
Local Estimation of Collision Probabilities in

802.11 WLANs: An Experimental Study

Miklos Christine, Michael N. Krishnan, Ehsan Haghani, and Avideh Zakhor

Department of EECS, U.C. Berkeley

Abstract—Current 802.11 networks do not typically achieve the
maximum potential throughput despite link adaptation and cross-
layer optimization techniques designed to alleviate many causes
of packet loss. A primary contributing factor is the difficulty in
distinguishing between various causes of packet loss, including
collisions caused by high network use, co-channel interference
from neighboring networks, and errors due to poor channel
conditions. In previous work, we used NS-2 simulations to show
that estimating various components of loss probability such as
direct collisions, staggered collisions, and physical layer errors,
can be used to improve the throughput of 802.11 networks via link
adaptation, carrier sense threshold adaptation, and MAC layer
packet length adaptation. We have also proposed a method to
estimate the various components of loss probability by comparing
channel occupancy at a station with that of its access point.
In this paper, we use Ath5k open source wireless card driver
in an experimental testbed in order to experimentally verify
the accuracy of our previously proposed approach to estimating
collision probability. We show that our proposed methodology
accurately estimates overall collision probability to within 5%.
This experimental verification demonstrates the feasibility of
our collision probability estimation approach and the resulting
throughput gains in practice.

I. INTRODUCTION AND RELATED WORK

In 802.11 WLANs, nodes cannot distinguish between packet

loss due to channel errors and collisions because the symptoms

are the same, namely a missing acknowledgement. The situa-

tions that result in each type of loss, however, require different

specific actions to maximize throughput. For instance, channel

errors occur when channel conditions are poor due to large

path loss or multipath fading. These errors can be mitigated

by using link adaptation (LA) to adapt the modulation and

coding levels of each transmission, or by using forward

error correction at the application layer. On the other hand,

collisions happen when multiple transmissions occur at the

same time causing interference and hence low relative signal

power. Collision avoidance in the 802.11 DCF is achieved

by means of the Binary Exponential Back-off scheme, where

colliding nodes choose a larger random back-off counter to

minimize repeat collision probability when retransmitting the

packet.

Current LA techniques based on loss statistics, such as Auto

Rate Fallback [1], perform poorly in the presence of collisions,

because collisions are misinterpreted as channel errors [2].

To this end, a number of methods have been proposed to

differentiate collisions from channel errors [3–7]. Most of

these algorithms attempt to differentiate between collision

and channel errors on a per-packet basis and, as such, are

either ineffective or result in large overhead. In [8], we

proposed a method for estimating the probability of collision

locally at each node in an 802.11 infrastructure network. In

this approach, all the stations and access points record their

received energy level at all time slots of 10µs duration. If

the received energy is higher than a fixed threshold, the node

assumes that time slot to be busy; otherwise, that time slot is

assumed to be idle. Thus, each node locally generates a binary

signal representing its experienced channel occupancy in the

terms of a busy/idle(BI) signal; in addition, each access point

(AP) periodically broadcasts its BI signal to its associated

stations once every few seconds. In the BI signal, the AP

includes the channel occupancy information for all times since

the transmission of the last broadcast BI signal. 1

In [8] we developed a method whereby the BI signal of the

AP is used in conjunction with local information, namely the

BI signal of the station and the known times at which the

station transmitted packets, in order to locally estimate various

loss probability components at each node. Loss components

include physical layer error, direct collisions and staggered

collisions due to hidden nodes. We have also demonstrated

the accuracy of our proposed estimation method via NS-2

simulations. Furthermore we have shown that these probability

estimation techniques can be used to improve overall through-

put by as much as 25% via packet length adaptation[10],

50% via carrier sense threshold adaptation [11], and 400%

via modulation rate adaptation [9].

In this paper, we experimentally verify the feasibility and

accuracy of the collisions probability estimation technique in

[8]. This centers around generating a BI signal which indicates

local channel occupancy at a resolution on the order of 10µs

over a 5 second period. In addition to the BI signal, stations

must be able to record the times at which they transmit their

packets. This transmission time information is stored in a

signal we call the TX signal, which is a binary signal similar

to the BI signal taking value 1 when the node is transmitting

and 0 otherwise.

The BI and TX signals are collected at every node and AP in

the network, and need to be temporally aligned for collision

probability estimation. In order to implement a full system,

busy-idle signals would need to be computed and broadcast in

1As shown in [8], the transmission overhead of the BI signal is less than
2% of the aggregate throughput of 802.11b network.

2

real time; however without access to much of the lower level

functionality of the wireless cards, this is not practical for our

experiments, which use only off-the-shelf hardware. Thus, we

opt to collect the data in real time, and process it offline in

order to verify the accuracy of the resulting estimates.

Collection of the BI data is possible using Ath5k [12], which

is an open source driver for wireless cards with certain Atheros

chipsets. This driver allows a user to access hardware registers

in the wireless card. While the BI signal is not explicitly

computed and stored, we show in this paper that it can be

inferred from data stored in accessible registers. We collect

experimental data using the Ath5k driver and process it offline

to generate BI signals and collision probability estimates for

a variety of network conditions. The remainder of the paper

is organized as follows: in Section II we describe our system

design; in Section III, we explain our experimental setup and

results; we conclude the paper in Section IV.

II. SYSTEM DESIGN

The goal of the system is to verify the collision probability

estimation technique in [8]. The computation of collision

probability estimates consists of 4 steps:

1) Collect available carrier sense data from wireless card

2) Process this data to generate BI and TX signals

3) Align BI and TX signals of station and AP

4) Compute estimates.

Ideally, this entire process would be implemented at the driver

level, but in our current system, only the data collection is

done in real-time, and all the processing is done offline with

MATLAB.

Each of the 4 steps are outlined in the following subsections.

A. Collecting carrier sense data

All stations and APs in our experiments are laptops running

Ubuntu Linux version 9.10, Kernel version 2.6.31-22. We

use the Ath5k Open Source wireless card driver, which we

have modified to provide the functionality to generate the BI

signals. We use external Proxim Wireless Cards Model: 8470-

FC, which utilize the AR5212 Atheros chipset.

While the actual carrier sensing mechanism is handled in hard-

ware, there are few registers on the wireless card, called the

“profile count” registers, which can be accessed using Ath5k;

these registers store statistics about recent channel activity.

The AR5K PROFCNT CYCLE register behaves like a clock,

incrementing each clock cycle. The AR5K PROFCNT TX

register increases whenever the card is transmitting packets.

The AR5K PROFCNT RXCLR register increases when the

energy detected on the channel measures above the carrier

sense threshold. In the remainder of the paper, we omit the

“AR5K PROFCNT ” prefix for simplicity.

We have carried out a number of experiments to verify the

behavior of these registers. Verification is done with 2 laptops,

nodes A and B, which use the Ath5k driver, and a standard

AP. The two nodes are placed next to each other while node A

transfers a file to the AP. Node B is close enough to overhear

the traffic, but does not contribute any significant traffic. Profile

count register values are collected at both nodes. Examining

the register values, we see that while node A is transmitting,

both the TX and the RXCLR registers of node A increase

linearly. Because node B hears the same traffic as node A,

its RXCLR register increases at the same rate as that of

node A; however, because it is not transmitting any traffic,

its TX register does not increase significantly. 2 In the next

experiment, a single node is placed next to a microwave oven,

and no traffic is sent. In this scenario, the RXCLR register

increases at a greater rate when the microwave is turned on

as compared to when it is off. This is because the microwave

operates around the same frequency as the network card. This

demonstrates that even interference that cannot be decoded as

packets affects the RXCLR register.

These experiments confirm that the RXCLR register increases

when the channel is occupied and remains constant when

it is idle, while the TX register increases while the node

is transmitting and remains constant otherwise. This means

that the derivative of the RXCLR register with respect to the

CYCLE register is the desired BI signal, and the derivative of

TX with respect to CYCLE is the desired TX signal.

If it were possible to observe the register values in real-

time, it would be trivial to generate the BI and TX signals.

However, we can only access the register values via sending

a read request to the card, which is not necessarily served

in a real time fashion. Additionally, we cannot read multiple

registers simultaneously, resulting in uncertainty about the

precise times at which each register value is increasing.

However, the CYCLE register value increases at a constant

rate of 1, and the other two registers are either increasing at

the same rate, or remaining constant, switching between these

two behaviors only at the start and end of packets. We can use

this observation to approximate the desired busy-idle signal.

We also have to combat a few other practical issues with regard

to the register behavior. There are times when the read requests

are not served for a long period of time due to the non-real time

nature of the operating system. Since this creates excessive

ambiguity in the BI signals, we omit any sections with longer

than 1ms delay between samples from collision probability

estimation. Another issue is that these registers are currently

also used for an adaptive noise floor computation module in

the Ath5k driver. This module occasionally resets the registers,

interfering with the BI estimation process; thus, we disable

it during our experiments. In actual implementation of our

approach with a wireless card in the future, we would need

dedicated registers for BI computation or coordination with

the noise floor computation module.

2While these increases appear linear at a large time scale, when they are
observed at a small time scale, it becomes apparent that the increases occur
in small bursts with each packet.

3

In order to generate the BI and TX signals, we need to plot

RXCLR and TX vs CYCLE; however, since we can only

sample one register value at a time, it is not possible to obtain

exact points on this plot. Instead we cyclically sample all three

registers in the following order: CYCLE, TX, RXCLR. For

each y-value of RXCLR or TX, we can bound the correspond-

ing x-value for CYCLE, i.e. time, to be between the previously

sampled CYCLE value, and the subsequently sampled CYCLE

value. An example of a resulting plot is shown in Figure 1(a),

where for each value of TX on the y-axis, a blue ‘+’ represents

the lower bound of the corresponding x-value and a red ‘x’

represents the upper bound on the x-value. Thus, the true TX

vs CYCLE curve must lie to the right of all blue ‘+’s and to the

left of all red ‘x’s. As seen, in this example there is a large gap

between the sample times at the start of the increasing slope;

so it is possible to misinterpret the data to conclude that the

value of the TX register does not begin to increase until much

later. For this reason, care must be taken in interpolating the

BI signal from these points, as described in Section II(b).

6.903 6.903 6.903 6.903 6.903

x 10
7

2.9305

2.9306

2.9307

2.9308

2.9309

2.931

2.9311

x 10
7

time (µs)

T
X

 r
eg

is
te

r
va

lu
e

(a)

6.903 6.903 6.903 6.903 6.903

x 10
7

IDLE

BUSY

time(µs)

(b)
Fig. 1. (a) TX vs CYCLE. For each value of TX, the value of CYCLE

is bounded by the x-position of the blue ‘+’ and following red ‘x’. The

interpolated actual value is shown as the green line; (b) the resulting estimated

BI signal.

B. Generating the BI signal

Once we have bounds for the location of the RXCLR vs

CYCLE curve, we must use the known constraints about

the register behaviors in order to interpolate the actual curve

whose derivative is the desired BI signal.

Since the RXLCR and TX vs CYCLE curves alternate between

having slopes 0 and 1, they can be uniquely identified by the

points at which they switch between these two slopes. Our

approach to generating the BI signal is to identify the start

and end point of each increasing section, which we call busy

sections, since they correspond to times when the channel is

busy. An example busy section is denoted by the green line

segment in Figure 1(a), and the resulting BI signal is shown in

Figure 1(b). Figure 2 shows a flow diagram of our proposed

process to identify these busy sections from the raw data.

Fig. 2. Flow diagram of BI signal generation process.

The first step is to identify sections of the data that could

potentially be busy sections. This is done by selecting the

largest possible consecutive set of y-values which are strictly

increasing. We call this vector of y values ~y. We call the vector

of previously and subsequently sampled CYCLE values ~x1 and

~x2, respectively. We then determine if a line of slope close to

1 can be fit to the right of all lower bounds and to the left of

all upper bounds. If such a line exists, it is identified as a busy

section, which is represented by a line y = m(x − a) + b.To

find such a line, we solve the following optimization problem:

minm,a |m − 1|

s.t. (~y − b ·~1)/m > ~x1 − a ·~1

(~y − b ·~1)/m < ~x2 − a ·~1
0.95 < m < 1.05

(1)

where ~1 is the all-ones vector, m is the slope, and (a, b) is a

point on the line corresponding to the busy section where b is

chosen as the y-value of the last pair of previous consecutive

samples with equal y-values, as shown in Figure 1(a). Since

there can be some random imprecision due to clock jitter, we

allow m to differ from the ideal value of 1 by up to 5%.

If there is a feasible solution to (1), then the resulting line is

stored as representing a busy section. The green line of Figure

1(a) is such a solution, where m = 1, and the point (a, b) is

the leftmost point of the line segment.

If there is no solution, the vectors ~y, ~x1, and ~x2 must be

adjusted so that there is a solution. To accomplish this, we

perform a binary search for the maximal length section for

which there is a solution. Once a line has been fit to the

maximum number of RXCLR or TX samples, the line is stored

and the points are removed from consideration. The algorithm

then continues on the remaining points until all RXCLR or

TX samples are processed

Once all of the busy sections have been accounted for, their

end points, which are the transition points of the BI signal,

can be identified by finding the intersection of the set of

representative lines with the set of horizontal lines, y = b,

which are trivially fit to the surrounding idle sections. 3

Once the corners between lines of slope 0 and 1 have been

3Additional minor approximations are done in cases where busy or idle
sections contain fewer than 2 data points; the details have been omitted for
brevity.

4

found, the RXCLR vs CYCLE curve is complete and the BI

signal can be generated. The TX signal is generated via the

same method, using TX rather than RXCLR.

C. Aligning station and AP signals

In a real-time implementation, the AP would periodically

broadcast its BI signal to its associated stations so that the

stations can perform computations as in [8] to estimate the

collision probability. In order to perform these computations,

the AP’s BI signal and the station’s BI and TX signals must

be temporally aligned. In practice, this can be facilitated by

approximate time synchronization in the network; furthermore,

more precise alignment can be obtained using the signals

themselves, as there are known correlations between the

signals. In our current setup though, we do not have any time

synchronization because we cannot control the CYCLE regis-

ter; therefore the alignment problem is actually more involved

for our setup than it would be in a complete implementation

by a card manufacturer.

Since the BI and TX signals for a single node are collected

with respect to the same clock, they are already aligned; thus

aligning all of the signals can be accomplished by aligning

either of the station’s signals with either of the AP’s signals.

Even though the AP’s TX signal is not used in the estimation

process, it may be used for alignment purposes.

Alignment consists of scaling and shifting the AP’s signals to

correspond to the station’s signals. Due to of the mismatch in

clock speeds of wireless cards, the signals must be scaled so

that they can be aligned. This scale factor can be computed as

infrequently as once per hour. We have experimentally verified

that the scaling factor does not significantly change for sets

of data collected in a single hour-long data collection period.

Once the AP’s signal has been scaled, it must be shifted to

properly align the starts of packets with those in the station’s

signal.

We compute the appropriate scaling by using data from

a simple scenario in which we successfully transmit 2000

packets from a station to the AP over a 20 second period. We

then generate the resulting BI signals and align the start of the

first packet. We plot the difference in the start times of each

packet in Figure 3. From this plot we can clearly determine

the slope and the required scaling, which in this case is around

0.003%.

0 2 4 6 8 10 12 14 16 18

−80

−60

−40

−20

0

time (s)

di
ffe

re
nc

e
in

 p
ac

ke
t s

ta
rt

 ti
m

e
(µ

s)

Fig. 3. Difference between packet start times in the AP’s BI signal versus

the station’s BI signal over time.

Once the scaling is done, we need to compute the offset

between the AP’s signals and the stations signals. Depending

on the scenario in which the data is collected, we perform the

shifting using one of two methods:

1) Align AP’s BI to station TX

2) Align AP’s TX to station TX.

In the first method, we exploit the fact that the station’s TX

signal should be a subset of the AP’s BI signal if the AP is

capable of sensing all of the stations packets; this is typically

the case barring a deep fade. The alignment is accomplished

by using the first few milliseconds of the station’s TX signal,

including the first 5 transmitted packets. The offset is chosen

to maximize the overlap with the APs BI signal. This method

works best if most of the packets are correctly received,

because the pattern of packets should look identical in the

AP’s BI and station’s TX signals.

The second method relies on the fact that the AP transmits

ACKs immediately after it successfully receives packets from

the station. We can thus take a set of ACK packets identified

from the AP’s TX signal and find the corresponding packets in

the station’s TX signal. We do this by examining the sequence

of inter-arrival times for ACKs observed in the AP’s TX

signal, and searching for a set of packets in the station’s TX

signal with the same set of inter-arrival times. The packets

need not be consecutive as some packets may fail and go

unacknowledged. An example of this is schown in Figure 4.

The top row shows the packets sent by the station and the

bottom shows the packets sent by the AP. The start of each

packet is represented by a ‘*’, and the end is represented as

a ‘+’. They are colored according to the type of packet they

correspond to, which can be determined by length. The long

blue packets are data, the short red packets are ACKs, and the

green packet is a management packet. Since the ACKs are so

short, they may appear as merely a single ‘*’ in this figure. As

seen, the ACKs transmitted by the AP occur immediately after

the data packets transmitted by the station, with the same inter-

packet time. This method is more robust to collisions and poor

channel conditions than the first one, because it does not rely

on consecutive packets being received correctly. Therefore, we

use this second method to compute the offset between the AP’s

and station’s signals in scenarios with higher loss.

Note that we do not use the station’s BI signal for alignment,

because its relationship with the AP’s signals is not as straight-

forward due to exposed nodes.

After the alignment, the start of most packets common to

the station’s and AP’s BI signals are within 40 µs of one

another. Figure 5 shows a histogram of the difference in start

times of all the packets, including management packets, in

the scenario where 2000 packets are sent without errors after

appropriate scaling and shifting. This alignment process must

be done periodically because the clock drift may change over

time, but consecutive broadcasts can use the same alignment

computations.

5

2 3 4 5 6 7 8

x 10
4

AP TX

STA TX

Time (µs)

Fig. 4. Alignment of TX signals of station (top) and AP (bottom). Blue line

segments correspond to data packets, red to ACKs, and green to management

packets.

−80 −60 −40 −20 0 20 40 60 80

0

10

20

30

40

difference in packet start times (µs)

%
 p

ac
ke

ts

Fig. 5. Difference in start times between corresponding packets in station’s

and AP’s BI signals for experiment with 2000 successful packets.

D. Computing collision probability estimates

Once the signals are aligned, we estimate the probability of

collision for each scenario via the method described in [8].

Since we do not have perfect resolution, reconstruction, or

alignment between the signals, we allow for edges as far as

40 µs apart to be classified as simultaneous. This must be done

to avoid a station from mistaking a slightly misaligned packet

for an indication that a hidden node exists and is generating

these packets slightly offset from those observed by the station.

As seen in Figure 5, most corresponding packets are within

this range of each other.

III. EXPERIMENTAL RESULTS

To verify the effectiveness and accuracy of our approach, we

set up a simple experiment with a station sending traffic to an

AP, and another distant node pair hidden to the station causing

staggered collisions. The topology is shown in Figure 6, and

the parameters are listed in Table I.

Fig. 6. The topology of the experiments. Node 2 is hidden from Node 1.

TABLE I
EXPERIMENTAL PARAMETER SETTINGS

Parameter Value

Protocol 802.11b

Mode Infrastructure

Channel 1

Modulation Rate 2Mbps

Transmit Power 27 or 15 dBm

Foreground Packet Length 1400 B

Background Packet Length 1300 B

The experiment topology is made up of 2 networks, each

consisting of 1 access point and 1 node. Node 1 sends 2000

packet of 1400 Bytes each to AP1 over 15 seconds. Collision

probabilities are estimated for this node. Node 2 sends varying

amounts of traffic to AP2 to cause collisions with packets of

Node 1 at AP 1. Traffic is generated using Iperf [13]. The

Iperf software allows us to generate UDP traffic with fixed

packet size and average inter-packet time at the application

layer, but cannot be used to send a precise pattern of packets.

Additionally, since failed packets are re-transmitted, the actual

number of transmitted MAC layer packets may vary.

To count the actual number of transmitted MAC layer packets,

2 laptops run Kismet to sniff the generated traffic, while not

contributing to the traffic on the network [14]. The sniffed

traffic is used to generate ground truth in each experiment.

We modify 2 parameters over our various experiments:

1) The rate of packet transmission for Node 2, which affects

collision probability. Specifically, it takes on 5 different

levels, resulting in collision probabilities ranging from 0

to 55%.

2) The transmission power of Node 1, which affects channel

error probability. Specifically, it takes on 2 different

values resulting in channel error probabilities of less than

1% and 20-40%, respectively. Due to variations in the en-

vironment, it is difficult to achieve a consistent empirical

loss probability over 2000 packets; nevertheless, we show

that our estimates are largely unaffected by this varying

channel error probability.

The traffic generated by Node 1 is kept approximately constant

at 100 UDP packets per second for each scenario, while the

traffic of Node 2 is varied to achieve 5 different collision prob-

abilities. For each collision probability, we run 5 experiments

of 20 second duration, 2 at 27dBm transmit power to avoid

channel errors and 3 at 15dBm to allow for channel errors.

We use the sniffer data from the high power experiments to

obtain the ground truth collision probability. We then use the

technique described in this paper to generate the BI signal

and estimate collision probability over 15 different 5-second

intervals of the data, 3 from each experiment.

We verify that Nodes 1 and 2 cannot sense each other with

respect to their physical carrier sensing functionality. This is

done by observing the RXCLR signal of each node when the

other node is sending traffic. We have verified that each node

6

only senses power 5% of the time that the other hidden node

is transmitting.

We also use the sniffer data to count the number of packets

transmitted, to verify the correctness of the BI signal. To

accomplish this, we run an experiment in a low loss scenario so

that the sniffer would be able to detect and decode all packets.

We then use the sniffer data to generate a predicted BI signal

by inserting busy sections of appropriate lengths at the times

the packets were recorded by the sniffer and compare this to

the BI signal generated using the approach in this paper. We

find that the number of data packets observed in the BI signal,

defined as busy sections with length approximately equal to

that of a data packet, is within 1% of the number of data

packets observed by the sniffer. The sniffer detects signifi-

cantly more ACKs, because the ACKs are often combined

with the data packets in the BI signals. This is due to the fact

that the time interval between the data packet and ACK is

short relative to the resolution of the BI signals. Similarly,

some management packets are combined with one another

accounting for the difference in total management packets.

When we compare the actual BI signal with the predicted BI

signal on a sample-by-sample basis at 10µs resolution, we

see that the signals are equal 97.3% of the time. 1.4% of the

time, the predicted signal is busy while the actual BI signal

is idle, and 1.3% of the time, the reverse is true. This can

be attributed to minor misalignments in packets and slightly

different sensing due to the fact that the station and sniffer are

not perfectly co-located.

Figure 7 shows the resulting estimates of collision probability

– each generated using 5 seconds of BI signal – versus

ground truth empirical counts. Solid blue dots correspond

to estimates for scenarios with high power and low channel

error probability, while red ‘x’s correspond to estimates for

scenarios with low power and high channel error probability.

For each empirical value of collision probability, there are 15

points, including 6 blue and 9 red.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

emprical P
C

P
C

 e
st

im
at

e

Fig. 7. Collision probability estimate vs empirical value.

As seen, the estimates are distributed around the appropriate

neighborhood. Even though they vary between each 5 second

period, this is to be expected since they are estimated over

5 seconds worth of data, and over this time period, even

the empirical error count is highly variable. The estimates

are slightly high for the scenarios with no collisions due to

imperfections in the BI signal generation; however overall,

the estimates tend to be within 5% of the empirical count.

The distribution of estimation errors is shown in Figure 8.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

x (%)

%
 o

f e
st

im
at

es
 w

ith
 e

rr
or

 le
ss

 th
an

 x
%

Fig. 8. Cumulative histogram of errors in collision probability estimates.

IV. CONCLUSION

In this paper we have demonstrated an implementation of

the BI signal generation and collision probability estimation

technique in [8] using off-the-shelf hardware. Our results

validate the approach introduced in [8]. There are some

imperfections within our data, which causes some variation

in our estimates. However, if more of the process were to

be implemented at a lower level by card manufacturers in

hardware, the estimates may be more accurate since many of

the obstacles we had to deal with could be avoided. Future

work involves implementing this method in real-time and

experimentally verifying the results of [9][10][11].

REFERENCES

[1] Ad Kamerman and Leo Monteban, “WaveLAN-II: A High-Performance Wireless

LAN for the Unlicensed Band”, Bell Labs Technical Journal, Vol.2, No.3,

Summer 1997, pp.118-133.

[2] Sunwoong Choi, Kihong Park, and Chong-kwon Kim, “On the Performance

Characteristics of WLANs: Revisited”, in Proc. of ACM SIGMETRICS 2005,

Banff, Alberta, Canada, June 2005.

[3] Jongseok Kim, Seongkwan Kim, Sunghyun Choi, and Daji Qiao, “CARA:

Collision-Aware Rate Adaptation for IEEE 802.11 WLANS”, in Proc. of IEEE

INFOCOM 2006, Barcelona, Spain, April 2006.

[4] Starsky H.Y. Wong, Hao Yang, Songwu Lu, and Vanduvur Bharghavan, “Robust

Rate Adaptation in 802.11 Wireless Networks”, in Proc. of ACM MOBICOM

2006, Los Angeles, California, September 2006.

[5] Federico Magulo, Mathieu Lacage, Thierry Turletti, “Efficient Collision Detection

for Auto Rate Fallback Algorithm”, in Proc. of IEEE ISCC 2008, Marrakech,

Morocco, July 2008.

[6] Qixiang Pang, Soung C. Liew, and Victor C. M. Leung, “Design of an Effective

Loss-Distinguishable MAC Protocol for 802.11 WLAN”, IEEE Communication

Letters, Vol. 9, No. 9, pp. 781-783, September 2005.

[7] Ji-Hoon Yun and Seung-Woo Seo, “Collision Detection based on Transmission

Time Information in IEEE 802.11 Wireless LAN”, IEEE PERCOMW, 2006.

[8] Michael N. Krishnan, Sofie Pollin, and Avideh Zakhor, “Local Estimation of

Probabilities of Direct and Staggered Collisions in 802.11 WLANs”, to appear

in IEEE GLOBECOM 2009, Honolulu, Hawaii, December 2009.

[9] M. Krishnan and A.Zakhor, ”Throughput Improvement in 802.11 WLANs using

Collision Probability Estimates in Link Adaptation,” in Proc. of IEEE Wireless

Communications & Networking Conference, Sydney Australia, April 2010.

[10] M. Krishnan, E. Haghani, A.Zakhor, ”Packet Length Adaptation in WLANs with

Hidden Nodes and Time-Varying Channels,” submitted to IEEE INFOCOM 2011,

Shanghai, China, April 2011.

[11] E. Haghani, M. N. Krishnan, A. Zakhor, ”Adaptive Carrier-Sensing for Through-

put Improvement in IEEE 802.11 Networks”, to appear in IEEE GLOBECOM

2010, Miami FL, December 2010.

[12] “Ath5k - Linux Wireless”. [Online]. Available:

http://wireless.kernel.org/en/users/Drivers/ath5k. [Accessed September

2010].

[13] “Iperf”. [Online]. Available: http://iperf.sourceforge.net/. [Accessed September

2010].

[14] “Kismet”. [Online]. Available: http://www.kismetwireless.net/. [Accessed

September 2010].

