
RBMulticast: Receiver Based Multicast for Wireless
Sensor Networks

Chen-Hsiang Feng, Wendi B. Heinzelman
Department of Electrical and Computer Engineering

University of Rochester
Rochester, NY, USA

Email:{feng,wheinzel}@ece.rochester.edu

Abstract—Multicast routing protocols typically rely on the a-
priori creation of a multicast tree (or mesh), which requires
the individual nodes to maintain state information. In sensor
networks where traffic is bursty, with long periods of silence
between the bursts of data, this multicast state maintenance adds
a large amount of overhead for no benefit to the application.
Thus, we have developed a stateless receiver-based multicast
protocol that simply uses a list of the multicast members
(e.g., sinks), embedded in packet headers, to enable receivers
to decide the best way to forward the multicast traffic. This
protocol, called RBMulticast (Receiver-Based Multicast), exploits
the knowledge of the geographic locations of the nodes to remove
the need for costly state maintenance (e.g., tree/mesh/neighbor
table maintenance), making it ideally suited for sensor network
multicast applications. RBMulticast was implemented in TinyOS
and tested using a sensor network implementation as well as
TOSSIM simulations. Both simulation and experimental results
confirm that RBMulticast provides high success rates without the
burden of state maintenance.

I. I NTRODUCTION

Communication in sensor networks is hindered by the
limited energy capacity of the individual sensor nodes. Con-
sequently, reducing the total number of packets transmitted
throughout the network is essential for power conservation.
For sensor networks with multiple sink nodes, multicast
routing is an ideal approach to manage and reduce network
traffic. Reducing the number of packets transmitted when
multicasting data requires both shorter routing paths from
the multicast source to the multicast members, as well as
improved efficiency in terms of the total number of links the
packets traverse to get to all the multicast members, i.e., the
packet should be split off to different routing branches only
when necessary. Shorter routing paths lead to reduced packet
delay, and improved efficiency leads to a reduction in the
energy consumption from transmitting fewer packets. These
two properties are usually contradictory to each other, and
algorithms must make a trade-off to best fit their requirements.

In this paper, we develop a novel multicast protocol called
RBMulticast (Receiver-Based Multicast). RBMulticast is a
completely stateless multicast protocol, using only location
information with no tree creation or maintenance or even
neighbor table maintenance, which makes it ideally suited
for sensor networks. Packet routing and splitting packets into
multiple routes relies solely on the location information of
each multicast member, which is assumed to be known.

RBMulticast is areceiver-based protocol (as with the ExOR
protocol [1]), which means that a sender can transmit packets
without specifying the next hop node, because the potential
receivers of this packet make the decision of whether or not
to forward this packet in a distributed manner. This approach
for transmitting packets means that routing is a result of
the joint decisions of all participating nodes. Therefore,no
routing tables are required within the sender node, as potential
receivers decide on a valid route.

RBMulticast was motivated by the cross-layer protocol
XLM [2], which is a receiver-based unicast protocol designed
for WSNs. As in XLM, RBMulticast assumes a MAC protocol
whereby receivers contend for channel access based on their
assessed contribution towards forwarding the packet. Nodes
with more energy and better links and nodes that make the
most forward progress to the destination will contend earlier
and hence have a higher chance to become the next-hop node.
In RBMulticast, we extend this idea for multicast routing by
using the concepts of a “virtual node” and a “multicast region”
for forwarding packets closer to the destination multicast
members and determining when packets should be split into
separate routes to finally reach the multicast members.

We implemented RBMulticast in TinyOS and performed
experiments using a Tmote Sky test-bed as well as TOSSIM
simulations. Results of these experiments show that RBMul-
ticast maintain high success rate (e.g., over 80%) in highly
dynamic networks, where nodes only receive packets in a 10
ms interval and change radio state every 100 ms. This level
of performance in such dynamic networks is not easy using
other multicast approaches because nodes must keep updated
information about the network. We believe that RBMulticastis
lightweight and robust, making it ideally suited for multicast
applications in dynamic sensor networks.

II. RELATED WORK

Existing multicast protocols for WSNs and mobile ad hoc
networks (MANETs) generally use a tree to connect the
multicast members. For example, the Takahashi-Matsuyama
heuristic can be used to incrementally build a Steiner tree for
multicast routing [3]. Additionally, multicast algorithms rely
on routing tables maintained at intermediate nodes for building
and maintaining the multicast tree [4].

Due to the specificities of WSNs, knowing sensor nodes’
locations is a reasonable assumption. In the location-based ap-
proach to multicast routing, nodes obtain location information
by default as an application requirement (e.g., a home fire
alarm would know where it is located) or as provided by a
system module (e.g., GPS or a location-finding service). If
location information is known, multicast routing is possible
based solely on location information without building any
external tree structure. For example, PBM [5] weights the
number of next hop neighbor nodes and total geographic
distance from the current node to all destination nodes and
compares this to a predefined threshold to decide whether or
not the packet should be split. Geocast [6] delivers multicast
packets by restricted flooding. Nodes forward multicast pack-
ets only if they are in the Forwarding Zone calculated at run
time from global knowledge of location information.

RBMulticast differs from these approaches in that it is
completely stateless and hence no costly state maintenance
is required. PBM [5] uses a similar idea of stateless multicast
but requires information about neighbor nodes. RBMulticast
further eliminates the requirement of knowing a node’s neigh-
bors by using a receiver-based mechanism, and only the
location of the nodes is needed for multicast packet routing.
Additionally, RBMulticast includes a list of the multicast
members in the packet header, which prevents the overhead
of building and maintaining a multicast tree at intermediate
sensor nodes, because all the necessary information for routing
the packet is included within the packet header. We believe that
RBMulticast requires the least state of any multicast routing
protocol and is thus ideally suited for WSNs

Receiver-based communication is a different way of think-
ing about protocol design in that decisions are not requiredto
be made at the sender side but instead are made at the receiver
side. For example, a source node in ExOR [1] broadcasts
packets that include a potential forwarders’ list inside the
header, and these potential forwarders will contend to forward
the packet through the use of different back-off times, which
depend on the network distance to the destination. A source
node in XLM [2] broadcasts packets with the destination’s ge-
ographic location in the header, and every receiver contends to
forward the packet through the use of different back-off times,
which depend on the geographic distance to the destination.
In other words, in receiver-based routing, decision-making is
deferred to the possible receivers, who make decisions in a
distributed manner.

Receiver-based routing is different from “On-demand” or
“Reactive” routing in that reactive routing calculates a route
at the time a packet is sent down to the MAC layer. For
example, AODV [7] begins transmission by first sending a
“RouteRequest” to create temporary routes among intermedi-
ate nodes and then transmits data packets through this route.
The ability to transmit data without requiring a route to be
formed is enabled via extra knowledge in the MAC layer
and join decisions of sensor nodes. For example, nodes could
be assigned an ID in a structured manner and hence next
hop nodes are implied in the destination address itself. In

this case, packets are broadcast by the MAC layer, and only
potential next-hop nodes relay it to the destination. As another
example, nodes may have statistics (e.g., energy, channel
quality) that could assist in making forwarding decisions.
A source node can send an RTS packet, enabling potential
receivers to contend for the ability to forward the packet, with
the receiver node that has the best route being the first to return
a CTS to receive this packet.

III. RBM ULTICAST PROTOCOL DESCRIPTION

RBMulticast is a receiver-based Network layer protocol
that performs multicast routing based on multicast members’
location information. There are some assumptions for RBMul-
ticast. First, we assume that there exists aLocation Service
module inside the protocol stack, which accepts a query of
the network address of a node and returns the 2-dimensional
coordinates of that node. Second, we assume a receiver-based
MAC protocol exists in the Link layer. The next hop of a route
should be decided among potential receivers (e.g., through
receiver contention). Third, we assume that the receiver-based
Link layer only needs the sender node’s location and the
destination node’s location to decide the next hop route, and
that both are provided in the MAC packet.

We also assume that the “void” (hole) problem in geo-
graphic routing is solved implicitly in the MAC layer. Perime-
ter stateless routing, as used in GPSR [8], is a possible solution
to holes in the network, but this requires a neighbor table
to generate a graph representation of the network, which is
against our ultimate goal of a completely stateless protocol.
Instead, in our implementation, we combine the receiver-based
MAC protocol with the “Water Flowing” idea from TORA [9],
where each node has an implicit “water height” and packets
cannot flow from a lower to a higher water level. Nodes
increase their height when they determine that they are near
a void area, which will automatically prevent packets from
using this route in the future.

A. RBMulticast Overview

Nodes in RBMulticast create what we call “multicast re-
gions” centered around themselves. There are several ways to
create these regions (see Section III-B), but for simplicity it
can be assumed that each multicast region corresponds to one
quadrant of the network, for a grid centered at the node, as
shown in Figure 1. When a user initiates a request to send a
packet to a multicast group, data are passed down to the RB-
Multicast module in the Network layer of the protocol stack.
Once the RBMulticast module gets this packet, it retrieves the
group list from its group table, compares the group nodes’
location to the multicast regions, and calculates a virtualnode
location for each multicast region. RBMulticast replicates the
packet for each multicast region that contains one or more
multicast members and appends a header consisting of a list
of destination nodes (multicast members) in that region, TTL
(Time to Live) value, and a checksum value. The destination
of the packet is a “virtual node” for that multicast region,
which can be determined in several ways (see Section III-C),

but for simplicity it can be assumed to be the geometric mean
of the locations of all the multicast members in the multicast
region. In the end, all packets for all multicast regions are
passed down to the MAC layer, which broadcasts them to
the node’s neighbors. The node closest to the location of the
virtual node (as determined by receiver-based contention at the
MAC layer) will take responsibility for forwarding the packet.
The procedures for transmitting packets are summarized in
pseudo code in Algorithm 1.

Algorithm 1 RBMulticast Send
Require: Packet output from upper layer
Ensure: Packets output to lower layer
1: Get group listN from group table
2: for noden in group listN do
3: for multicast regionr in 4 quadrants regionsR do
4: if n ∈ r then
5: Add n into r.list

6: end if
7: end for
8: end for
9: for r ∈ R do
10: if r.list is non-emptythen
11: Duplicate a new packetp
12: Add RBMulticast header (TTL, checksum, r.list) to p

13: Outputp to lower layer
14: end if
15: end for

When a node receives a multicast packet, the packet is
passed up from the Link layer to the RBMulticast protocol.
RBMulticast first examines the checksum in the packet header,
and drops the packet if any corruption exists in the packet. It
then retrieves the destination nodes list from the RBMulticast
packet header. If this node is inside the destination list, it
removes itself from the list and passes a copy of the packet
up to the upper layers in the protocol stack. RBMulticast then
checks the TTL value and drops the packet if the TTL is
lower than a threshold. Finally, if there still remain nodes
in the destination list, multicast regions and virtual nodes
will be recalculated, and new packets will be generated if
required. The packets (one per multicast region that contains
multicast members) are then passed down to the Link layer
for transmission. The procedures for receiving packets are
summarized in pseudo code in Algorithm 2.

Figure 1 gives an example of how RBMulticast is em-
ployed in complex WSNs. The first two multicast regions
(in the south-west and north-west quadrants) contain only one
multicast member each, and thus a packet is sent directly to
these multicast destinations. The third multicast region has
three multicast members, and thus a single packet is sent to
a virtual node (with label 3 in the figure), which is located at
the geometric mean of the locations of the multicast members.
The fourth multicast region has no multicast members, and
hence no packet is transmitted into this region. Once the
packet sent towards virtual node 3 reaches an intermediate
node for which the multicast members are no longer in the
same multicast region, the node will split off packets to each
of the multicast regions, using either virtual nodes if there
are two or more multicast members in the multicast region or
sending the packet directly to the multicast member if it is the

Algorithm 2 RBMulticast Receive
Require: Packet input from lower layer
Ensure: Packets output to lower layer

Calculate checksum. Drop packet if error occur
Get destination listD from packet header
for noded in destination listD do

if I am d then
Duplicate the packet and input to upper layer
Removed from list D

end if
end for
if TTL in header =0 then

Drop all packets
return

end if
for multicast regionr in 4 quadrants regionsR do

if d ∈ r then
Add d into r.list

end if
end for
for r ∈ R do

if r.list is non-emptythen
Duplicate a new packetp
Add RBMulticast header (TTL − 1, checksum, r.list) to p

Outputp to lower layer
end if

end for

1

2

2

2

2

2

1

3

3

3

3

5
5

44

6

6

6
6

Fig. 1. Example showing how RBMulticast delivers multicastpackets. The
source node is the square node. Multicast members are shadedcircles, and
virtual nodes are dotted circles. Because every destination node will become
a virtual node at the end, they are all shown with dotted circles. The number
on the side of the lines indicate the destination of that packet.

only one in the multicast region.

B. Multicast Regions

Once a node receives a multicast packet (from the applica-
tion or from a previous hop node), it divides the network into
multicast regions, and it will split off a copy of the packet
to each region that contains one or more multicast members.
We show two possible divisions of the network into multicast
regions in Figure 2(a) and 2(b).

Dividing space into three 120 degree pieces is a straightfor-
ward approach because it resembles a Steiner tree in that every
node has three branches. To separate space into 120 degree
regions, we must calculate the angle to each destination node.
Calculating this angle relies on trigonometric calculations and
hence requires floating point operations. Most CPUs in current
sensor nodes do not support floating point operation due to the
demand for low power and low cost, and hence floating point
operations must be simulated by integer operations and are

(a)

120

(b) (c)

Fig. 2. a) and b) are two possible ways to divide a space into multicast
regions: a) dividing the space into four quadrants, and b) dividing the space
into three 120 degree pieces. c) demonstrates how to choose anext hop node.
The solid node is the source node, and the gray nodes are the multicast
members. The solid line is the route when choosing a target node near the
geographic mean of the multicast members, and the dotted line is the route
when choosing a target node close to the nearest multicast member. We can
see that the longest distance is two hops distance in the firstcase, and it is
three hops distance in the second case.

thus expansive. Moreover, multicast regions must recalculated
in each hop of packet delivery. We believe that this will
becomes an excessive burden on sensor nodes and is therefore
unacceptable.

The quadrants approach in some cases sends more packets
than the 120 degree angle approach, but the multicast region
calculation only needs two comparisons (X and Y axes) for
each multicast member and is extremely fast. We believe that
it is thus preferable and apply this 4 quadrants approach in
our implementation of the RBMulticast protocol.

C. Virtual Node

Network layer multicast protocols, which require multiple
destinations, are built on top of Link layer protocols that
typically allow only a single (unicast) or all (broadcast) desti-
nations. Possible ways to adapt the need for multiple multicast
destinations to a MAC layer that can only handle a single
destination are choosing a node near the geographic mean of
the multicast members, or choosing a node near the nearest
multicast node, as shown in Figure 2(c). The geographic mean
approach has fewer hops in general.

In RBMulticast, because we assume no knowledge of
neighbor nodes and routing tables, we assign a “virtual node”
located at the geographic mean of the multicast members
for each multicast region. This virtual node is used as an
imaginary destination for the multicast packet in that region.
The virtual nodes (as shown in Figure 1) are not necessarily
reachable or even physically exist. The idea behind this is that
even if a virtual node does not exist, we can still find a next
hop route using the assumed receiver-based MAC protocol to
get the packet closer to the location of the virtual node.

On the other hand, when using the nearest multicast node as
the destination, all node addresses physically exist and virtual
nodes are not necessary. However, with this approach we lose
the advantage of shorter routes as shown in Figure 2(c).

D. Destination List

The goal of our approach is to keep intermediate sensor
nodes from having to store any multicast routing state. Thisis
possible only if all required information to multicast a packet

Fig. 3. Packet header of the RBMulticast protocol.

is carried along with the packet. The question is how much
information the multicast packet needs to carry for successful
delivery to all multicast members.

Because we assume a receiver-based MAC layer, the next
hop is determined by a joint decision among potential re-
ceivers. The RBMulticast header does not need to carry any
state for routing the packet.

However, we still need to decide when the packet must be
split off to different destinations. This is usually implied by
tree branches in tree-based multicast approaches. Becauseof
the location information assumption, we use multicast regions
to decide when packets must be split off without any tree
structure. A packet will be split off to each multicast region if
multicast members exist in that region. Therefore, adestination
list is the only requirement for multicast packet delivery and
must be carried inside the packet header.

E. RBMulticast Header

Figure 3 offers an example of an RBMulticast header. The
first byte Protocol ID is for packet switching in the protocol
stack [10]. TTL (Time To Live) provides a maximum time,
in hop number, that a packet should last in the network.TOS
(Type Of Service) indicates 4 kinds of packets in RBMulticast,
which are “data”, “join”, “leave”, and “update” packets. The
update packets are used in group management and periodic
group list update.DLL (Destination List Length) indicates
how many nodes are in the node list, and thus will determine
the length of the header. The RBMulticast header size is not
fixed because the destination list length is variable.Source
Address stores the RBMulticast group address of this packet
andDestination List Address stores the addresses of theDLL
destination nodes.

The maximum number of multicast members allowed in
a group is restricted by the packet size. For packets in the
802.15.4 standard, maximum packet size is 128 bytes, and
hence the maximum number of nodes in the destination list
is around 50, if the data payload is not considered. However,
it is unlimited if the MAC layer can support segmentation or
aggregation of oversize packets.

One point worth noting is the overhead introduced by the
destination list. As with any multicast protocol that uses a
destination list, the packet header length will increase linearly
with the number of destination nodes, and thus RBMulticast is
not designed for applications with an extremely large number
of multicast members. The energy for sending the extra bytes
of data is negligible, but the probability of packet collision
will increase, which introduces extra energy consumption.The
impact of packet length on energy consumption can be reduced

(0,0)

(10,20)

(20,30)

(20,10)

(30,20)

(40,40)

0
1

2

4

3

5

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Y

X

Node# = 300

(b)

Fig. 4. a) The experimental network for comparing results inthe Tmote Sky
implementation and the TOSSIM simulations. Node 0 is the source node and
the shaded nodes are multicast destination nodes. b) Large scale experimental
network used for simulations. The source node is indicated by a square in the
left corner, and the multicast receiver nodes are indicatedby circles located
at the boundary of the region.

by adjusting the power control of the MAC protocol, as shown
in [11].

F. Group Management

Every node owns a multicast group and acts as a group
head. Nodes join and leave a group by sending “join” and
“leave” packets to the group head. Join and leave packets are
multicast packets with destination lists that contain onlythe
group head address.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of RBMulticast through a
test-bed implementation using Tmote Sky motes and through
simulation using TOSSIM. RBMulticast is implemented in a
new sensor network protocol stack framework called UPS [10],
with a MAC layer protocol XLM/MAC installed; this MAC
protocol is based on the MAC functionality of the XLM [2]
cross-layer protocol. XLM/MAC is a receiver based protocol
that uses location information in RTS/CTS/DATA/ACK hand-
shakes, and nodes jointly decide the next hop node through
receiver contention. Receivers close to the destination and
with low contention and high remaining energy have a higher
priority to become the next hop node and to route packets.

We test the RBMulticast protocol in a highly dynamic
scenario, where nodes have a very short duty cycle time
of 100 ms. For example, a duty cycle of 0.2 (20%) means
that in every 100 ms, nodes will turn their radios on for
20 ms and then go to sleep for the remaining 80 ms if not
transmitting/receiving. We use this highly dynamic scenario
to demonstrate the advantages of stateless multicast. Thatis,
RBMulticast can achieve high success rates and low latency
in a highly dynamic scenario where structured (e.g., tree)
approaches are difficult to employ.

For the first experiment, we collect data from six Tmote
Sky sensor nodes arranged in the topology shown in Figure
4(a). The statistics shown in Figure 5 compare the simulation
results of TOSSIM simulations with the results of the Tmote
Sky experiments. In this figure, we see that the implementation
results match closely with the simulation results. The success

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duty Cycle

S
uc

ce
ss

 R
at

e

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 P

ac
ke

ts

Tmote Sky: Success Rate
Tmote Sky: Total Packets Sent
Tossim: Success Rate
Tossim: Total Packets Sent

Fig. 5. Comparison of Tmote Sky implementation to TOSSIM simulations.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duty Cycle

S
uc

ce
ss

 R
at

e

node # =50
node # =150
node # =300

Fig. 6. Average success rate for the large-scale network.

rate is slightly higher in the TOSSIM simulations than in the
Tmote Sky implementation. This is because the Tmote Sky
mote (which contains a CC2420 radio chip) requires 8 ms
plus some CPU overhead to send/receive a packet, and this
is on the same order of the time it takes the radio to change
its status in our experiment (e.g., 20 ms for a duty cycle of
0.2). In this experiment we set the MAC layer re-try limit to
4 times before a packet is dropped, and the increased number
of packets sent for the Tmote Sky implementation is hence
due to the extra resent RTS packets. From these results, we
conclude that the TOSSIM simulations closely track the real
implementation results.

In the next experiment, we simulated the use of RBMulticast
under different network densities for large-scale WSNs, as
shown in Figure 4(b). There are a total of either 50, 150
or 300 nodes randomly distributed throughout the simulation
area. The source node is located at the bottom left corner
(0,0), and the multicast receiver nodes are scattered over the
boundary of the region. In order to increase the success rate
in the low duty cycle cases, we modify the MAC protocol to
try to send the RTS packet up to 30 times before the packet
is dropped.

We show the TOSSIM simulation results for the success
rates at different duty cycles and for different node densities
in Figure 6. The success rates for all three nodes densities
are around 0.8 and 0.9, with a slight decrease in the low duty
cycle regime. We believe that the reason RBMulticast does not
achieve 100% success rate is due to a MAC layer limitation.
Specifically, when an intermediate node splits packets to send

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Duty Cycle

A
ve

ra
ge

 P
ac

ke
t S

en
t

node # =50
node # =150
node # =300

Fig. 7. Total number of packets sent, including all MAC layerpackets (e.g.,
RTS/CTS/DATA/ACK).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

Duty Cycle

D
el

ay
 (

se
c)

node # =50
node # =150
node # =300

Fig. 8. Average packet delay for the large-scale network.

to the different “multicast regions,” it injects multiple packets
into the network in a short period of time, thus causing
local congestion in that area. This can be improved by using
more advanced MAC layer protocols with congestion control
capabilities.

Figure 7 shows the total number of packets sent in the sim-
ulations. Because the 50 node network is fairly sparse, more
repeated RTS packets are required to establish connections
between nodes, especially at low duty cycles since the sleep
times are not synchronized. Because the node density and re-
dundancy is high in the 150 and 300 node cases, fewer re-sent
RTS packets are required and hence this results in a lower total
number of packets sent. We expect that the number of packets
sent will remain the same as the number of nodes increases
further. We must emphasize that all packets in RBMulticast
are purely due to data transmission, no extra control packets
are needed, and thus the total number of packets sent does not
increase as the number of nodes increases.

Figure 8 shows the average packet delay for all multicast
nodes. In the low node density case (e.g., 50 nodes), packet
delay is large, as expected because the high RTS packets loss
rate results in large back-off times to resend RTS packets.
On the other hand, for the dense networks with 150 and 300
nodes, the packet delay is reduced and approaches an optimal
value of around 1 second.

V. CONCLUSION

Current multicast protocols generally rely on various tree
structures and hence intermediate nodes need to maintain tree
states or routing states for packet delivery. In this paper,we
presented a new stateless multicast protocol for WSNs called
Receiver-Based Multicast (RBMulticast). RBMulticast uses
geographic location information to route multicast packets,
where nodes divide the network into geographic “multicast
regions” and split off packets depending on the locations ofthe
multicast members. RBMulticast stores a destination list inside
the packet header; this destination list provides information on
all multicast members to which this packet is targeted. Thus,
there is no need for a multicast tree and therefore no tree state
is stored at the intermediate nodes. RBMulticast also utilizes
a receiver-based MAC layer to further reduce the complexity
of routing packets. Because we assume that the receiver-based
MAC protocol can determine the next hop node in a distributed
manner, the sender node does not need a routing table or
a neighbor table to send packets but instead uses a “Virtual
Node” as the packet destination. Thus RBMulticast requires
the least amount of state of any existing multicast protocol.
Our simulations and implementation of RBMulticast showed
that with the Receiver-based MAC protocol XLM/MAC, RB-
Multicast can achieve high success rates and low latency,
making RBMulticast well suited for dynamic sensor network
environments.

REFERENCES

[1] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless
networks,” SIGCOMM Computer Communications Review, vol. 34,
no. 1, pp. 69–74, 2004.

[2] I. Akyildiz, M. Vuran, and O. Akan, “A cross-layer protocol for wireless
sensor networks,” inProc. of CISS 2006, March 2006.

[3] K. Chen and K. Nahrstedt, “Effective location-guided tree construction
algorithms for small group multicast in manet,”INFOCOM. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3, pp. 1180–1189, 2002.

[4] A. Okura, T. Ihara, and A. Miura, “Bam: branch aggregation multi-
cast for wireless sensor networks,”Mobile Adhoc and Sensor Systems
Conference, 2005. IEEE International Conference on, pp. 10 pp.–, Nov.
2005.

[5] M. M. andand Holger Fuler, J. Widmer, and T. Lang, “Position-
based multicast routing for mobile ad-hoc networks,”SIGMOBILE Mob.
Comput. Commun. Rev., vol. 7, no. 3, pp. 53–55, 2003.

[6] Y.-B. Ko and N. H. Vaidya, “Geocasting in mobile ad hoc networks:
Location-based multicast algorithms,”wmcsa, vol. 0, p. 101, 1999.

[7] “Ad-hoc on-demand distance vector routing,”Mobile Computing Systems
and Applications, 1999. Proceedings. WMCSA. Second IEEE Workshop
on, pp. 90–100, 1999.

[8] B. Karp and H. T. Kung, “GPSR: greedy perimeter statelessrouting
for wireless networks,” inMobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and networking. New
York, NY, USA: ACM, 2000, pp. 243–254.

[9] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,”infocom, vol. 00, p. 1405, 1997.

[10] “UPS: Unified Protocol Stack for Wireless Sensor Networks,” under
submission.

[11] H. Chen and Y. Li, “Performance model of ieee 802.11 dcf with variable
packet length,”Communications Letters, IEEE, vol. 8, no. 3, pp. 186–
188, March 2004.

