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Abstract— A construction of a new family of distributed space
time codes (DSTCs) having full diversity and low Maximum
Likelihood (ML) decoding complexity is provided for the two
phase based cooperative diversity protocols of Jing-Hassibi and
the recently proposed Generalized Non-orthogonal Amplifyand
Forward (GNAF) protocol of Rajan et al. The salient feature of
the proposed DSTCs is that they satisfy the extra constraints
imposed by the protocols and are also four-group ML decodable
which leads to significant reduction in ML decoding complexity
compared to all existing DSTC constructions. Moreover these
codes have uniform distribution of power among the relays as
well as in time. Also, simulations results indicate that these codes
perform better in comparison with the only known DSTC with
the same rate and decoding complexity, namely the Coordinate
Interleaved Orthogonal Design (CIOD). Furthermore, they per-
form very close to DSTCs from field extensions which have same
rate but higher decoding complexity.

I. I NTRODUCTION

Cooperative diversity is a technique by which multiple
terminals (users or relays) cooperate to form a virtual antenna
array thereby leveraging the spatial diversity benefits even if a
local antenna array is not available. A cooperative diversity
protocol dictates how the users would actually cooperate
among themselves to achieve the required diversity order.
Several cooperative diversity protocols have been proposed in
the literature [1]-[6]. In this paper, we focus on the two phase
based protocols of Jing-Hassibi [1] and the GNAF protocol
of Rajan et al [2] for three reasons- (i) the operations at
the relay nodes are considerably simplified, (ii) we can avoid
imposing bottlenecks on the rate by not requiring the relay
nodes to decode and (iii) the framework of distributed space-
time codes allows for more flexibility and higher spectral
efficiency [1], [2], [4]. Transmission in this protocol comprises
of two phases- broadcast phase and cooperation phase. In the
broadcast phase, the source broadcasts its information to the
relays and the destination. In the cooperation phase, each relay
transmits a linearly processed version of the received vector.
For this purpose, each relay is equipped with a unitary matrix
which we call ’relay matrix’. It was shown in [1], [2] that
to the destination it would appear as if a space-time code
was transmitted from colocated multiple antennas. Furtherthe
design criteria to achieve full diversity also remains to bethe
well known rank criteria for colocated MIMO (Multiple Input
Mutiple Output Systems). However it is important to note that
DSTCs need to satisfy many additional constraints on the
code structure (for example, unitary relay matrices) and are

different from the traditional Space-time codes for colocated
MIMO systems, which are designed without respecting such
constraints.

The ML decoding of a STBC inK complex variables
x1, x2, · · · , xK is, in general, joint decoding of all theK
variables. However, for the Alamouti codeK = 2 and the
variablesx1 and x2 can be decoded independently for ML
decoding. In general, ifK = gλ and the variables can be par-
titioned intog subsets each containingλ number of variables
and the ML decoding can be done for the variables of a subset
independently of the variables of other subsets the code is said
to beg-group ML decodable orλ-symbol decodable [9], [10].
The Alamouti code is single-symbol decodable or two-group
ML decodable. Following the work of [1], several distributed
space time codes [6], [7], [8] were proposed. However, most of
these code constructions did not consider the important aspect
of ML decoding complexity at the destination. This problem
gains significant importance especially ifthe number of relays
in the network is large. An initiative in this direction was
first taken in [11] wherein two-group ML decodable DSTCs
were proposed using a construction procedure called ’doubling
construction’. Later in [3], a class of rate one, full diversity,
four-group ML decodable DSTCs called Precoded CIODs(Co-
ordinate Interleaved Orthogonal Designs) were proposed for
arbitrary number of relays. However these DSTCs had a large
number of zero entries in the design which led to a large Peak
to Average Power Ratio (PAPR). In [10], a class of four-group
ML decodable STCs were proposed for the colocated MIMO
systems. However these STCs fail to satisfy the additional
constaints on the code structure imposed by the cooperative
diversity protocol. Hence it is important to address the problem
of constructing a new class of four-group ML decodable
DSTCs which have low PAPR and uniform distribution of
power among the relays.

The main contribution of this paper is in providing a new
construction of DSTCs with the following salient features.

• Source can transmit1
2

complex symbols per channel use
• Full diversity
• Four group ML decodable
• Unitary relay matrices. (This eliminates the need for a

whitening filter at the destination thus further reducing
decoding complexity.)

• Unitary weight matrices together with unitary relay ma-
trices makes the power distribution uniform among the
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relays and in time and hence results in low PAPR.

The paper is organized as follows: We briefly describe the
notion of four-group ML decodable codes and also state the
DSTC design constraints which are due to the protocol in
Section II. In Section III, we describe the code construction
procedure and show that they possess the salient features
stated above. Few illustrative examples of DSTC construction
are also provided for 4 and 16 relays. Simulation results
are presented in Section IV. Conclusions and discussions on
further work comprise Section V.
Notation: For a complex matrixA, A∗, AT andAH denote
the conjugate, transpose and conjugate transpose respectively.
AI denotes the real matrix obtained by taking the real parts of
all the entries of the matrixA andAQ denotes the real matrix
obtained by taking the imaginary parts of all the entries of the
matrix A. For a square matrixB, |B| andTr (B) denote the
determinant and trace of the matrixB respectively.

II. FOUR GROUPML DECODABLE DSTC DESIGN

PROBLEM

In this section, we briefly describe the two phase based
cooperative diversity protocol of [1], [2] and introduce the
problem statement. Consider a wireless relay network consist-
ing of a source node, a destination node andR other relay
nodes which aid the source in communicating information to
the destination. The channel path gains from the source to the
ith relay, denoted byfi and those from thejth relay to the
destination denoted bygj are all assumed to be i.i.dCN (0, 1).
The channel path gain,g0 from the source to the destination is
also assumed to beCN (0, 1). All the nodes are equipped with
a single antenna and are subject to the half-duplex constraint,
i.e., a node cannot transmit and receive simultaneously. Fur-
ther, we assume that the nodes are synchronized at the symbol
level. Each transmission from source to destination comprises
of two phases- broadcast phase and cooperation phase. In
the broadcast phase, the source transmits aT length vector
s taken from a codebook consisting of information vectors
C = {s1, . . . , sL} satisfyingE

{

sHs
}

= 1 to all the relays
and the destination. In the cooperation phase, all the relay
nodes are scheduled to transmit together (assuming symbol
level synchronization) a DSTC. For this purpose, each relay
is equipped with a unitary matrixAi which we call ’relay
matrix’. To be precise, theith relay transmits a scaled version
(to satisfy power constraint) ofAiri or Air

∗
i , whereri denotes

the received vector at the relay. The signal model is as shown
in (1) at the top of the next page, where

• ti denotes the vector transmitted by theith relay andvi
denotes the additive noise at the relay whose entries are
assumed to be i.i.dCN (0, 1).

- yD,1 and yD,2 denote the received vector at the desti-
nation during the broadcast phase and cooperation phase
respectively.w1 and w2 represent the additive noise at
the destination whose entries are i.i.dCN (0, 1). The
quantitiesπ1 and π2 are the power allocation factors
satisfying π1 + π2TR = 2T so thatP represents the

total average power spent by the source and the relays
together.

The received vector at the destination can be written in
matrix form as follows

y =

[

yD,1

yD,2

]

=

√

π2π1P 2

π1P + 1
SH +W (2)

where S,H and W are as shown in (3) at the top of the
next page. The DSTC in this case is the collection of all the
(2T )×(R+1) matricesS. Observing the structure ofS in (3),
we see that it is sufficient to design the submatrix ofS given
by SER =

[

A1s . . . ANs AN+1s
∗ . . . ARs

∗
]

. We
are interested in the case when the submatrixSER is obtained
from a linear dispersion STBC sayS(X). Let S(X) =
∑K

i=1
xiAi where,x1, x2, . . . , xK are theK real variables of

the linear STBCS(X) and the matricesAi ∈ C
T×Nt , called

the ’weight matrices’, define the code.
The vectorX = [x1, x2, . . . , xK ]

T ∈ A ⊂ R
K is called the

information symbol vector.
Suppose we partition the information symbol vec-

tor as XT =
[

XT
1 , X

T
2 , . . . , X

T
g

]

, where XT
k =

[xjk+1, xjk+2, . . . , xjk+nk
], j1 = 0 and jk =

∑k−1

i=1
ni for

k = 1, 2, . . . , g and their corresponding set of weight matrices
also intog groupsLk, k = 1, . . . , g, thekth group containing
nk matrices, thenS(X) can be written as

S(X) =

g
∑

k=1

Sk(Xk),where Sk(Xk) =

nk
∑

i=1

xjk+iAjk+i.

Now if the information symbols in each group take values
independent of information symbols in the other groups and
if the weight matrices satisfy

AH
i Aj +AH

j Ai = 0, ∀i ∈ Lp, ∀j ∈ Lq, p 6= q. (4)

then, it can be easily shown [9], [10] thatS(X) is g-group ML
decodable. In other words, the ML decoding can be performed
by minimizing the metric

‖ y −
√

π2π1P 2

π1P + 1
Sk(Xk)H ‖2 (5)

for each1 ≤ k ≤ g individually instead of minimizing the
computationally more intensive metric

‖ y −
√

π2π1P 2

π1P + 1
S(X)H ‖2 (6)

Hence the ML decoding complexity is reduced to a large
extent depending on the value ofg. In particular, the decoding
complexity is reduced from2λ to g2

λ
g where, λ depends

on the rate of transmission as measured in bits/s/Hz. In this
paper, we consider only the case ofg = 4. Combining all the
given requirements, the4-group ML decodable DSTC design
problem is thus to find space-time block codes satisfying the
following three constraints.

1) Any column should contain only the variables of the
design or only their conjugates.



yD,1 =
√
π1Pg0s+ w1

ri =
√
π1Pfis+ vi, ∀ i = 1, . . . , R

ti =
√

π2P
π1P+1

Airi, i = 1, . . . , N

ti =
√

π2P
π1P+1

Air
∗
i , i = (N + 1), . . . , R

yD,2 =
∑R

i=1
giti + w2

(1)

S =

[ √

π1P+1

π2P
IT1

s 0 . . . 0 0 . . . 0

0 A1s . . . ANs AN+1s
∗ . . . ARs

∗

]

HT =
[

g0 g1f1 . . . gNfN gN+1f
∗
N+1 . . . gRf

∗
R

]

W =

[

w1
√

π2P
π1P+1

(

∑N

i=1
giAivi +

∑R

i=N+1
giAiv

∗
i

)

+ w2

]

(3)

2) All the relay matrices should be unitary.
3) The weight matrices of the code should satisfy the

conditions for 4-group decodability.

III. C ODE CONSTRUCTION PROCEDURE

Having described the problem statement, in this section we
explicitly construct a new class of rate one, full diversityfour-
group ML decodable DSTCs.
Consider the following design of sizeR ×R,

S =

[

A −BH

B AH

]

(7)

where,A and B are identical R
2
× R

2
designs in different

variables. If the codewords inA commute with the codewords
in B, then we have

SHS =

[

AHA+BHB 0
0 BBH +AAH

]

. (8)

This ensures that the codeS is two-group ML decodable, one
group involving variables inA and the other group involving
the variables inB. This fact was exploited in [11] to construct
two-group ML decodable DSTCs. This construction procedure
was named as ’Doubling construction’ in [11]. However, note
that in addition ifA and B are individually two-group ML
decodable, then it can be easily shown that the codeS will be
four-group ML decodable. In this paper, we essentially exploit
this fact. Hence we require two-group ML decodable codes
whose codewords commute among themselves. Towards that
end, consider the following2× 2 designs.

C1 =

[

s1 s2
−s2 s1

]

and C2 =

[

s1 s2
s2 s1

]

We can show that bothC1 andC2 are two-group ML decod-
able codes. For the designC2, the two groups are{s1I , s2Q}
and {s1Q, s2I} respectively. More importantly, we have the
following identity true for any complex numberγ.
[

s1 s2
γs2 s1

] [

s′1 s′2
γs′2 s′1

]

=

[

s′1 s′2
γs′2 s′1

] [

s1 s2
γs2 s1

]

In other words, codewords arising from designC1 or C2

commute. Thus we can construct a4×4 design by substituting
eitherC1 or C2 for A andB in (7) as shown below.

S =









s1 s2 −s∗3 −s∗4
s2 s1 −s∗4 −s∗3
s3 s4 s∗1 s∗2
s4 s3 s∗2 s∗1









(9)

It can be easily verified thatS is indeed4-group ML decod-
able. The four-groups are{s1I , s2I}, {s1Q, s2Q}, {s3I , s4I}
and{s3Q, s4Q} respectively. To extend this approach for more
number of relays, we need to find designs analogous toC1

andC2 for higher dimensions. Towards that end, consider the
R
2
× R

2
design

D =

[

W X

X W

]

where,W and X are identicalR
4
× R

4
designs in different

variables. We call this construction as the ’ABBA’ construc-
tion. It is easy to check that if the designW or X is g-
group ML decodable, then the designD obtained using ABBA
construction is alsog-group ML decodable. Further, we have

»

W X

X W

– »

W ′ X′

X′ W ′

–

=

»

WW ′ +XX′ WX′ +XW ′

XW ′ +WX′ XX′ +WW ′

–

»

W ′ X′

X′ W ′

– »

W X

X W

–

=

»

W ′W +X′X W ′X +X′W

X′W +W ′X X′X +W ′W

–

.

Thus we observe that codewords obtained from designD

commute ifW ′W = WW ′, X ′X = XX ′, W ′X = XW ′

andX ′W = WX ′. SinceW andX are taken to be identical
designs, this simply means that if codewords inW commute,
then codewords ofD also commute. Using the above facts, we
now give our construction procedure for anyR = 2a relays
for a > 2.

Construction 1: The steps in the construction procedure are
enlisted as below.
Step 1: Starting with eitherC1 or C2, keep applying ABBA
construction iteratively on it till aR

2
× R

2
designC is obtained.

The designC will be two-group ML decodable and it will also
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have commuting codewords.
Step 2: Apply doubling construction (7) toC by substituting
C for A andB(albeit with different variables). Thus we obtain
a R×R design which will be four-group ML decodable.

Note that the codes designed using Construction 1 have the
property thatany column has only the variables or only their
conjugates. Moreover it can be shown that these codes have
unitary relay matrices as well as unitary weight matrices. This
leads to uniform distribution of power among the relays as well
as in time and hence low PAPR.

Example 1: Using construction 1, we get the
16 × 16 design shown in (10) at the top of this page.
The four groups of variables that can be decoded
separately are {s1I , s2I , . . . , s8I}, {s1Q, s2Q, . . . , s8Q},
{s9I , s10I , . . . , s16I} and {s9Q, s10Q, . . . , s16Q} respectively.
Observe that any column has only the variables or only its
conjugates. Further note that all the relay matrices are unitary.
It can also be checked that all the weight matrices are unitary.

A. Diversity of constructed codes

The constructed codes can be made to achieve full diversity
by letting the variables in each of the four groups to take
values from an appropriately rotatedZ

R
2 lattice constellation.

We would like to emphasize here that the variables in a group
should be allowed to take values independent of the variables
in the other groups. Algebraic number theory provides effec-
tive means to construct rotatedZn lattices with full diversity
and large minimum product distance [12]. Such lattices can
be used to obtain full diversity for our codes. We will now
illustrate how this can be done for the4× 4 design shown in
(9).

Note that the matrixS is invertible if eitherA or B is
invertible. This is because,

|S| = |SHS| 12 = |(AHA+BHB)(AAH +BBH)| 12
≥ max

{

|A|2, |B|2
}

(11)
where, the second inequality was obtained on application of
Corollary 4.3.3 in [13]. Therefore it is sufficient to show how
C2 can be made fully diverse. We have

|∆C2| = (∆s1 +∆s2)(∆s1 −∆s2). (12)

Therefore the condition for full-diversity is∆s1 6= ±∆s2.

Thus, if ∆s1I 6= ±∆s2I and ∆s1Q 6= ±∆s2Q then full
diversity is guaranteed. Let us definep = 1√

2
(s1I + s2I) and

q = 1√
2
(s1I − s2I). Then the required condition is simply

∆p∆q 6= 0, which is nothing but non zero product distance.
So letp, q take values from a rotatedZ2 lattice constellation
designed to maximize product distance [12]. Then lets1I =
p+q√

2
and s2I = p−q√

2
. Similarly it is done fors1Q, s2Q also.

Thus we have
[

s1I
s2I

]

=

[

1√
2

1√
2

1√
2

− 1√
2

]

GZ
2 (13)

[

s1Q
s2Q

]

=

[

1√
2

1√
2

1√
2

− 1√
2

]

GZ
2 (14)

where,G =

[

−0.5257311121 −0.8506508083
−0.8506508083 0.5257311121

]

.

In this manner, we can show that it is possible to achieve
full diversity for all the codes in this paper.

IV. SIMULATION RESULTS

In this section, we compare the performance of the newly
proposed DSTC for a4 relay network (9) with that of DSTCs
from CIOD [2] and field extensions [6], [7], [8]. The power
allocation factors used for the simulation areπ1 = T , and
π2 = 1

R
. The signal sets chosen for the different DSTCs are

as follows:
1) CIOD - QPSK rotated by31.7175◦

2) Field extension - QPSK
3) Newly proposed code - QPSK appropriately rotated as

explained in subsection A of Section III.
Fig.1 shows the codeword error rate comparison of the

newly proposed DSTC with that of DSTCs from CIOD and
field extensions. Observe from Fig.1 that the newly proposed
code performs slightly better compared to the4-group ML
decodable CIOD [2]. Moreover its performance is only slightly
inferior compared to the1-group ML decodable DSTC from
field extensions [6], [7], [8].

V. D ISCUSSION

A class of full diversity 4-group ML decodable DSTCs
with unitary relay matrices and unitary weight matrices were
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Fig. 1. Performance comparison of the proposed code with DSTCs from CIOD and field extension

explicity constructed in this paper for number of relays of
the formR = 2a, a ∈ N. The effect of power allocation on
the error performance was not considered in this work and
is an interesting problem for further work. Further study on
the codes of this paper has revealed an interesting algebraic
structure which gives a unifying theory of several known codes
in the literature including the ones in this paper. An algebraic
approach to designing these codes is currently under progress.
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