
ar
X

iv
:0

81
1.

04
13

v1
  [

cs
.IT

]  
4 

N
ov

 2
00

8

Robust Linear Processing for Downlink Multiuser
MIMO System With Imperfectly Known Channel

Pengfei Ma, Xiaochuan Zhao, Mugen Peng, Wenbo Wang
Beijing University of Posts and Telecommunications

Beijing, China

Abstract—In practical systems, due to the time-varying radio
channel, the channel state information (CSI) may not be known
well at both transmitters and receivers. For most of the current
multiuser multiple-input multiple-output (MIMO) schemes , they
suffer a significant degression on the performance due to the
mismatch between the true and estimated CSI. To alleviate
the performance penalty, a robust downlink multiuser MIMO
scheme is proposed in this paper by exploiting the channel
mean and antenna correlation. These channel statistics aremore
stable than the imperfect CSI estimation in the time-varying
radio channel, and they are used, in the proposed scheme, to
minimize the total mean squared error under the sum power
constraint. Simulation results demonstrate that the proposed
scheme effectively mitigates the performance loss due to the CSI
mismatch.

Index Terms—multiuser MIMO, downlink, robust, imperfect
CSI.

I. I NTRODUCTION

The multiple-input multiple-output (MIMO) system, em-
ploying multiple transmit and receive antennas, has been rec-
ognized as an effective way to improve the spectral efficiency
of the radio channel [1] [2]. More recently, multiuser schemes
have been investigated for MIMO systems to further improve
the multiuser sum capacity.

Early studies have assumed a perfectly knowledge of the
channel state information (CSI) available at the transmitter. [3]
extended the single-user scheme [4] to the multiuser system.
However, without exploring the multiuser channel information,
it simply treated the multiuser interference as the white noise.
The scheme in [5], on the contrary, utilized the multiuser
information effectively to minimize the total mean squared
error (TMMSE) and, naturally, possessed a better performance.

The CSI can be obtained at the transmitter either by using
a feedback channel from the receiver to the transmitter in
frequency division duplex (FDD) systems, or by invoking the
channel reciprocity in time division duplex (TDD) systems.
However, using feedback in FDD systems, the limited re-
sources for the feedback, associated with the propagation delay
and schedule lag, heavily degrade the accuracy of the CSI at
the transmitter. As to the channel reciprocity in TDD systems,
the accuracy of the CSI is corrupted by antenna calibration
errors and turn-around time delay. In respect that the perfor-
mance would degrade significantly under the imperfect CSI,
it is necessary to design a multiuser scheme which is stable
to the imperfect CSI.

In robust design methodologies, Maxmin (worst-case) and
Bayesian (stochastic) are two well known ones [7]. The

former optimizes the performance under the worst case of
random channels, thus, it is so conservative that its average
performance is even worse than non-robust schemes [8]. The
latter maximizes the ensemble average performance over a
pre-described stochastic distribution of the CSI. When the
stochastic distribution matches well with the true CSI, the
latter outperforms the former.

The scheme in [7] was a Bayesian design for downlink
multiuser MIMO systems with the imperfectly known CSI.
It introduced a channel error matrix to the cost function of
[3], then found the solution which minimized the average
cost. However, similar with [3], the multiuser interference was
also treated as the white noise. Therefore, it is expected that
the performance can be improved by exploring the multiuser
information.

In this paper, a robust scheme for downlink multiuser
MIMO systems is proposed based on the TMMSE criterion. A
more general channel model involving the channel mean and
antenna correlation is considered. The scheme is a Bayesian
design which minimizes the average cost function under the
sum power constraint.

The rest of this paper is organized as follows. The channel
model and problem formulation are described in Section II.
The Section III presents the design of the robust multiuser
scheme for the correlated imperfect known channel under
the sum power constraint. Simulation results and analysis are
given in Section IV. Finally, the Section V concludes the paper.

Notation: Boldface upper-case letters denote matrices, and
boldface lower-case letters denote column vectors.tr(·), (·)∗,
(·)H , || · ||2 and|| · ||F denote trace, conjugate, conjugate trans-
position, Euclidian norm and Frobenius norm, respectively.
E(·) represents the expectation of a stochastic process.[·]i,j ,
[·]:,j denote the(i,j)-th element andj-th column of a matrix,
respectively.

II. PROBLEM STATEMENT

A. Channel Model

Consider a base station (BS) withM antennas andK
mobile stations (MS’s) each havingNi(i = 1 . . .K) antennas.
Represented by a matrixHi ∈ CNi×M , the downlink MIMO
channel to MSi is assumed to be frequency-flat and quasi-
static block fading. Suppose a non-zero-mean channel with
both transmit and receive antenna correlations,Hi is written
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as follows [9][11]

Hi =

√

Wi

Wi + 1
H̃0,i +

√

1

Wi + 1
R

1

2

0,r,i∆iR
1

2

t (1)

where Wi is the ratio of the power in the mean compo-
nent to the average power in the variant component ofHi;
∆i ∈ CNi×Ni is random, we assume that its entries form
an independent identical distribution (i.i.d.) complex Gaussian
collection with zero-mean and identity covariance, i.e.,∆i ∼
CN (0, 1); H̃0,i ∈ CNi×M is the normalized channel mean,
and R0,r,i ∈ CNi×Ni and Rt ∈ CM×M are the normalized
correlation matrices of the receiver of MSi and the transmitter
of BS, respectively. (1) is rewritten into the following for
simplicity [11]

Hi = H̃i +R
1

2

r,i∆iR
1

2

t (2)

where H̃i =
√

Wi/(Wi + 1)H̃0,i is the channel mean, and
Rr,i = 1/(Wi + 1)R0,r,i is the equivalent correlation matrix
of the receiver of MSi.

The channel mean and correlation are more stable than
the instantaneous channel information, and they are usually
acquired by time-averaging on channel measurements. In the
Rayleigh channel, for example, the non-zero channel meanH̃i

is obtained by averaging channel measurements over a window
of tens of the channel coherence time [10]. Furthermore, the
channel model (2) can also denote the correlated Rician MIMO
channel, in which case the channel mean represents the line-
of-sight (LOS) component of the MIMO channel.

In this paper, we assume that transmitters and receivers only
know channel means and antenna correlations.

B. Problem Formulation

We assume that there areLi(i = 1 . . .K) substreams
between BS and MSi(i = 1 . . .K), that is to say, BS transmits
Li symbols to MSi simultaneously. Then the signal received
at MSi is

yi = AH
i Hi

K
∑

k=1

Bkxk +AH
i ni (3)

whereyi ∈ CNi×1 is the received signal vector, andxi ∈
CLi×1 is the transmitted signal vector from BS to MSi with
zero-mean and normalized covariance matrixI. We assume the
transmitted signal vectors of different users are uncorrelated,
i.e., E

(

xix
H
j

)

= δijI, whereδij is the Kronecker function,
δij = 1, wheni = j andδij = 0, wheni 6= j. We also assume
the noise vector is independent of any signal vector. A linear
post-filter Ai ∈ CNi×Li(i = 1 . . .K) is used at MSi to
recover an estimation of the transmitted signal vectorxi. Hi

defined in (1) [or (2)] denotes the MIMO channel from BS
to MSi. Bi ∈ CM×Li(i = 1 . . .K) is used at BS to weight
the transmitted signal vectorxi. After passing throughBi, xi

becomes into anM × 1 signal vector which is transmitted
by M transmit antennas of BS.ni ∈ CNi×1 is the noise
vector with the correlation matrixRni

= σ2
nINi

, whereINi

denotes theNi×Ni identity matrix. In this paper, we assume
L1 = · · · = LK = L.

Ai andBi (k = 1 . . .K) are jointly designed to minimize
the total MSE under the sum power constraint. Hence, we get

min TMSE = E

(

K
∑

k=1

||xk − yk||
2

)

s.t. tr

(

K
∑

k=1

BkB
H
k

)

≤ P

(4)

whereP is the total transmit power of BS.

III. ROBUST TMMSE SCHEME

According to (3), thej-th user’s MSE is

MSEj = E
(

||xj − yj ||2
)

= E(tr(AH
j Hj(

K
∑

i=1

BiB
H
i )HH

j Aj + σ2
nA

H
j Aj

−BH
j HH

j Aj −AH
j HjBj + I))

(5)
Substitute (2) into (5) and noteE (Hi) = H̃i, hence

E
(

R
1

2

r,i∆iR
1

2

t

)

= 0, we obtain

MSEj = tr(AH
j H̃j(

K
∑

i=1

BiB
H
i )H̃H

j Aj + σ2
nA

H
j Aj

−BH
j H̃H

j Aj −AH
j H̃jBj + I) + E(tr(AH

j

R
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2
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1

2

t (
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H
i )R

1

2
H

t ∆H
j R

1

2
H

r,j Aj))

(6)
Observe the last part in (6)

E(tr(AH
j R

1

2

r,j∆jR
1

2

t (
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∑
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BiB
H
i )R

1

2
H

t ∆H
j R

1

2
H
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= tr(R
1

2
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BiB
H
i )R

1

2
H

t E(∆H
j R

1

2
H

r,j AjA
H
j R

1

2

r,j∆j))

(7)
Moreover, as ∆i ∼ CN (0, 1) with i.i.d. entries,

E([∆j ]:,n ([∆j]:,m)H) = δn,mI. Therefore, the(m,n)-th
entry of the expectation in the right side of (7) is

E(
[

∆H
j R

1

2
H

r,j AjA
H
j R

1

2

r,j∆j

]

m,n
)

= E(([∆j]:,m)HR
1

2
H

r,j AjA
H
j R

1

2

r,j [∆j]:,n)

= tr(R
1

2
H

r,j AjA
H
j R

1

2

r,jE([∆j ]:,n ([∆j]:,m)H))

= δn,mtr(R
1

2
H

r,j AjA
H
j R

1

2

r,j)

= δn,mtr(AH
j Rr,jAj)

(8)
Thus, the expectation in the right side of (7) is

E(∆H
j R

1

2
H

r,j AjA
H
j R

1

2

r,j∆j) = tr(AH
j Rr,jAj)I (9)

Substitute (9) into (7), we obtain

E(tr(AH
j R

1

2
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1
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H
i )R
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= tr(R
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K
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BiB
H
i )R

1

2
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t tr(AH
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= tr(AH
j Rr,jAj)tr((
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BiB
H
i )Rt)

(10)



Substitute (10) into (6)

MSEj = tr(AH
j H̃j(

K
∑

i=1

BiB
H
i )H̃H

j Aj + σ2
nA

H
j Aj

−BH
j H̃H

j Aj −AH
j H̃jBj + I)

+tr(AH
j Rr,jAj)tr((

K
∑

i=1

BiB
H
i )Rt)

(11)
The Lagrangian of (4) is

L(A1, . . . ,AK ,B1, . . . ,BK)

=
K
∑

k=1

MSEk + λ(tr(
K
∑

k=1

BkB
H
k )− P )

(12)
where λ is the Lagrangian multiplier associated with the
total power constraint. So the Karush-Kuhn-Tucker (KKT)
conditions [10] of (4) are

∂L(A1, ...,AK ,B1, ...,BK)

∂A∗
i

= 0 (13)

∂L(A1, ...,AK ,B1, ...,BK)

∂B∗
i

= 0 (14)

λ

(

tr(

K
∑

i=1

BiB
H
i )− P

)

= 0 (15)

λ ≥ 0 (16)

Among them, (13)(14) come from the fact that the gradients
of the Lagrangian (12) definitely vanish at the optimal point,
and (15) is known as the complementary slackness. According
to (11)∼(14), we obtain

Ai = (H̃i(
K
∑

k=1

BkB
H
k )H̃H

i + tr((
K
∑

k=1

BkB
H
k )Rt)Rr,i

+σ2
nI)

−1H̃iBi

(17)

Bi = (
K
∑

k=1

H̃H
k AkA

H
k H̃k + tr(

K
∑

k=1

AkA
H
k Rr,k)Rt

+λI)−1H̃H
i Ai

(18)
Substitute (18) into (15) , we can findλ is the root of the

equation

λ(tr (X(X+Y + λI)
−2

)− P ) = 0 (19)

where

X =
K
∑

k=1

H̃H
k AkA

H
k H̃k (20)

Y = tr(

K
∑

k=1

AkA
H
k Rr,k)Rt (21)

As Rt is the normalized correlation matrix of the transmitter,
it is Hermitian, hence bothX andY are Hermitian, and so is
X+Y. Perform the eigenvalue decomposition

X+Y = UDUH (22)

whereU is unitary andD is diagonal. Ifλ 6= 0, (19) can be
rewritten to

M
∑

n=1

[

UHXU
]

n,n

(dn + λ)2
− P = 0 (23)

wheredn is then-th diagonal element ofD. Using a binary
search, the root of (23) can be found quickly. Since the left-
hand side of (23) is monotonous inλ whenλ ≥ 0, the upper
and lower bounds onλ can be acquired by replacingdn with
dmin anddmax, respectively. Thus,

λupper =

(
√

tr(X)

P
− dmin

)+

(24)

λlower =

(
√

tr(X)

P
− dmax

)+

(25)

where (·)+ means that the expression takes the value inside
the parentheses if the value is positive, otherwise it takeszero.
A numerical binary search, then, can be carried out between
these two bounds to find the root of (23) up to a desired
precision. Once there is no root between the bounds, which
implies that the inequality constraint (16) is inactive,λ = 0
is the only available solution to (18). From (17) (18), it can
be found that the optimal transmit matricesBk(k = 1 . . .K)
are functions of the receive matricesAk(k = 1 . . .K), and
vice versa. Therefore an iterative algorithm to calculateAk

andBk(k = 1 . . .K) is proposed as follows.

Initialize B
(0)
k

and A
(0)
k

(k = 1 . . . K) randomly.

n = 0

1) Calculate λ from A
(n)
k

(k = 1 . . .K) by

solving (19).

2) Calculate B
(n+1)
k

(k = 1 . . .K) from A
(n)
k

(k = 1 . . . K) and λ using (18).

3) Calculate A
(n+1)
k

(k = 1 . . .K) from B
(n+1)
k

(k = 1 . . . K) using (17).

4) Repeat 1), 2) and 3) until
K
P

k=1

(||A
(n+1)
k

−A
(n)
k

||2F + ||B
(n+1)
k

−B
(n)
k

||2F ) < ε.

In our simulation, we set ε = 0.0001.

IV. SIMULATION RESULTS

In this section, numerical simulations have been carried
out to evaluate the performance of the proposed scheme. We
assume that the BS equipped with four antennas (M = 4) is
communicating with two MS’s (K = 2) each withN receive
antennas (N1 = N2 = N ). Also we assume that the number of
substreams of each MS is equal to2 (L1 = L2 = 2), moreover,
both the two MS’s have the sameWi (W1 = W2 = W ).
QPSK is employed in the simulations and no channel coding
is considered. Let the transmit antenna correlation matrixRt

be [Rt]i,j = 0.9|i−j| and the receive antennas be uncorrelated,
i.e., Rr,i = IN .
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Fig. 1. Comparison of the BER performance of the robust scheme and the
TMMSE, whenN = 2 andW = 10, 50, 200, 1000.

Firstly, we compare the bit error rate (BER) of the proposed
robust TMMSE scheme with that of the traditional TMMSE
scheme. Defining the signal-to-noise ratio (SNR) as the ratio
of total transmitted power to the noise power of each antenna
(SNR = P/σ2

n), Fig. 1 is the average BER curves versus
the SNR WhenN = 2. In order to highlight its impact on
the BER performance, different values ofW are used in the
evaluations. WhenW is small, the channel mean poorly re-
flects the instantaneous channel state, thus the receiver can not
completely eliminate the interference among the transmitted
signals, which further induces an irreducible error floor athigh
SNR region. However, the proposed robust scheme overcomes
the traditional one with a noticeable gain. As theW increases,
the transmitter obtains more precise CSI, therefore the residual
interference is mitigated greatly and the error floor vanishes.
In addition, the gain between the proposed robust scheme and
the traditional one turns small when the uncertainty of the
channel state is decreasing.

In Fig. 2, we compare the BER performance when the
number of receive antennas is increasing. The additional
receive antennas provide more spatial diversity gain. In this
figure, W is fixed to be50 and N changes from2 to 4.
Although both the two schemes explore the additional receive
diversity gain, the proposed robust scheme obviously has a
better performance for allN ’s due to its insensitivity to the
imperfect CSI.

Fig. 3 shows the average MSE as a function ofW , when
SNR = 20dB andN = 2. The average MSE of the proposed
robust scheme is less than that of the traditional TMMSE
scheme over allW ’s. Moreover, compared to the traditional
TMMSE, the descending slope of the proposed robust scheme
is flat, which further indicates that its performance is insensi-
tive to the channel uncertainty. Especially whenW becomes
larger, more reliable CSI is available, therefore closer the two
curves get.

Fig. 4 illustrates the convergence property of the proposed
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Fig. 2. Comparison of the BER performance of the robust scheme and the
TMMSE, whenN = 2, 3, 4 andW = 50.
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robust scheme, whenN = 2, W = 100. The curves of
the average MSE versus the number of iterations needed
in different SNR’s are plotted. The higher the SNR is, the
more iterations the proposed scheme runs for to converge.
Fortunately, for the most SNR’s, four iterations are big enough
to guarantee the convergence.

V. CONCLUSION

In this paper, we investigate a robust linear processing
scheme for the downlink multiuser MIMO system under the
consideration of imperfect CSI. As the traditional downlink
multiuser MIMO systems depend on the instantaneous CSI too
much, they suffer poor performance once the CSI is not accu-
rate enough. In order to deliver a better performance under the
imperfect CSI, an iterative Bayesian algorithm which explores
channel statistics to offer a much more stable description to the
channel state is developed by minimize the total MSE under
the sum power constraint. Numerical simulations exhibit the
proposed robust scheme experiences an obvious performance
gain over the traditional schemes. In addition, the proposed
iterative algorithm has a good convergence property – after
no more than four times of iterations, the algorithm achieves
convergence.

REFERENCES

[1] I. Telatar, ”Capacity of multi-antenna Gaussian channels”, Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999.

[2] Q. Caire and S. Shamai, ”On the achievable throughput of amultiantenna
gaussian broadcast channel”,IEEE Trans. Inf. Theory, vol. 49, no. 7, pp.
1691-1706, July 2003.

[3] A.J.Tenenbaum and R.S.Adve, ”Joint multiuser transmit-receive optimiza-
tion using linear processing”,IEEE Intl. Conf. on Commun., vol.1, pp.588-
592, June 2004.

[4] D.P.Palomar, J.M.Cioffi, and M.A.Lagunas, ”Joint Tx-Rxbeamforming
design for multicarrier MIMO channels: a unified framework for convex
optimization”, IEEE Trans. Signal Processing, vol.51, pp.2381-2401,
Sept. 2003.

[5] J.F. Zhang and M.G. Xu, ”Minimum system-wide mean-squared error
for downlink spatial multiplexing in multiuser MIMO channels”, in proc.
IEEE golbalcom’05, vol. 5, pp. 4, DEC. 2005.

[6] M. Vu and A. Paulraj, ”MIMO Wireless Precoding”,IEEE Signal
Processing Magazine, accepted in 2006.

[7] H. Li and C.Q. Xu, ”Robust Optimization of Linear Precoders/Decoders
for Multiuser MIMO Downlink with Imperfect CSI at Base Station”, in
proc. IEEE WCNC’07, pp. 1129-1133, Mar. 2007.

[8] H.T. Sun and Z. Ding, ”Robust precoder design for MIMO packet
retransmissions over imperfectly known flat-fading channels”, in proc.
IEEE ICC, vol.7, pp. 3287-3292, June 2006.

[9] A. Hjorungnes, D. Gesbert and J. Akhtar, ”Precoding of Space-Time
Block Coded Signals for Joint Transmit-Receive CorrelatedMIMO Chan-
nels”, IEEE Trans. Wireless Commun., vol.5, pp.492-497, Mar. 2006.

[10] S. Boyd and L. Vandenberghe, Convex Optimization,Cambridge: U.K.
Cambridge University Press, 2004.

[11] M. Vu and A. Paulraj, ”Optimal Linear Precoders for MIMOWireless
Correlated Channels With Nonzero Mean in Space-Time Coded Systems”,
IEEE Trans. Signal Processing, vol. 54, no. 6, pp. 2318-2332, June 2006.


	Introduction
	Problem statement
	Channel Model
	Problem Formulation

	Robust TMMSE Scheme
	Simulation results
	Conclusion
	References

