arXiv:1010.0316v3 [cs.IT] 6 Oct 2010

Two-User Gaussian Interference Channel with
Finite Constellation Input and FDMA

G. Abhinav
Dept. of ECE, Indian Institute of Science
Bangalore 560012, India
Email: abhig 88@ece.iisc.ernet.in

Abstract—In the two-user Gaussian Strong Interference Chan-
nel (GSIC) with finite constellation inputs, it is known that
relative rotation between the constellations of the two use
enlarges the Constellation Constrained (CC) capacity regn.
In this paper, a metric for finding the approximate angle of
rotation (with negligibly small error) to maximally enlarg e the
CC capacity for the two-user GSIC is presented. In the case
of Gaussian input alphabets with equal powers for both the
users and the modulus of both the cross-channel gains being
equal to unity, it is known that the FDMA rate curve touches
the capacity curve of the GSIC. It is shown that, with unequal
powers for both the users also, when the modulus of one of
the cross-channel gains being equal to one and the modulus of
the other cross-channel gain being greater than or equal toree,
the FDMA rate curve touches the capacity curve of the GSIC.
On the contrary, it is shown that, under finite constellation
inputs, with both the users using the same constellation, th
FDMA rate curve strictly lies within (never touches) the enkrged
CC capacity region throughout the strong-interference regme.
This means that using FDMA it is impossible to go close to
the CC capacity. It is well known that for the Gaussian input
alphabets, the FDMA inner-bound, at the optimum sum-rate
point, is always better than the simultaneous-decoding iner-
bound throughout the weak-interference regime. For a porton
of the weak interference regime, it is shown that with identtal
finite constellation inputs for both the users, the simultarous-
decoding inner-bound, enlarged by relative rotation betwen the
constellations, is strictly better than the FDMA inner-bound.
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GIC Model

Fig. 1.

Without loss of generality, throughout this paper, we assum

h11=h22=1 [2].

Define
P
SNRy = —,
07
|h12]? Py
INRy; =
o3
P
SNRy; = —g, and
03
|h21]? Py
INRy = =25
1

where,SNR;, and INR; (i=1,2) denote the intended-signal

The Gaussian Interference chann&@IC) model [1], is

to noise power ratio and the interference to noise poweo rati

shown in Fig-l. User-1 intends to communicate with Receiveéf Receiver: respectively

1 at rate R; and User-2 with Receiver-2 at ratg,, with
both the users interfering with each other at their respecti
receivers as dictated by the channel gains. Channel gaim fr

Definition 1 ( [1], [3], [4] ): [ A GIC is said to be in

(s)trong interference when

Users to Receivery is denoted by:;;. The users are equipped SNR; < INR,,

with complex signal constellationS; and S, of cardinality
M; and M,, with average power constraint®;, and P,

SNRy <INR;

®3)

respectively. Symbol level synchronization between thersis @nd, atleast one of the following two conditions is satisfied

is assumed. The signals obtained at the receivers are gjen %NR - INRy
" \1+5NRy )"
Yi = huXi+ hai Xo + Ny (1) INR,
Y2 = h12X1 + hoo Xo + N (2 SNE:> <m> : (4)

WhereXl €81, X068, Ny ~ CN(O, 0'%), Ny ~ CN(O, 0'%)
(CNV(0, 032-) represents circularly symmetric complex Gaussig,
noise with meard and variancerf, (=1, 2)).

1The conventional definition for strong interference trethis very strong
Rerference as a special case; in this paper we excludestrenyg interference
from strong interference.
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Definition 2:@ A GIC is said to be in weak interference « It is known that, with Pi;=P, and INRy,=INR; <
when atleast one of the conditions [d (3) is violated. SNR;=SNR,, for the Gaussian alphabet case, the
For the two-user Gaussian strong interference channel FDMA inner-bound, at the optimum sum-rate point,
(GSIC), the capacity region (in bits per channel use) ismjive  is better than the simultaneous-decofingner-bound
by [3] [1]. We show that, withP, not necessarily equal to
P,, throughout the weak-interference regime, the FDMA
R1 < logs (1 + i;) inner-bound, at the optimum sum-rate point, is better than
o1 the simultaneous-decoding inner-bound for the Gaussian
) input, whereas, for the finite constellation case, with
S1=8,, for some portion of the weak interference regime,
) Py + |ho1 2P, the simultaneous-decoding inner-bound is strictly better
Rt Ry < mm{ logs <1 + 72) 5 than the FDMA inner-bound.

01
(5) Notations: For a random variablé&’ which takes value from
l (1 N \h1o|2Py + p2> } the setS, we assume some ordering of its elements andrtise
0g2 —— .

P,
Rg S logg (1 + —3
03

to represent theé-th element ofS. Realization of the random
variable X is denoted as. Absolute value of a complex
Gaussian codebooks achieve the capacity in the GSIC. Thoygimberz is denoted byz| and E[X] denotes the expectation
this capacity region provides insights into the achievahte of the random variabl& . All the logarithms in this paper are
pairs (R1, R2) in an information theoretic sense, it fails toevaluated for base-2.

provide insight on the achievable rate pairs when we conside

03

finitary restrictions on the input alphabets and analyzeesom Il. AMETRIC FOR MAXIMAL CAPACITY
real world practical signal constellations like QAM and PSK ENLARGEMENT
etc. Throughout this section we consider two-user GSIC. The

In this work we assume, that the twiodependentusers CC capacity for the GSIC, is given byl[9]
use finite complex constellations with uniform distributio
over its elements. Under the above assumptions, the maximum Ry < I(X1; Y1|X2)
achievable rate is referred to as the Constellation Cansila Ry < I(X2;Ya|Xn)
(CC) capacity [[6]. The CC capacity was analyzed for the Ry + Ry < mun{I(X1,X2; Y1), 1(X1,X2;Y2)}.  (6)
Gaussian-MAC (G-MAC) in[[6] and for the broadcast channel ) ) ) )
in [7]. Recently, we came to know of the work on the cd he above mutual informations can be easily evaluated as in

capacity for the GSIC ir[8] in which capacity maximizatiorl [2l: [6]) and are shown in[{7)[8)[(9), and {11) (at the top

for the GSIC by rotation of signal set is studied and it had the next page). _ _
been shown that only relative angle of rotation between theFr channel gains taking complex values, siféeand N,

constellations matter. The optimum angle of rotation wa¥€ Circularly symmetric Gaussian noise, rotation of eithe
computed numerically i ]8]. or S; by any arbitrary angle doesn’t change the values in

The contributions of this paper are as follows: (7) and [8), where as the values [ (9) ahdl(11) do change.
Wi . btain th ) ence, the CC capacity region does change, providing us with
< V€ pre§ent a metric .t(? obtain the approxm_ate angih option for maximally expanding it[8]. Since, only releti
of rotation (with negligibly small error) required for

; . X angle of rotation between the constellations mattér [8], we
maximal enlargement of the CC capacn)_/ reglon_for th all rotate onlyS, and denote the angle of rotation &s
two-user GSIC that can be computed with considerab eLetSsuml — {1 +horzaVay € S1, 72 € S} ANASsum, =
ease. . . . ﬁhuzl + x2|Vay € 81,22 € S4}, whereS) can be either an
« When the User-Receiver pair use the Frequency DiVig, iateq or a rotated version &%. Definep; : S§; x &) —

sion Multiple Access (FDMA) scheme, it is known thatS oy AN S X S — Suumy. The following theorem

the rate curve when Gaussian alphabets are used, ;’H) es the metric for choosing an approximate angle of romati

g};Pg,_;o]{J]che_sUt\tm E?E’\?City fur\\//s ththe CF]SK: ¥Vh maximally enlarge the CC capacity region which, unlike in
R1=SNR,=INR,=INR, [0]. We show that, (for [8], doesn't involve numerical computation.

the Gaussian alphabet case), withnot necessarily equal Theorem 1:Given the constellation pairS(,S2) for the

to P,, the FDMA rate curve touches the capacity curve qj : . :

~ sers, an approximate angle of rotatiéy, for S, required
the GSIC, also whedNR,>SN R, andINRi=SNRy maximally enlarge the CC capacity region of the GSIC at
contrary, in the finite constellation case, with=S-, we Proof: Define I, I, I}, I, as in [9){I). Equations

show that the FDMA rate curve always lies strictly insid o , .
. : ﬁlg and[(1R) follow from application of Jensen’s Inequadin
(never touches) the CC capacity region of the GSIC. ) ) W pplicatl q

3Throughout this paper, the simultaneous-decoding we tefisrthe version
2In the literature, different definitions for weak interface regime are of simultaneous-decoding that doesn't require the messhgach user to be
available. In this paper, we stick to our definition. correctly decoded at the unintended receiver, as mentiongt].
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the expectation terms dfy and I, respectively. The required sr2nall, as the variances aV;iz and N;; are both equal to
angle of rotation is®;,, = arg maxpe(o,2x min{li,I2}. ZL. Hence, the second integral il {17) can be neglected.
Since closed form expressions forand I, are not available, At high power levels, for a givenk(, k») and a givend,

we maximize the minimum of the lower bounds 6nand/>, (I5) is satisfied. The expression féf is further reduced to
.. maxge (0,20 min{lj, I5}. Canceling the common terms(23), where,[(19) and (20) follow froni (15) and the fact that
in I; and I; we arrive at the expression fa,, in (13). At Inig| < \/ﬁ7 Inir| < \/ﬁ, and the constant; in (22)
high power levelsPy, I, the CC capacity region obtainedarises from evaluation of the integral i {21). We now carry
from egpt will be close to that obtained fI‘OIﬁ)pt. The proof out the same procedure fds also. Define

for this is as follows:

Let Nigp = Re(Nl), Nir = Im(Nl) andel(nl) be the /Lz(kl,kz,il,ig) his ( k1 _xlil) +ej9 (1]262 _xéz)

pdf of the noiseN; at n;. Also, define
N i 30 (k2 ia where k; andi; can take values frond to (M; — 1), and
pa(kr, oy i, 72) = (Il - ) +hae (IQ I ) ko andi, can take values frori to (M, —1). \(Ne shall)denote
where k; andi; can take values frond to (M; — 1), and pi2(k1, k2, i1,42) asps for short. Now, for a fixed Ky , k2) and
k> andi, can take values frori to (M, —1). We shall denote ¢ define the set
w1 (k1, ke, i1,12) asu, for short; for a giver®, it is understood
thaty; is a function ofky, ko, 41, andis. Note that, for a given Ma(ky, ko) = {(i1,12) # (k1,k2) | p2 =0} (24)
6 and (k1, k), and for (i1, i2) # (k1, k2), the absolute value . ) ] ]
of u1 gives the distance between two pointsSg,m,. Now, Ma(k1,k2) is the null set for all 1, k2) if the mappingyps; is
for a fixed (k1, k2) andé, define the set one-one, else it is a non-empty set for some, f2). Since,
the expectation term of; in (1) is the only term dependent
My (ky, ko) = {(i1,12) # (k1,k2) | p1 =0} (14) on 6, consider,I) defined as in[(26). At high power levels,
) , for a given &1, ko) and a givery, (28) is satisfied. Following
Mi(ky1,k2) is the null set for all (ki,k2) if the map- gmijar steps as fod}, expression forl} reduces to[{27).
ping 1 is one- (]32ne else it is a non-empty set for somgj,ce 0% = 02, Ny and N, have the same distribution and
(F1, k2). Let Py = [My(k1, k2)|. Now, consider the ex- hancer, — ). Now, consider the terms in the metric for
pression forIl in (@. The expectation /}erm in it is they 0,y in (@3), rewritten in terms ofi; and iz in (28) and [2D)
only term dependent of. So, considerly, defined as in respectively. At high values values efthe difference between
(@6), alternatively written as i _(17). The probability dfet > 5,q,.72°/2 s very small. Hence, the expressioris] (23)

event{lel > /207, and|Ni| > \/201} to occuris very divided byc; and [28), and[(27) divided by, and [29) give
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almost the same value at high powers. In other words, large values ofM; or Ms,, even though the points iB,,
v (: = 1,2) rearrange themselves as a result of rotation, the
Oppt = max min{l, I} = min maz {—1, —2} ~ 0,,:. density of B, is so large that the distance distribution of the
6€(0,2m) 6€(0,2m) a a points inside the balls change negligibly and as a resu@pf (
m and [11), there is not much change in the CC capacity due
Note that the metric is easy to evaluate as it does not involige rotation. Fig[2 and Fid.]3 illustrate this argument. A¢ th
Ny and N2. On the contraryd;, , has to be evaluated numer-same values of channel gains and powers there is negligible
ically, as done in[[8]. The metric works well, as illustratedmprovement in the CC capacity for the 8-PSK pafii (S2),
by Fig.[2 and some simulation results in TaBle I, (the chanmgtown in Fig.[8, while there is good improvement in CC
gains and powers are chosen randomly,) where the capacipacity for the QPSK pairS;, Sz) shown in Fig.[2. The
regions obtained froré,,, and@j)pt are too close to each otfer
(the last two columns). For a given constellation pair, ¢heill
be a significant change in the CC capacity due to rotation or
at high powers. The reason for this is given below.

3.5

35 Gaussian Alphabet (Capacity)
: ——QPSK - without Rotation (Sum=3.557)
---QPSK - Rotated Acc. to Metric (Sum=3.675)| 2
3k _ _ QPSK - Rotated Acc. to Numerically Q:N
Computed angle (Sum=3.676)
1.5r
2.5
1k
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& \\ ——8-PSK - without Rotation (Sum=4.216)
J 0.5-|- - ~8-PSK - Rotated Acc. to Metric (Sum=4.217)
15+ 4 _ _ 8-PSK - Rotated Acc. to Numerically
Computed angle (Sum=4.217)
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1
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Fig. 3. CC capacity for 8-PSK paiS(, S2) with P1=9.92 Watt (=9.96dB),
o ‘ , . . . . P»,=10.3 Watt (=10.13dB), n1=n2=1, h12=1.03£ — 112°, h21=1.07£ —
0 0.5 1 15 R 2 25 3 35 44°

! . . . ‘ arguments tally with the Gaussian input alphabet case where
Fig. 2. CC capacity for QPSK paitS(, S2) with P;=9.92 Watt (=9.96dB), . . .
Po=10.3 Watt (=10.13dB), n1=na=1, h12=1.03/ — 112°, ha1=1.07/ - the input alphabets are unconstrained and the capacityjmsma

44°, 0!, ,=79.0682°, 6,,1=77.3493°. The curves corresponding &,,, and invariant to rotation. So, at fixed channel gains, for rotati
0opt are close and hence, indistinguishable. to have considerable effect on the CC capacity of a finite
constellation pair, the powers should be commensurate with
The sphere packing argument for the G-MAC [ih [6], whiclhe size of the constellation, and hence the powers should be

explained why the capacity does not improve much Withigh enough. So, we need to rotate the constellation only at
rotation at low SN R can be extended to the general GSIGyfficiently high powers.

as follows: Fixed powers K, ») and channel gaing:;

(4,5 = 1,2), which can take complex values, can correspond ||| SUBOPTIMALITY OF EDMA WITH EINITE

to fixed radius,r; and rp, of two dimensional balls,5,, CONSTELLATIONS

and B,, respectively, and the signal points in the sum-

constellationS,.,,,,, can correspond to points inside its ball FDMA with finite input constellation for two-user GMAC
B,. (i =1,2). As the number of points in at least one of th&vas first plotted in[[10] and some interesting comparisons
input constellations&;, S») increases, the number of pointswith behaviour for Gaussian alphabets were made. In the
M; =| Squm, | in B, increases and hence the density of point&o-user GSIC, it is known that, for the Gaussian alphabet
in B,, (i = 1,2) increases. Froni{9) and{11), it can be seefpse Wwith P1=F,, when SNR,=SNR;=INR,=IN R», the
that the CC capacity depends on the distance distribution [dPMA rate curve touches the capacity curve [1]. It is also
the points 0fS,,,,, in B,, (i = 1,2). Itis clear that rotation of shown in[1], for the Gaussian alphabet case Witk I, that

one of the constellations, will cause perturbationsSip,,,, the FDMA inner-bound, at the optimum sum-rate point, is
and hence its points iB,, (i = 1,2) gets rearranged. For better than the simultaneous-decoding inner-bound in #ekw
interference regime wheAN R1=INRy<SNR;=SNR5. In
“4In all the plots, in this paper, “Rotated Acc. to NumericaBpmputed this section, we show that, for the Gaussian alphabet cabe wi
Somputed numerical, Rotated Ace. 1o Metic: refers e dhc capacy L1 MOt necessarily equal b, the FDMA rate curve touches
according to rotation bwopt and “Suhﬁ" refers to the maximum sum ratethe capacity curve of the GSIC wheSiNR,<INR, and

R1 + Ry on the respective curves. SNRy=INR; or when SNR;=INR, and SNRy;<INR;



OPTIMUM ANGLE OF ROTATION AND SUM-CAPACITIES FORQP SKALPHABET PAIR (S1, S2) FOR SOME VALUES OF CHANNEL GAINS ANDPOWERS

TABLE |

Py Py hi2 ha1 Oopt Oopt Max. CC Sum Max. CC Sum Max. CC Sum
(Watt) | (Watt) Capacity (Unrotated)| Capacity (Rotated by, ) Capacity (Rotated byi;pt)

3.5 6 1210 1/20 39.53° | 41.25° 3.006 3.107 3.108

3.5 6 1.2/10° 1.1£20° 46.41° 44.69° 2.994 3.22 3.221

5 5 1.2/15° 1.5/5 73.91° | 72.19° 3.178 3.319 3.32

8 6 1.8.240° 1.3/70° | 49.85° 51.57° 3.459 3.577 3.58

and throughout the weak-interference regime the FDMA innewhere, the expressions for the mutual informationg in (3) a
bound, at the optimum sum-rate point, is always better théme first term of [3B) are given if_(B4) arld {35) (shown at the
the simultaneous-decoding inner-bound. On the contrary, top of next page) respectively, and, the expressions for the
the constellation constrained case, with not necessarily mutual informations in[(32) and the second term[ofl (33) are
equal toP, and §;=S,, we show that the FDMA rate curvesimilar to the ones if(34) and (35) respectively. We dertme t
does not touch the CC capacity curve throughout the strongutual informations with subscrigl” as they depend on the
interference regime. We also show that, for a portion dfandwidthi¥. The CC capacity is achieved by simultaneous-
the weak interference regime, under constellation coimtra decoding scheme with finite input constellations.

the simultaneous-decoding inner-bound, enlarged byivelat Since every channel use consurfieseconds, the rate pairs
rotation between the finite constellations, is strictiyteethan (in bits per seconds) that define the CC capacity region are
the FDMA inner-bound. Throughout the section we assunggven by

81282.

Since FDMA involves bandwidth we need to consider a 4 = WIw ( VEX Yy PZXZ) (36)
modified channel model as described below. Ry < Wiy ( /Py Xo: Yol /Ple) (37)
A. Model for CC Capacity with Full Bandwidth Usage Ry + Ry < min {WIW (1 /P X1, «/PzXz;Yl) ,

The model of the two-user GIC (shown in F{g. 1) under 5 5 v
strong interference considered in this section is simipathe Wil ( PiX, v Xy YQ)} '
one presented in Sectidh |I. We point out only the changes (38)

in the signal model with reference to the model in Sectiofhe capacity region of the strong interference channeMsryi
[0 It is assumed that User-1 and User-2 communicate to tbg

destination at the same time and in the same frequency band P,
of W Hertz. To take into consideration the bandwidth, the = Ri < Wlog (1 + W) (39)
variance of the additive noise at both the receivers arengive P
by W Ny. The signals received at the destinations are given R, < Wlog (1 4 WZ) (40)
by
) Pi+ | hoy 2 Py
Y1 = VPIX1 + hat/PaXo + Ny B Btz < min {Wlog (1 t—w )
Yo = hiov/ P X1 + VP2 Xo + No, (30) Wlog (1+ | haa |2 P1+P2)}
. W '

where,X; € S, X, € Syed? (finite constellationsS; and (41)

S, are be of unit power)N; ~ CN(0, WNy) and Ny ~ _ . _ .
CN(0,WNy) (No/2 is the power spectral density of theThe capaqty can pe gchleved by simultaneous-decoding
AWGN in each dimension). Without loss of generality Wécheme, with Gaussian input alphabets.

take Ny = 1. We assume that every channel use consumBs CC Capacity with FDMA

T seconds for each user (whete= W Hertz). User-1-Receiver-1 agree oi¥; = oW/ bandwidth and
Applying the CC capacity regions used in Secfidn Il to thgser.2—Receiver-2 agree on the non-overlappiig= (1 —
channel model in[(30), the set of CC capacity values (in bit§)1i” bandwidth,0 < o < 1. Hence, for eachi = 1,2, Useri,
per channel use) that define the boundary of the CC capagififh bandwidthW; and power constrain?;, equipped with
region, are given by finite constellation,/P;S;, views a Single-Input Single-Output
(SISO) AWGN channel with Receivérwithout interference.

Ry < 1w (V PXuYaly PQX?) (31)  The circularly symmetric Gaussian noise at the Receives
Ry < I S AN ¢ 32) Mmean zero and variand®; Ny (and without loss o_f ggnerallty
=W ( 2 X2 Yol V 1 1) (32) we assuméV, = 1). Hence, the channel model is given by
Ri+ Ry Smin{fw (\/Ple,\/PzXQ;Yl)7 Y, = /PLX, + N, (42)
Iy (VX VPXei2) b, (39) Yz = VP Xy + Na, (43)



My —1 My—1 N1+ vPr (21 —231) 12 — [Ny )2
L 1
Iw (VP X1 Y| /P2X2) = logM, — o Z En, |:log ( Z exp (_( ( 1 1 ) ) (34)
\ 1

k1=0 i1=0 w

IW(\/P1X1,\/P2X2;Y1) :log(]Wl]Wg)
1 MiziMa—1 M —1 Mo—1 (‘NIJF\/P—l(I’lﬂ 7I§1)+h21€j9\/P_2(I§27I;2)|27|N1‘2)
log —

Z Z ETD W

i1=0 i3=0
(35)

where, X; € 81, X € S (S1 andS, are taken to be of unit easily seen that, at = o/ = %, i = 7} and the first

power), N; ~ CN (0, W;) (i = 1, 2). term in in [56) and the first term in_(57) are equal but for

The maximum achievable rate pair (in bits per second) feie sign. Hence, at = «”, (53)-(53) are satisfied. To, prove
the two users, under constellation constraints, are giyen b thata” = «a,,:, we need to show that the sum-ratg + Rs,
achievable with FDMA, is a concave function afe (0, 1),

Ry < Wilw, (\/ PLXiYly P2X2) (44)  for which, it is enough to show that there exists a point on

) the FDMA rate curve in theR;, R») plane which achieves a
Ry < Walw, (\/EXQ’ Y2|\/EX1) ' (45) greater sum rate than is achieved at a point on the line jginin
Therefore, the sum-rate region achievable with FDMA, undény two points on the curve. At this point where the sum rate is
constellation constraints, is given by greater the sum rate achieved at a point on the line joiniyg an
two given points on the curve, the value@must lie between
Ry + Ry < Whlw, (\/Fle;Yﬂ\/EXz) the values ofa at the given points. Let the point$ and B

lie on the FDMA curve in the R, R2) plane and let their co-
+ Walw, (\/ Py X2; Ya| v Ple) - (46)  ordinates be R}, R}) and (R?, R3) respectively. Also, let the

With Gaussian input alphabets, the achievable rate pair ffndwidth-sharing parameter, at the pointsA and B be o,

FDMA is given by andas (0 < a1, a2 < 1) respectively. The pointdd}, R}) and
P (R3?, R3) are defined by their respective expressions similar to
Ry < Wilog (1 + _1) (47) the ones in[(49) and(50). L&V = W, Wy = (1—a1)W,
Wi Wi = axW, Wi = (1 — az)W and also, definef; (1)
Py and fo(——) (i=1,2) as in [58) and[{59) respectively. To
Ry < Whl 1+—. 48 2\1Tq; ; Y.
2= g ( + WQ) (48) achieve a point on the line joining the points and B, we

The following theorems show that, in the finite constellatio"€€d to time-share between the poirtand B, for a fraction
case, then that would maximize the sum rate for FDMA isOf time 5 and (1 — Iﬂ) (0 < B < 1) respectively. Now, /Iet,
the same as that in the Gaussian alphabet case. ﬁa1/+(1l_ﬁ)0‘2 =a, 5(1_041)I+(1—5)(1—a2) = (1”—04”),

Theorem 2:For the GIC model in Figdl, whes; = S, W1 ='W, andWs' = (1 —a/)W. The rate-pair, R{, 1ty),
the value ofa that would maximize the sum rate for FDMA, achiéved by time-sharing between the poistand 5 is given
in the finite constellation case, is equal - in (€0) and [(6B). Equation’ (62) follows from the fact th,at

Proof: The expressions for the maximum achievable ratds 1S @ concave function of /a and, so, we apply Jensen's

with FDMA, under constellation constraints, {1{44) afd)45neauality in [61) to arrive a{(62). Similarly, we arrive @3).
are given in[[@D) and(50). Defir& andZ, as in [51) and Equations[(6R) and (63) imply that there exists a point on the

(2). It is required to find FDMA curve in_the R_l, R») plane which gc_hieves a great_er
sum rate than is achieved on the line joining the two points
Qopt = GT¢ MAX (Wllwl(\/Ple;Ylh/Png) (A,B) on the curve andy' lies betweenn; and as. Hence,
«€(0,1) o = Pilp is the required optimuna, i.e. cp;. [
1 2 . 3
+WQIW2(\/P2X2;Y2|\/P1X1)) . Theorem 3:For the GIC model in Figl]l, the value of

o that would maximize the sum rate for FDMA, in the Gaussian
Therefore, aty = a,,e, (53)-(55) are satisfied. AS; = S, alphabet case, is equal SEP] '

e A ’ +P:
(54) reduces to[(35). Now, defing; = 7./a and 7, = Proof: The expressioﬁs for the maximum achievable rates

Io/(1 — a). Also, define ui(k1,i1) = VP (50]1Cl - 17111) with FDMA, in the Gaussian alphabet case, is given[in (47)
and jus (k2 is) = s (xfzfz _ xéz) We denotey; (k1,i,) as and [48). DefineR¢ and R§ as given below.

simply p1 andpug(ka, i2) asus; it is understood that, andps N P,

are functions of k1, i) and(ks, i2) respectively. Expressions R{ = aW log <1 + W) (64)

for &+ and 222 are given in[(56) and(57), where, in {56) and

N . P
(52), n, andn, are realizations ofV; and N, respectively. RS2 (1 —a)W log (1 + 172”/) . (65)
Let o = X5 Now, substituten| = n,/\/a in (56) and (1-a)

nh = na/+/(1 — ) in (57). After this substitution, it can be R and RS define the points on the FDMA rate curve.



Mp—1

Myt IN1 4+ V1 (a? *11
Wilw, (V P1X1; Y1/ P2X2) = aW (loglwl —log e — A Z En, [log ( Z exp (— ( §W (49)
b k1=0 i1=0
Mo —1 Mg —1 [Ny + /Ps (x — ! |2
Walvw, (VP X2: Ya| VPIX1) = (1 — )W (logMs —loge — — S En, |log [ 3 eap 7( (#32 —o% (50)
Mz ko=0 in=0 1w
My —1 Mi—1 (|N1 + VP (11161 _ w;l) Iz)
I, 2 aW Z: En, |:log ( Z: exp (— s (51)
k=0 i1=0
Mo —1 Moy—1 (‘N2 +VP (I’; 796;2) ‘2)
A
o= (1 —a)W kZ En, |:log ( Z exrp ( T W (52)
2=0 ig=0
d
= (Witw, VP XY VP Xa) + Walw, (VP2 X Y VPLX)) = (53)
= WiogMy — WlogM; — Wlog e + Wi Ldh 1 dfe (54)
°9 t o9 2 o9 ¢ o9 ¢ M1 da M2 do o
a4z _ (55)
do da
Myt _Ini+ugl? Inq4uq)?
My . ) . >ito aw — Hp—
a7, 3 ol \n1| Z Imeal® ) d + 11 (56)
_— = a e n1 - .
do K=o VmaW U<\"1\<°° 120 sMi1, 7% 71
i1=0
+ 2
Moy—1 Ing)? 5 My—1  |nyips? <Ei\;[2771 N ‘?17;3‘/“/ ‘?12::;)2‘/!‘/2)
Iz _ ) w / caew | nel” S e e | dny | — 21,
da fgmo V(1 — )W Jo<iny|<eo 1—-a)yWw P 1 ‘("fja‘;%{‘f
> inzo
(57)
i =1 1(VP1X1'Y1\\/P2X2)éf1 * (58)
OtiW Wit ’ (073
R; N 1
—_ VP Xo; Yo/ P1 X1 ) = 59
1—anWw ( 2 X2; V2|V Py 1) 2<1*a¢) (59)
R} =BR1 + (1 - )R} =d [ER} + 4 = 5 1] (60)
1 l
[e% g [e% Q2
+(1—
< Wao' [fl (%)] =Wa'Iy,, (\/Ple;Yl\\/Png) 62)
= BRy+ (1 - B)RE < W(1 — o)y, (\/ngg;yg\\/Plxl) (63)
d P P P Py/(1—
- (Ri + R3) :0:>Wlog<1+—vlv) —%7Wlog<1+ T - W) + e/ Pa)) =0 (66)
o @ (1+ ) 1-a (1+ =5w)
R: Py A 1
l 1 = — 67
a =ton (o) 20 () )
RS Py A 1
l 1 = 68
1—a)Ww 09( +(1—ai)W> f2<1—oq) ©9




R = BR; + (1 - B)R] = o [51%1 + (1;,5)1%?] (69)
= Wa' [ﬁ/alfl <L) + L/moczfl <L>i| (70)
« 71 «a Q2
< Wo' |:f1 <7ﬁ+(175))] = Wda'log <1-ﬁ-7p1 ) (71)
o’ o'W
"o 1 _ 2 7 Py
Ry =B8R+ (1 —-B)R; < W(1 —a')log (1 + 7(1 — a’)W) (72)
It is required to findaoy = arg maxae(o,1) (RS + Rs). o
Therefore, ato = oy, (68) (given at the top of the next , ,
. T 7 P, . or <——Gaussian alphabet (Capacity)
page) is satisfied. Let” = pip,- It is easy to see that FOMA it Gaussian aphabey
(66) is satisfied atv = «”. To prove thata” = a,p:, We & 1
need to show that the sum-raf®f + RS, achievable with it

T
QPSK - without Rotation (CC Capacity)—~
QPSK - Rotated (CC Capacity)

FDMA, is a concave function ofx € (0,1), for which, it

is enough to show that there exists a point on the FDM N N
rate curve in the g1, R>) plane which achieves a greater sun ~ * ° FOMA with QPSK————+,
rate than is achieved at a point on the line joining any tw T
points on the curve. At this point where the sum rate is grea 3
the sum rate achieved at a point on the line joining any tw a
given points on the curve, the value ®@must lie between the il
values ofa at the given points. Let the pointd and B lie s
on the FDMA curve in the R;, R») plane and let their co- % L 2 R 5 s 7
ordinates be R}, R}) and (??, R%) respectively. Also, let the !
bandwidth-sharing parameter, at the pointsd and B be o (@ W =6 Hz
andas (0 < ag, as < 1) respectively. The pointd{}, k1) and
(R?, R2) are defined by their respective expressions similar 6
the ones in[(64) and(65). L&V} = a; W, W4 = (1—aq)W, v Apraber Capaity)
W12 = W, W22 = (1 — a2)W and also, deﬁnql(a%) 5\DMAwithGaussianAlphabet
and f2(1=5-) (i=1,2) as in [6T) and[(68) respectively. To
achieve a point on the line joining the points and B, we a_ .
need to time-share between the poidtsnd B, for a fraction \Q*’-Sfjf“““"“;i‘;’:“f;f:;j“cf“cy;pach‘y‘ :
of time 8 and (L — 8) (0 < 8 < 1) respectively. Now, let, 3k
Bar+(1—PB)as =/, B(1l—a1)+(1-0)(1—az) = (1-¢), el
Wi = o'W, andWy' = (1 — o/)W. The rate-pair, R}, RY), 2
achieved by time-sharing between the poiAtand B is given FOMA with QPSK— >
in (69) and [[7R). Equatio (Y1) follows from the fact tha it
f1 is a concave function of /a and, so, we apply Jensen’s
inequality in [Z0) to arrive af(71). Similarly, we arrive @&). 0 ‘ ‘ ‘ ‘ ‘
. . . . 0 0.5 1 15 2 25
Equations[(711) and(T2) imply that there exists a point on tl Ry

FDMA curve in the R, R2) plane which achieves a greater
sum rate than is achieved on the line joining the two points

(A,B) on the curve andy lies betweenn; and as. Hence, Fig. 4. FOMA and Capacity Region for QPSK pair B{=7 Watt (5.45dE)

"o P H H 5 H 19. 4. an apaC|ty eglon tor pairm@ai= att .45 y
= p1p; IS the required optimuny, i.€.app. B B 0 10 700B), his=1,10°, hoy=1/20°.

We characterize the behaviour of finite constellation FDMA

under strong-interference and weak-interference in thevie
ing two subsections.

(b)y W =2 Hz

alphabets and FDMA with QPSK alphabets are shown in Fig.
C. Finite Constellation FDMA in Strong-Interference Chahn g, Fig.[4 represents a case Whén,|=|ho:|=1. Since rotation
For |h12|=|h21|=1, it is easy to see fronl (#1), (47) arid(48)ffers increase in the CC capacity, from now on, we consider
that the FDMA rate curve using Gaussian alphabet will toudnly the rotated version of the signal set. As seen in [Hig. 4,
the capacity curve atv = a,, = 5. But with finite the FDMA rate curve does not touch the CC capacity curve
constellation, it is not clear froni_(B8) and {46) whether, dtotated version) and it moves away from it with decreasing
aopt, the FDMA rate point will lie on the CC capacity curveW. We can consider, without loss of generality, the power
or not. So, we need to plot it for some cases and obsem@nstraint for Uset; for the full bandwidth case, a% (1=1,2)

the behaviour. Rate pairs achieved by FDMA with Gaussiamd the noise variances as 1 by dividifig](30) ¥yV and



similarly for the FDMA case we take the power constraints tc

10

be % (=1,2). The same effect of decreasifg is observed ‘ |  Coussin A|pﬁabet<Capaé.ty)
by increasing bothP; and P, with the same factor by which - L DM with Gaussian Alphabet
W is decreased. Note that,,; remains the same wheR; 8
and P, are increased by the same factor. The reason why tt 7H0PSK - without Rotation (Ccca;;;i;y‘)x
FDMA rate curve goes away from the CC capacity curve b o QPSK- Rotated (CC Capacit)——
increasing both?; and P, by the same factor is given below. .

Iw (VPLX1, VP2 X5; Y1) and Iy (VPL X1, VP2 X2; Ya), - owAwin QPSK
the CC capacities of thé6-point constellationsS;,,,, and 4
Ssum, respectively, both of which have an effective averag: 3
power of (PLWP”, have to saturate at bits while both 2
I, (VPIX13 V1|V Xo) and T, (VP2 Xo; Yol V/PIX1), )|
the CC capacities of4-point constellations which also ‘ ‘ ‘ ‘ ‘ A
have effective average powers dfplv“;—Pz) (as they are % 1 2 SRt 5 6 7
evaluated ata = ), have to saturate a bits
when P, and P, are increased by the same factor. So, @ W=6Hz
Iy (VPi X1,V P2 X2; Y1) and Iy (VP X1, VP2 X5 Y2) in-
crease at a faster rate thdw, (vP1X1;Y1|vVPX2) and 6

Iy, (\/PQXQ;YQWPle). Hence, the difference, normalized s Aot oo

Wlth reSPECt tOW1 S al::;lhj:\ wih?;;uisi:za::pﬁabet
1

— [min{WIW (\/Ple, \/Png;Yl) : i
W ‘QP@\K\f without Rotation (CC Capacity)>* \
Wiy (VP PiXasta) ) - e
(mitw, (VPXViVPX: ) +
Wolw, (1 /Py Xo; Y2|1 /Ple))} FDMAwnhQPSK;\»\\

1t

evaluated atv,,:, increases by increasing’(,) by the same

factor or decreasingy’. 0 ‘ ‘ ‘ ‘ ‘
The argument with regards to the constellation-constdaine Coomo B

FDMA rate curve moving away from the CC capacity curve

with decrease iV holds good for constellations with arbi-

trary size and arbitrary complex values fof> and ha1, With  Fig. 5. FDMA and capacity curves for QPSK pair/at=7 Watt (=8.45dB),

|hi2] = |h12| = 1. Hence, at a given finit&V, for the finite P2=12 Watt (=10.79dB), h12=1£10°, ho1=1.1/20°.

constellation case, the FDMA rate curve, under consteHtati

constraints, does not touch the CC capacity curve. But the

difference between the optimum FDMA sum-rate and the C&hd|h21| > 1 are applicable tghi2| > 1 and |h2:[=1 also.

sum-capacity, for a given value of channel gains, will depen When [h12| > 1 and|h2| > 1, as represented by Figl 6,

on the constellation size. the FDMA rate curve with Gaussian alphabet doesn’t touch
When eithetthi»|=1 and|ha;| > 1 0r |h12| > 1 and|ha|=1, the capacity curve (as indicated in [1]) which is obvioustiro

it is easily seen fron{{41)[{47) and {48), that for the Gaarssi (41), (47) and[(48). For the finite constellation case toe, th

alphabet case, the FDMA rate curve will touch the capaciffPMA rate curve doesn't touch the CC capacity curve which

curve ata = o = . But, for the finite alphabet case,iS also implied by the result that, gti2| = 1 and|hizi| = 1,

it is not clear again fronﬁgg) an@ (46) whether,ca,;, the the FDMA rate curve doesn’t touch the CC capacity curve.

FDMA rate point will lie on the CC capacity curve or not. Fig. Hence, whenhiz|=[h21|=1, |hi2|=1 and k21| > 1, and,

is representative of the case whign,|=1 and |hy,| > 1. |h12| > 1 and|hai| = 1, the Gaussian alphabet FDMA rate

In Fig.[3, the FDMA rate curve with constellation constraintcurve will touch the capacity curve while the finite constell

strictly lies within the CC capacity curve. The behaviouttwi tion FDMA rate curve will never touch the CC capacity curve

decreasingV is the same as for the case whign,|=1 and in the strong-interference regime.

|he1|=1. The reason for this is the same as stated|figs|=1 . ) )

and |21 |=1 except that only one of the sum—constellation@’ Finite Constellation FDMA in Weak-Interference Channel

(Ssum, $Ssum,) Will have an average power (ﬁl‘;—% and that When eitherihz| or |ha| Or both are less than, (36)-(41)

will dominate the CC capacity. Hence, figr;2|=1 and|h2;| > and [44){(4B) are just inner bounds (i.e. achievable regjion

1, under constellation constraints, the FDMA rate curve lifsrom [36){38), it is seen that the simultaneous-decoding

strictly within the CC capacity curve. The results far2|=1 inner-bound for the finite constellation case is enlarged by

() W =2 Hz



<——Gaussian Alphabet (Capacity)

"~@PSK - without Rotation (CC Capacity)>
“>~._  QPSK - Rotated (CC Capacity)

o

FDMA with QPSK—>. _

<———FDMA with Gaussian Alphabet

Fig. 6. FDMA and capacity curves for QPSK pair2f=7 Watt (=8.45dB),

45

P>=12 Watt (=10.79dB), h12=1.2210°, h21=1.2/20°, W=2 Hz.

10 T T

FDMA Inner-bound
o with Gaussian Alphabet 1
- ~ Simultaneous-Decoding
r. TN Inner-Bound 7
Simultaneous-Decoding ™~ with Gaussian Alphabet
L Inner-Bound ]
7 with QPSK
- without Rotation
61 Simultaneous-Decoding b
Inner-Bound
~ L with QPSK 4
xS - Rotated
ab 4
3k 4
2L 4
FDMA Inner-bound with QPSK—%‘
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Fig. 8. FDMA inner-bound and simultaneous-decoding irtraund for
QPSK pair atP; =7 Watt (=8.45dB), P»=12 Watt (=10.79dB), h12=1,10°,
h21=0.7£20°, W=6 Hz.

relative rotation of the finite input constellations. It ikear
from (41), [4T) and[(48) that, for the Gaussian alphabet,ca&
when |hi2| or |hei| or both are less thard, the FDMA
inner-bound, aty,, is always better than the simultaneous-
decoding inner-bound. One interesting observation thatea

IV. DISCUSSION
We showed that throughout the strong-interference regime,

Simultan_eous—Dec_oding Inner-Bound
with Gaussian Alphabet

5L

FDMA Inner-Bound
with Gaussian Alphabet

Simultaneous-Decoding \\

Inner-Bound S

_ with QPSK N

o 3F = without Rotation SN
NN Simultaneous-Decoding ™«

Inner-Bound N

\\6
_ withQPSK
“~._ - Rotated

with finite constellation, the FDMA rate curve never touches
the CC capacity curve while for the Gaussian alphabet case,
the FDMA rate curve touches the capacity curve for some por-
tion of the strong-interference regime. This is anothetainse

of what holds good for the Gaussian alphabet case need not
hold good when finite input constellations are employed (for
GMAC such results have already been shown). An interesting
direction of future work lies in the weak-interference regi

For some portion of the weak-interference regime, with a
symmetric channel and equal powers for both the users, using
Gaussian alphabets, the inner-bound obtained from ortredgo
signaling is better than the inner-bound obtained fromtimga

FDMA Inner-Bound with QPSK;‘» N
h interference as noisé [[11]. It would be interesting to seatwh
happens when finite input constellations are used in such a
case.
R ' ' An important direction to pursue is to develop non-
orthogonal multiple access schemes for interference aiann
Fig. 7. FDMA inner-bound and simultaneous-decoding ireund for Which exploit the enlarged portion of the CC capacity and

QPSK pair atPy =7 Watt (=8.45dB), P,=12 Watt (=10.79dB), h12=1210°, operate above the FDMA rate curve.
h21=0.9/20°, W=2 Hz.
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