b1(k) − yR(k))x(k)]

= −p1 +
(

PP
T
R + σ2

nIL

)

wR

+
(

PP
T
I + σ2

nIL

)

wI , (12)

where P = PR + jPI and w = wR + jwI . It is seen from

(12) that there exists no closed-form solution for this RV-MMSE de-

sign. Numerical optimisation has to be applied to obtain a wRMMSE

based on for example the steepest descent method or the simplified

conjugate gradient algorithm [11],[14],[15]. To derive a sample-

by-sample adaptive implementation of this RV-MMSE solution, the

stochastic gradient, namely −(b1(k) − yR(k))x(k), can be used,

leading to the following RV-LMS algorithm

w(k + 1) = w(k) + µ (b1(k) − yR(k))x(k). (13)

λ /2

θ

θ > 0θ<0

user i

Fig. 1. Geometric structure of the four-element linear array having λ/2 spacing used

in the simulation, where λ is the wavelength.
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C. Minimum Bit Error Rate Design

As recognized by [11], the best strategy is to choose w by di-

rectly minimising the system’s BER. Following the notations used

in [11],[14], let us denote the Nb = 2M number of possible trans-

mitted symbol sequences of b(k) as b(q), 1 ≤ q ≤ Nb. Denote

furthermore the first element of b(q), corresponding to the desired

symbol b1(k), as b
(q)
1 . The noise-free part of the beamformer’s out-

put ȳ(k) assumes values from the signal state set

Y = {ȳ(q) = w
H
x̄

(q) = w
H
Pb

(q), 1 ≤ q ≤ Nb}, (14)

and Y can be partitioned into the two subsets conditioned on the

value of b1(k)

Y(±) = {ȳ(q,±) ∈ Y : b1(k) = ±1}. (15)

Thus ȳR(k) can only take the values from the set

YR = {ȳ(q)
R = ℜ[ȳ(q)], 1 ≤ q ≤ Nb}, (16)

and YR can be divided into the two subsets conditioned on b1(k)

Y(±)
R = {ȳ(q,±)

R ∈ YR : b1(k) = ±1}. (17)

The conditional probability density function (PDF) of y(k) given

b1(k) = +1 is a Gaussian mixture defined by

p(y| + 1) =
1

Nsb

Nsb
∑

q=1

1

2πσ2
nwHw

e
−

|y−ȳ(q,+)|2

2σ2
nw

H
w , (18)

where ȳ(q,+) ∈ Y(+) and Nsb = Nb/2 is the size of Y(+). Thus

the marginal conditional PDF of yR(k) is

p(yR| + 1) =
1

Nsb

Nsb
∑

q=1

1√
2πσ2

nwHw
e
−

(

yR−ȳ
(q,+)

R

)2

2σ2
nw

H
w , (19)

where ȳ
(q,+)
R ∈ Y(+)

R . The BER of the beamformer with the weight

vector w can be shown to be [11],[14]

PE(w) =
1

Nsb

Nsb
∑

q=1

Q
(

g(q,+)(w)
)

, (20)

-6

-5

-4

-3

-2

-1

 0

-5  0  5  10  15  20  25

lo
g
1
0
(B

it
 E

rr
o
r 

R
a
te

)

SNR (dB)

CV-MMSE
RV-MMSE

MBER

Fig. 2. BER comparison of three beamforming designs for the four-element array

system supporting 3 users.
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(c) MBER

Fig. 3. Conditional probability density functions p(y| + 1) (surfaces), marginal con-

ditional probability density functions p(yR| + 1) (curves), signal subsets Y(+)

and Y
(+)

R
(points) for the four-element array system supporting 3 users with

SNR= 7 dB. The beamformer weight vector is normalised to a unit length.

where

Q(u) =
1√
2π

∫

∞

u

e−
v2

2 d v (21)

and

g(q,+)(w) =
sgn(b

(q)
1 )ȳ

(q,+)
R

σn

√
wHw

. (22)

The BER can alternatively be computed based on the other subset

Y(−)
R . Note that the BER is invariant to a positive scaling of w.

The MBER solution for the beamformer is then defined as the
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weight vector that minimises the error probability (20)

wMBER = arg min
w

PE(w). (23)

The gradient of PE(w) with respect to w is given by

∇PE(w) =
1

2Nsb

√
2πσn

√
wHw

Nsb
∑

q=1

e
−

(

ȳ
(q,+)

R

)2

2σ2
nw

H
w

×sgn
(

b
(q)
1

)

(

ȳ
(q,+)
R w

wHw
− x̄

(q,+)

)

, (24)

where ȳ
(q,+)
R = ℜ[wH x̄(q,+)] ∈ Y(+)

R . Given the gradient (24),

the optimisation problem (23) can be solved using a gradient-based

algorithm [11],[14],[15]. Following the derivations presented in

[11],[14], an adaptive implementation of the MBER solution can

be realised using the LBER algorithm which takes the form of

w(k + 1) = w(k) + µ
sgn(b1(k))

2
√

2πρn

e
−

y2
R

(k)

2ρ2
n x(k), (25)

where ρn is the kernel width.

D. Comparison of Three Designs

The CV-MMSE solution minimises the MSE between b1(k) and

y(k). Therefore, the associated conditional signal subset Y(+) must

have a symmetric distribution with respect to ℜ[y] and ℑ[y] axes.

This imposes an unnecessary constraint and limits the achievable

BER performance, since only the distribution of Y(+)
R influences

the BER performance. By removing the unnecessary constraint on

yI(k), the RV-MMSE solution has more freedom in designing a

more favourable distribution of Y(+)
R , leading to an improved BER.

The minimum distance between the decision threshold yR = 0

and the subset Y(+)
R ultimately determines the BER. Minimising

JrpMSE(w) does not guarantees maximising this minimum dis-

tance. The MBER solution ensures that this minimum distance is

maximised and, therefore, the MBER design generally provides a

smaller BER than the RV-MMSE design. In terms of the compu-

tational requirements per weight updating, it can be shown that the
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Fig. 4. BER comparison of three beamforming designs for the four-element array

system supporting 8 users.
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Fig. 5. Conditional probability density functions p(y| + 1) (surfaces), marginal con-

ditional probability density functions p(yR| + 1) (curves), signal subsets Y(+)

and Y
(+)

R
(points) for the four-element array system supporting 8 users with

SNR= 8 dB. The beamformer weight vector is normalised to a unit length.

RV-LMS and LBER algorithms have a similar complexity, which is

about half of the complexity required by the CV-LMS algorithm.

In order for the CV-MMSE solution to perform adequately, suf-

ficient antenna array resource is required so that the interfering sig-

nals can be cancelled. Thus, in order to ensure a correct separation

of Y(+)
R and Y(−)

R by the decision threshold yR = 0, it is generally

required that the number of users is no more than the number of ar-

ray elements. For the CV-MMSE beamformer, therefore, a system

is overloaded if M > L. By intelligently concentrating on the real

part of the beamformer’s output, the RV-MMSE design effectively

doubles the degree of freedom in beamforming, since each input
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xl(k) is CV or two-dimensional. Thus, the RV-MMSE design is ca-

pable of supporting users up to twice the number of array elements.

Therefore, for the RV-MMSE design, a system is overloaded only

if M > 2L. The MBER design is no restricted by this limit and is

capable of supporting more users.
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Fig. 6. BER comparison of three beamforming designs for the four-element array

system supporting 9 users.
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Fig. 7. Marginal conditional probability density functions p(yR| + 1) (curves) and

signal subsets Y
(+)

R
(points) for the four-element array system supporting 9 users

with SNR= 15 dB. The beamformer weight vector is normalised to a unit length.

IV. SIMULATION STUDY

The simulated system consisted of a four-element linear antenna

array and supported up to M = 10 users. Fig. 1 shows the array

geometric structure and Table I lists the locations of users with re-

spect to the antenna array. The simulated channel conditions were

Ai = 1.0 + j0.0 for all users and, therefore, SIRi = 0 dB for all

i. Fig. 2 compares the BER performance of the three beamformer

designs when only the first 3 users were active. Given SNR= 7 dB,

Fig. 3 depicts the conditional PDFs p(y|+ 1), marginal conditional

PDFs p(yR| + 1), signal subsets Y(+) and Y(+)
R for the three de-

signs, where the beamformer weight vector w was normalised to

a unit length. It can be seen from Fig. 3 (a) that the distribution

p(y| + 1) is symmetric for the CV-MMSE solution. By contrast,

the RV-MMSE and MBER designs are not restricted by this sym-

metric constraint and spread p(y| + 1) more widely along the ℑ[y]
axis, resulting in a more favourable distribution of p(yR| + 1). It

can also be seen from Fig. 3 (a) that the CV-MMSE solution is able

to correctly separate Y(−)
R and Y(+)

R and thus provide an adequate

BER performance as seen in Fig. 2.
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(b) Decision directed adaptation after 40-symbol training

Fig. 8. Learning curves of the adaptive RV-LMS and LBER algorithms averaged over

100 runs for the four-element array system supporting 9 users with SNR= 15 dB.

The step size µ = 0.005 for the RV-LMS, the step size µ = 0.01 and kernel

variance ρ2
n = 2σ2

n for the LBER.

When the number of users was increased to M > 4, the CV-

MMSE solution was no longer able to provide this desired separa-

tion, resulting in a high BER floor. Fig. 4 compares the BER perfor-

mance of the three beamformer designs when the first 8 users were

active, while Fig. 5 shows the conditional PDFs p(y|+1), marginal

conditional PDFs p(yR|+ 1), signal subsets Y(+) and Y(+)
R for the

three designs, given SNR= 8 dB. It can be seen from Fig. 5 (a) that

some points of Y(+)
R are in the wrong side of yR = 0 for the CV-

MMSE solution, resulting in the high BER floor as shown in Fig. 4.

By contrast, the RV-MMSE design is still capable of obtaining a

distribution that is similar to the MBER design.
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Fig. 9. BER comparison of three beamforming designs for the four-element array

system supporting 10 users.

Fig. 6 compares the BER performance of the three beamformer

designs when the first 9 users were active, while Fig. 7 shows the

marginal conditional PDFs p(yR| + 1) and signal subsets Y(+)
R for

the RV-MMSE and MBER designs, given SNR= 15 dB. The RV-

LMS and LBER algorithms were investigated, and Fig. 8 shows the

convergence performance of the two adaptive algorithms averaged

over 100 runs, given SNR= 15 dB. In Fig. 8 (a), training was car-

ried out over the whole length, while in Fig. 8 (b), after 40-symbol

training, the decision directed (DD) adaptation was invoked by sub-

stituting b̂1(k) for b1(k).

Finally, Fig. 9 compares the BER performance of the three beam-

formers when all the 10 users were active, while Fig. 10 shows the

marginal conditional PDFs p(yR| + 1) and signal subsets Y(+)
R for

the RV-MMSE and MBER designs, given SNR= 20 dB. Note that

in Fig. 10 (a) a point of Y(+)
R is in the wrong side of the decision

threshold yR = 0. It is seen that the RV-MMSE was no longer ca-

pable of separating Y(−)
R and Y(+)

R correctly and exhibited a BER

floor, since the system was overloaded. By contrast, the MBER de-

sign was still able to separate Y(−)
R and Y(+)

R correctly and provided

a much better BER performance than the RV-MMSE design.

V. CONCLUSIONS

An alternative MMSE design has been considered for beamform-

ing assisted BPSK receiver, which minimises the MSE between the

real-valued desired output and the real part of the complex-valued

beamformer output. This RV-MMSE design offers significant per-

formance enhancement over the standard CV-MMSE design. A

drawback of this RV-MMSE design, as compared with the CV-

MMSE design, is that there exists no closed-form solution and nu-

merical optimisation based on a gradient algorithm has to be used.

It has been demonstrated that the RV-MMSE beamforming solution

is capable of obtaining a BER performance that is close to the op-

timal MBER solution for supporting BPSK users up to twice of the

number of antenna array elements. The MBER design is capable

of supporting more users than the RV-MMSE design. Adaptive al-

gorithms for implementing these three beamforming designs have

also been compared.
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Fig. 10. Marginal conditional probability density functions p(yR| + 1) (curves)

and signal subsets Y
(+)

R
(points) for the four-element array system supporting 10

users with SNR= 20 dB. The beamformer weight vector is normalised.
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