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Abstract—In the two-user Gaussian Strong Interference Chan-
nel (GSIC) with finite constellation inputs, it is known that
relative rotation between the constellations of the two users
enlarges the Constellation Constrained (CC) capacity region.
In this paper, a metric for finding the approximate angle of
rotation (with negligibly small error) to maximally enlarg e the
CC capacity for the two-user GSIC is presented. In the case
of Gaussian input alphabets with equal powers for both the
users and the modulus of both the cross-channel gains being
equal to unity, it is known that the FDMA rate curve touches
the capacity curve of the GSIC. It is shown that, with unequal
powers for both the users also, when the modulus of one of
the cross-channel gains being equal to one and the modulus of
the other cross-channel gain being greater than or equal to one,
the FDMA rate curve touches the capacity curve of the GSIC.
On the contrary, it is shown that, under finite constellation
inputs, with both the users using the same constellation, the
FDMA rate curve strictly lies within (never touches) the enlarged
CC capacity region throughout the strong-interference regime.
This means that using FDMA it is impossible to go close to
the CC capacity. It is well known that for the Gaussian input
alphabets, the FDMA inner-bound, at the optimum sum-rate
point, is always better than the simultaneous-decoding inner-
bound throughout the weak-interference regime. For a portion
of the weak interference regime, it is shown that with identical
finite constellation inputs for both the users, the simultaneous-
decoding inner-bound, enlarged by relative rotation between the
constellations, is strictly better than the FDMA inner-bound.

I. INTRODUCTION AND PRELIMINARIES

The Gaussian Interference channel (GIC) model [1], is
shown in Fig 1. User-1 intends to communicate with Receiver-
1 at rateR1 and User-2 with Receiver-2 at rateR2, with
both the users interfering with each other at their respective
receivers as dictated by the channel gains. Channel gain from
User-i to Receiver-j is denoted byhij . The users are equipped
with complex signal constellationsS1 and S2 of cardinality
M1 and M2, with average power constraintsP1 and P2

respectively. Symbol level synchronization between the users
is assumed. The signals obtained at the receivers are given by

Y1 = h11X1 + h21X2 +N1 (1)

Y2 = h12X1 + h22X2 +N2 (2)

whereX1 ∈ S1, X2 ∈ S2, N1 ∼ CN (0, σ2
1), N2 ∼ CN (0, σ2

2).
(CN (0, σ2

j ) represents circularly symmetric complex Gaussian
noise with mean0 and varianceσ2

j , (j=1, 2)).

Fig. 1. GIC Model

Without loss of generality, throughout this paper, we assume
h11=h22=1 [2].

Define

SNR1 =
P1

σ2
1

,

INR2 =
|h12|2P1

σ2
2

,

SNR2 =
P2

σ2
2

, and

INR1 =
|h21|2P2

σ2
1

where,SNRi and INRi (i=1, 2) denote the intended-signal
to noise power ratio and the interference to noise power ratio
at Receiver-i respectively.

Definition 1 ( [1], [3], [4] ): 1 A GIC is said to be in
strong interference when

SNR1 ≤ INR2,

SNR2 ≤ INR1 (3)

and, atleast one of the following two conditions is satisfied

SNR1 >

(

INR2

1 + SNR2

)

,

SNR2 >

(

INR1

1 + SNR1

)

. (4)

1The conventional definition for strong interference treatsthe very strong
interference as a special case; in this paper we exclude verystrong interference
from strong interference.
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Definition 2: 2 A GIC is said to be in weak interference
when atleast one of the conditions in (3) is violated.

For the two-user Gaussian strong interference channel
(GSIC), the capacity region (in bits per channel use) is given
by [3]

R1 ≤ log2

(

1 +
P1

σ2
1

)

R2 ≤ log2

(

1 +
P2

σ2
2

)

R1 +R2 ≤ min

{

log2

(

1 +
P1 + |h21|2P2

σ2
1

)

,

}

(5)
{

log2

(

1 +
|h12|2P1 + P2

σ2
2

)}

.

Gaussian codebooks achieve the capacity in the GSIC. Though
this capacity region provides insights into the achievablerate
pairs (R1, R2) in an information theoretic sense, it fails to
provide insight on the achievable rate pairs when we consider
finitary restrictions on the input alphabets and analyze some
real world practical signal constellations like QAM and PSK
etc.

In this work we assume, that the twoindependentusers
use finite complex constellations with uniform distribution
over its elements. Under the above assumptions, the maximum
achievable rate is referred to as the Constellation Constrained
(CC) capacity [5]. The CC capacity was analyzed for the
Gaussian-MAC (G-MAC) in [6] and for the broadcast channel
in [7]. Recently, we came to know of the work on the CC
capacity for the GSIC in [8] in which capacity maximization
for the GSIC by rotation of signal set is studied and it has
been shown that only relative angle of rotation between the
constellations matter. The optimum angle of rotation was
computed numerically in [8].

The contributions of this paper are as follows:

• We present a metric to obtain the approximate angle
of rotation (with negligibly small error) required for
maximal enlargement of the CC capacity region for the
two-user GSIC that can be computed with considerable
ease.

• When the User-Receiver pair use the Frequency Divi-
sion Multiple Access (FDMA) scheme, it is known that
the rate curve when Gaussian alphabets are used, with
P1=P2, touches the capacity curve of the GSIC when
SNR1=SNR2=INR1=INR2 [1]. We show that, (for
the Gaussian alphabet case), withP1 not necessarily equal
to P2, the FDMA rate curve touches the capacity curve of
the GSIC, also whenINR2≥SNR1 andINR1=SNR2

and whenINR2=SNR1 and INR1≥SNR2. On the
contrary, in the finite constellation case, withS1=S2, we
show that the FDMA rate curve always lies strictly inside
(never touches) the CC capacity region of the GSIC.

2In the literature, different definitions for weak interference regime are
available. In this paper, we stick to our definition.

• It is known that, with P1=P2 and INR2=INR1 <
SNR1=SNR2, for the Gaussian alphabet case, the
FDMA inner-bound, at the optimum sum-rate point,
is better than the simultaneous-decoding3 inner-bound
[1]. We show that, withP1 not necessarily equal to
P2, throughout the weak-interference regime, the FDMA
inner-bound, at the optimum sum-rate point, is better than
the simultaneous-decoding inner-bound for the Gaussian
input, whereas, for the finite constellation case, with
S1=S2, for some portion of the weak interference regime,
the simultaneous-decoding inner-bound is strictly better
than the FDMA inner-bound.

Notations: For a random variableX which takes value from
the setS, we assume some ordering of its elements and usexi

to represent thei-th element ofS. Realization of the random
variable X is denoted asx. Absolute value of a complex
numberx is denoted by|x| andE[X ] denotes the expectation
of the random variableX . All the logarithms in this paper are
evaluated for base-2.

II. A METRIC FOR MAXIMAL CAPACITY
ENLARGEMENT

Throughout this section we consider two-user GSIC. The
CC capacity for the GSIC, is given by [9]

R1 ≤ I(X1;Y1|X2)

R2 ≤ I(X2;Y2|X1)

R1 +R2 ≤ min{I(X1, X2;Y1), I(X1, X2;Y2)}. (6)

The above mutual informations can be easily evaluated as in
( [5], [6]) and are shown in (7), (8), (9), and (11) (at the top
of the next page).

For channel gains taking complex values, sinceN1 andN2

are circularly symmetric Gaussian noise, rotation of either S1

or S2 by any arbitrary angle doesn’t change the values in
(7) and (8), where as the values in (9) and (11) do change.
Hence, the CC capacity region does change, providing us with
an option for maximally expanding it [8]. Since, only relative
angle of rotation between the constellations matter [8], we
shall rotate onlyS2 and denote the angle of rotation asθ.

LetSsum1 = {x1+h21x2|∀x1 ∈ S1, x2 ∈ S ′
2} andSsum2 =

{h12x1 + x2|∀x1 ∈ S1, x2 ∈ S ′
2}, whereS ′

2 can be either an
unrotated or a rotated version ofS2. Defineϕ1 : S1 ×S ′

2 −→
Ssum1 andϕ2 : S1 × S ′

2 −→ Ssum2 . The following theorem
gives the metric for choosing an approximate angle of rotation
to maximally enlarge the CC capacity region which, unlike in
[8], doesn’t involve numerical computation.

Theorem 1:Given the constellation pair (S1,S2) for the
users, an approximate angle of rotationθopt for S2 required
to maximally enlarge the CC capacity region of the GSIC at
high power levels is given by (13).

Proof: Define I1, I2, I ′1, I ′2 as in (9)-(12). Equations
(10) and (12) follow from application of Jensen’s Inequality on

3Throughout this paper, the simultaneous-decoding we referto is the version
of simultaneous-decoding that doesn’t require the messageof each user to be
correctly decoded at the unintended receiver, as mentionedin [1].
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the expectation terms ofI1 andI2 respectively. The required
angle of rotation is:θ′opt = arg maxθ∈(0,2π) min{I1, I2}.
Since closed form expressions forI1 andI2 are not available,
we maximize the minimum of the lower bounds onI1 andI2,
i.e. maxθ∈(0,2π) min{I ′1, I ′2}. Canceling the common terms
in I ′1 and I ′2 we arrive at the expression forθopt in (13). At
high power levelsP1, P2, the CC capacity region obtained
from θ′opt will be close to that obtained fromθopt. The proof
for this is as follows:

Let N1R = Re(N1), N1I = Im(N1) and pN1(n1) be the
pdf of the noiseN1 at n1. Also, define

µ1(k1, k2, i1, i2) =
(

xk1
1 − xi1

1

)

+ h21e
jθ
(

xk2
2 − xi2

2

)

where k1 and i1 can take values from0 to (M1 − 1), and
k2 and i2 can take values from0 to (M2−1). We shall denote
µ1(k1, k2, i1, i2) asµ1 for short; for a givenθ, it is understood
thatµ1 is a function ofk1, k2, i1, and i2. Note that, for a given
θ and (k1, k2), and for(i1, i2) 6= (k1, k2), the absolute value
of µ1 gives the distance between two points inSsum1 . Now,
for a fixed (k1, k2) andθ, define the set

M1(k1, k2) = {(i1, i2) 6= (k1, k2) | µ1 = 0} (14)

M1(k1, k2) is the null set for all (k1, k2) if the map-
ping ϕ1 is one-one, else it is a non-empty set for some
(k1, k2). Let P k1,k2

1 = |M1(k1, k2)|. Now, consider the ex-
pression forI1 in (9). The expectation term in it is the
only term dependent onθ. So, considerI ′′1 , defined as in
(16), alternatively written as in (17). The probability of the
event

{

|N1R| >
√

2σ2
1 , and |N1I | >

√

2σ2
1

}

to occur is very

small, as the variances ofN1R andN1I are both equal to
σ2
1

2 . Hence, the second integral in (17) can be neglected.
At high power levels, for a given (k1, k2) and a givenθ,
(15) is satisfied. The expression forI ′′1 is further reduced to
(23), where, (19) and (20) follow from (15) and the fact that
|n1R| ≤

√

2σ2
1 , |n1I | ≤

√

2σ2
1 , and the constantc1 in (22)

arises from evaluation of the integral in (21). We now carry
out the same procedure forI2 also. Define

µ2(k1, k2, i1, i2) = h12

(

xk1

1 − xi1
1

)

+ ejθ
(

xk2

2 − xi2
2

)

where k1 and i1 can take values from0 to (M1 − 1), and
k2 and i2 can take values from0 to (M2−1). We shall denote
µ2(k1, k2, i1, i2) asµ2 for short. Now, for a fixed (k1, k2) and
θ, define the set

M2(k1, k2) = {(i1, i2) 6= (k1, k2) | µ2 = 0} (24)

M2(k1, k2) is the null set for all (k1, k2) if the mappingϕ2 is
one-one, else it is a non-empty set for some (k1, k2). Since,
the expectation term ofI2 in (11) is the only term dependent
on θ, consider,I ′′2 defined as in (26). At high power levels,
for a given (k1, k2) and a givenθ, (25) is satisfied. Following
similar steps as forI ′′1 , expression forI ′′2 reduces to (27).
Since,σ2

1 = σ2
2 , N1 andN2 have the same distribution and

hencec1 = c2. Now, consider the terms in the metric for
θopt in (13), rewritten in terms ofµ1 andµ2 in (28) and (29)
respectively. At high values values ofx, the difference between
e−x2

and e−x2/2 is very small. Hence, the expressions, (23)
divided byc1 and (28), and, (27) divided byc2 and (29) give
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almost the same value at high powers. In other words,

θ′opt = max
θ∈(0,2π)

min{I1, I2} = min
θ∈(0,2π)

max

{

I ′′1
c1

,
I ′′2
c1

}

≈ θopt.

Note that the metric is easy to evaluate as it does not involve
N1 andN2. On the contrary,θ′opt has to be evaluated numer-
ically, as done in [8]. The metric works well, as illustrated
by Fig. 2 and some simulation results in Table I, (the channel
gains and powers are chosen randomly,) where the capacity
regions obtained fromθopt andθ′opt are too close to each other4

(the last two columns). For a given constellation pair, there will
be a significant change in the CC capacity due to rotation only
at high powers. The reason for this is given below.
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QPSK − Rotated Acc. to Metric (Sum=3.675)
QPSK − Rotated Acc. to Numerically
 Computed angle (Sum=3.676)

Fig. 2. CC capacity for QPSK pair (S1,S2) with P1=9.92 Watt (=9.96dB),
P2=10.3 Watt (=10.13dB), n1=n2=1, h12=1.03∠− 112◦, h21=1.07∠−

44◦, θ′opt=79.0682
◦, θopt=77.3493◦ . The curves corresponding toθ′opt and

θopt are close and hence, indistinguishable.

The sphere packing argument for the G-MAC, in [6], which
explained why the capacity does not improve much with
rotation at lowSNR can be extended to the general GSIC
as follows: Fixed powers (P1, P2) and channel gainshij

(i, j = 1, 2), which can take complex values, can correspond
to fixed radius,r1 and r2, of two dimensional balls,Br1

and Br2 respectively, and the signal points in the sum-
constellationSsumi can correspond to points inside its ball
Bri (i = 1, 2). As the number of points in at least one of the
input constellations (S1,S2) increases, the number of points,
Mi =| Ssumi | in Bri increases and hence the density of points
in Bri (i = 1, 2) increases. From (9) and (11), it can be seen
that the CC capacity depends on the distance distribution of
the points ofSsumi in Bri (i = 1, 2). It is clear that rotation of
one of the constellations, will cause perturbations inSsumi ,
and hence its points inBri (i = 1, 2) gets rearranged. For

4In all the plots, in this paper, “Rotated Acc. to NumericallyComputed
angle” refers to the CC capacity according to rotation byθ′opt which is
computed numerically, “Rotated Acc. to Metric” refers to the CC capacity
according to rotation byθopt and “Sum” refers to the maximum sum rate
R1 + R2 on the respective curves.

large values ofM1 or M2, even though the points inBri

(i = 1, 2) rearrange themselves as a result of rotation, the
density ofBri is so large that the distance distribution of the
points inside the balls change negligibly and as a result of (9)
and (11), there is not much change in the CC capacity due
to rotation. Fig. 2 and Fig. 3 illustrate this argument. At the
same values of channel gains and powers there is negligible
improvement in the CC capacity for the 8-PSK pair (S1,S2),
shown in Fig. 3, while there is good improvement in CC
capacity for the QPSK pair (S1,S2) shown in Fig. 2. The
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Computed angle (Sum=4.217)

Fig. 3. CC capacity for 8-PSK pair (S1,S2) with P1=9.92 Watt (=9.96dB),
P2=10.3 Watt (=10.13dB), n1=n2=1, h12=1.03∠− 112◦, h21=1.07∠−

44◦.

arguments tally with the Gaussian input alphabet case where
the input alphabets are unconstrained and the capacity remains
invariant to rotation. So, at fixed channel gains, for rotation
to have considerable effect on the CC capacity of a finite
constellation pair, the powers should be commensurate with
the size of the constellation, and hence the powers should be
high enough. So, we need to rotate the constellation only at
sufficiently high powers.

III. SUBOPTIMALITY OF FDMA WITH FINITE
CONSTELLATIONS

FDMA with finite input constellation for two-user GMAC
was first plotted in [10] and some interesting comparisons
with behaviour for Gaussian alphabets were made. In the
two-user GSIC, it is known that, for the Gaussian alphabet
case withP1=P2, when SNR1=SNR2=INR1=INR2, the
FDMA rate curve touches the capacity curve [1]. It is also
shown in [1], for the Gaussian alphabet case withP1=P2, that
the FDMA inner-bound, at the optimum sum-rate point, is
better than the simultaneous-decoding inner-bound in the weak
interference regime whenINR1=INR2<SNR1=SNR2. In
this section, we show that, for the Gaussian alphabet case with
P1 not necessarily equal toP2, the FDMA rate curve touches
the capacity curve of the GSIC whenSNR1≤INR2 and
SNR2=INR1 or when SNR1=INR2 and SNR2≤INR1



TABLE I
OPTIMUM ANGLE OF ROTATION AND SUM-CAPACITIES FORQPSKALPHABET PAIR (S1,S2) FOR SOME VALUES OF CHANNEL GAINS ANDPOWERS.

P1 P2 h12 h21 θopt θ′
opt Max. CC Sum Max. CC Sum Max. CC Sum

(Watt) (Watt) Capacity (Unrotated) Capacity (Rotated byθopt) Capacity (Rotated byθ′
opt)

3.5 6 1∠10◦ 1∠20◦ 39.53◦ 41.25◦ 3.006 3.107 3.108
3.5 6 1.2∠10◦ 1.1∠20◦ 46.41◦ 44.69◦ 2.994 3.22 3.221
5 5 1.2∠15◦ 1.5∠5◦ 73.91◦ 72.19◦ 3.178 3.319 3.32
8 6 1.8∠40◦ 1.3∠70◦ 49.85◦ 51.57◦ 3.459 3.577 3.58

and throughout the weak-interference regime the FDMA inner-
bound, at the optimum sum-rate point, is always better than
the simultaneous-decoding inner-bound. On the contrary, for
the constellation constrained case, withP1 not necessarily
equal toP2 andS1=S2, we show that the FDMA rate curve
does not touch the CC capacity curve throughout the strong-
interference regime. We also show that, for a portion of
the weak interference regime, under constellation constraints,
the simultaneous-decoding inner-bound, enlarged by relative
rotation between the finite constellations, is strictly better than
the FDMA inner-bound. Throughout the section we assume
S1=S2.

Since FDMA involves bandwidth we need to consider a
modified channel model as described below.

A. Model for CC Capacity with Full Bandwidth Usage

The model of the two-user GIC (shown in Fig. 1) under
strong interference considered in this section is similar to the
one presented in Section I. We point out only the changes
in the signal model with reference to the model in Section
I. It is assumed that User-1 and User-2 communicate to the
destination at the same time and in the same frequency band
of W Hertz. To take into consideration the bandwidth, the
variance of the additive noise at both the receivers are given
by WN0. The signals received at the destinations are given
by

Y1 =
√

P1X1 + h21

√

P2X2 +N1

Y2 = h12

√

P1X1 +
√

P2X2 +N2, (30)

where,X1 ∈ S1, X2 ∈ S2e
jθ (finite constellationsS1 and

S2 are be of unit power),N1 ∼ CN (0,WN0) andN2 ∼
CN (0,WN0) (N0/2 is the power spectral density of the
AWGN in each dimension). Without loss of generality we
take N0 = 1. We assume that every channel use consumes
T seconds for each user (where1T = W Hertz).

Applying the CC capacity regions used in Section II to the
channel model in (30), the set of CC capacity values (in bits
per channel use) that define the boundary of the CC capacity
region, are given by

R1 ≤ IW

(

√

P1X1;Y1|
√

P2X2

)

(31)

R2 ≤ IW

(

√

P2X2;Y2|
√

P1X1

)

(32)

R1 +R2 ≤ min
{

IW

(

√

P1X1,
√

P2X2;Y1

)

,
}

{

IW

(

√

P1X1,
√

P2X2;Y2

)}

, (33)

where, the expressions for the mutual informations in (31) and
the first term of (33) are given in (34) and (35) (shown at the
top of next page) respectively, and, the expressions for the
mutual informations in (32) and the second term of (33) are
similar to the ones in (34) and (35) respectively. We denote the
mutual informations with subscriptW as they depend on the
bandwidthW . The CC capacity is achieved by simultaneous-
decoding scheme with finite input constellations.

Since every channel use consumesT seconds, the rate pairs
(in bits per seconds) that define the CC capacity region are
given by

R1 ≤ WIW

(

√

P1X1;Y1|
√

P2X2

)

(36)

R2 ≤ WIW

(

√

P2X2;Y2|
√

P1X1

)

(37)

R1 +R2 ≤ min
{

WIW

(

√

P1X1,
√

P2X2;Y1

)

,
}

{

WIW

(

√

P1X1,
√

P2X2;Y2

)}

.

(38)

The capacity region of the strong interference channel is given
by

R1 ≤ Wlog

(

1 +
P1

W

)

(39)

R2 ≤ Wlog

(

1 +
P2

W

)

(40)

R1 +R2 ≤ min

{

Wlog

(

1 +
P1+ | h21 |2 P2

W

)

,

}

{

Wlog

(

1 +
| h12 |2 P1 + P2

W

)}

.

(41)

The capacity can be achieved by simultaneous-decoding
scheme, with Gaussian input alphabets.

B. CC Capacity with FDMA

User-1–Receiver-1 agree onW1 = αW bandwidth and
User-2–Receiver-2 agree on the non-overlappingW2 = (1 −
α)W bandwidth,0 < α < 1. Hence, for eachi = 1, 2, User-i,
with bandwidthWi and power constraintPi, equipped with
finite constellation

√
PiSi, views a Single-Input Single-Output

(SISO) AWGN channel with Receiver-i without interference.
The circularly symmetric Gaussian noise at the Receiver-i has
mean zero and varianceWiN0 (and without loss of generality
we assumeN0 = 1). Hence, the channel model is given by

Y1 =
√

P1X1 +N1 (42)

Y2 =
√

P2X2 +N2, (43)
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where,X1 ∈ S1, X2 ∈ S2 (S1 andS2 are taken to be of unit
power),Ni ∼ CN (0,Wi) (i = 1, 2).

The maximum achievable rate pair (in bits per second) for
the two users, under constellation constraints, are given by

R1 ≤ W1IW1

(

√

P1X1;Y1|
√

P2X2

)

(44)

R2 ≤ W2IW2

(

√

P2X2;Y2|
√

P1X1

)

. (45)

Therefore, the sum-rate region achievable with FDMA, under
constellation constraints, is given by

R1 +R2 ≤ W1IW1

(

√

P1X1;Y1|
√

P2X2

)

+W2IW2

(

√

P2X2;Y2|
√

P1X1

)

. (46)

With Gaussian input alphabets, the achievable rate pair for
FDMA is given by

R1 ≤ W1log

(

1 +
P1

W1

)

(47)

R2 ≤ W2log

(

1 +
P2

W2

)

. (48)

The following theorems show that, in the finite constellation
case, theα that would maximize the sum rate for FDMA is
the same as that in the Gaussian alphabet case.

Theorem 2:For the GIC model in Fig. 1, whenS1 = S2,
the value ofα that would maximize the sum rate for FDMA,
in the finite constellation case, is equal toP1

P1+P2
.

Proof: The expressions for the maximum achievable rates
with FDMA, under constellation constraints, in (44) and (45)
are given in (49) and (50). DefineI1 and I2 as in (51) and
(52). It is required to find

αopt = arg max
α∈(0,1)

(

W1IW1(
√

P1X1;Y1|
√

P2X2)
)

(

+W2IW2 (
√

P2X2;Y2|
√

P1X1)
)

.

Therefore, atα = αopt, (53)-(55) are satisfied. AsS1 = S2,
(54) reduces to (55). Now, defineI ′

1 = I1/α and I ′
2 =

I2/(1 − α). Also, define µ1(k1, i1) =
√
P1

(

xk1
1 − xi1

1

)

andµ2(k2, i2) =
√
P2

(

xk2
2 − xi2

2

)

. We denoteµ1(k1, i1) as

simplyµ1 andµ2(k2, i2) asµ2; it is understood thatµ1 andµ2

are functions of(k1, i1) and(k2, i2) respectively. Expressions
for dI1

dα and dI2

dα are given in (56) and (57), where, in (56) and
(57), n1 andn2 are realizations ofN1 andN2 respectively.
Let α′′ = P1

P1+P2
. Now, substituten′

1 = n1/
√
α in (56) and

n′
2 = n2/

√

(1 − α) in (57). After this substitution, it can be

easily seen that, atα = α′′ = P1

P1+P2
, I ′

1 = I ′
2 and the first

term in in (56) and the first term in (57) are equal but for
the sign. Hence, atα = α′′, (53)-(55) are satisfied. To, prove
thatα′′ = αopt, we need to show that the sum-rateR1 +R2,
achievable with FDMA, is a concave function ofα ∈ (0, 1),
for which, it is enough to show that there exists a point on
the FDMA rate curve in the (R1, R2) plane which achieves a
greater sum rate than is achieved at a point on the line joining
any two points on the curve. At this point where the sum rate is
greater the sum rate achieved at a point on the line joining any
two given points on the curve, the value ofα must lie between
the values ofα at the given points. Let the pointsA andB
lie on the FDMA curve in the (R1, R2) plane and let their co-
ordinates be (R1

1, R
1
2) and (R2

1, R
2
2) respectively. Also, let the

bandwidth-sharing parameter,α, at the pointsA andB beα1

andα2 (0 < α1, α2 < 1) respectively. The points (R1
1, R

1
2) and

(R2
1, R

2
2) are defined by their respective expressions similar to

the ones in (49) and (50). LetW 1
1 = α1W , W 1

2 = (1−α1)W ,
W 2

1 = α2W , W 2
2 = (1 − α2)W and also, definef1( 1

αi
)

and f2(
1

1−αi
) (i=1, 2) as in (58) and (59) respectively. To

achieve a point on the line joining the pointsA andB, we
need to time-share between the pointsA andB, for a fraction
of time β and (1 − β) (0 < β < 1) respectively. Now, let,
βα1+(1−β)α2 = α′, β(1−α1)+(1−β)(1−α2) = (1−α′),
W1

′ = α′W , andW2
′ = (1− α′)W . The rate-pair, (R′′

1 , R
′′
2 ),

achieved by time-sharing between the pointsA andB is given
in (60) and (63). Equation (62) follows from the fact that
f1 is a concave function of1/α and, so, we apply Jensen’s
inequality in (61) to arrive at (62). Similarly, we arrive at(63).
Equations (62) and (63) imply that there exists a point on the
FDMA curve in the (R1, R2) plane which achieves a greater
sum rate than is achieved on the line joining the two points
(A,B) on the curve andα′ lies betweenα1 andα2. Hence,
α′′ = P1

P1+P2
is the required optimumα, i.e. αopt.

Theorem 3:For the GIC model in Fig. 1, the value ofα
that would maximize the sum rate for FDMA, in the Gaussian
alphabet case, is equal toP1

P1+P2
.

Proof: The expressions for the maximum achievable rates
with FDMA, in the Gaussian alphabet case, is given in (47)
and (48). DefineRc

1 andRc
2 as given below.

Rc
1 , αW log

(

1 +
P1

αW

)

(64)

Rc
2 , (1 − α)W log

(

1 +
P2

(1 − α)W

)

. (65)

Rc
1 and Rc

2 define the points on the FDMA rate curve.
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(1−α)W |n2+µ2|2

(1−α)W

)

∑M2−1
i2=0 e

−
|n2+µ2|2

(1−α)W













dn2













− 1

2
I′
2.

(57)

Ri
1

αiW
= IW1

i

(

√

P1X1; Y1|
√

P2X2

)

, f1

(

1

αi

)

(58)

Ri
2

(1 − αi)W
= IW2

i

(

√

P2X2;Y2|
√

P1X1

)

, f2

(

1

1 − αi

)

(59)

R
′′
1 = βR

1
1 + (1 − β)R

2
1 = α

′

[

β

α′
R

1
1 +

(1 − β)

α′
R

2
1

]

(60)

= Wα′

[

β

α′
α1f1

(

1

α1

)

+
(1 − β)

α′
α2f1

(

1

α2

)]

(61)

< Wα′

[

f1

(

β + (1 − β)

α′

)]

= Wα′IW1
′

(

√

P1X1;Y1|
√

P2X2

)

(62)

R′′
2 = βR1

2 + (1 − β)R2
2 < W (1 − α′)IW2

′

(

√

P2X2;Y2|
√

P1X1

)

(63)

d

dα

(

Rc
1 + Rc

2

)

= 0 ⇒ Wlog

(

1 +
P1

αW

)

− (P1/α)
(

1 +
P1
αW

) − Wlog

(

1 +
P2

(1 − α)W

)

+
(P2/(1 − α))
(

1 +
P2

(1−α)W

) = 0 (66)

Ri
1

αiW
= log

(

1 +
P1

αiW

)

, f1

(

1

αi

)

(67)

Ri
2

(1 − αi)W
= log

(

1 +
P2

(1 − αi)W

)

, f2

(

1

1 − αi

)

(68)



R′′
1 = βR1

1 + (1 − β)R2
1 = α′

[

β

α′
R1

1 +
(1 − β)

α′
R2

1

]

(69)

= Wα′

[

β

α′
α1f1

(

1

α1

)

+
(1 − β)

α′
α2f1

(

1

α2

)]

(70)

< Wα′

[

f1

(

β + (1 − β)

α′

)]

= Wα′log

(

1 +
P1

α′W

)

(71)

R′′
2 = βR1

2 + (1 − β)R2
2 < W (1 − α′)log

(

1 +
P2

(1 − α′)W

)

(72)

It is required to findαopt = arg maxα∈(0,1) (R
c
1 +Rc

2).
Therefore, atα = αopt, (66) (given at the top of the next
page) is satisfied. Letα′′ = P1

P1+P2
. It is easy to see that

(66) is satisfied atα = α′′. To prove thatα′′ = αopt, we
need to show that the sum-rateRc

1 + Rc
2, achievable with

FDMA, is a concave function ofα ∈ (0, 1), for which, it
is enough to show that there exists a point on the FDMA
rate curve in the (R1, R2) plane which achieves a greater sum
rate than is achieved at a point on the line joining any two
points on the curve. At this point where the sum rate is greater
the sum rate achieved at a point on the line joining any two
given points on the curve, the value ofα must lie between the
values ofα at the given points. Let the pointsA andB lie
on the FDMA curve in the (R1, R2) plane and let their co-
ordinates be (R1

1, R
1
2) and (R2

1, R
2
2) respectively. Also, let the

bandwidth-sharing parameter,α, at the pointsA andB beα1

andα2 (0 < α1, α2 < 1) respectively. The points (R1
1, R

1
2) and

(R2
1, R

2
2) are defined by their respective expressions similar to

the ones in (64) and (65). LetW 1
1 = α1W , W 1

2 = (1−α1)W ,
W 2

1 = α2W , W 2
2 = (1 − α2)W and also, definef1( 1

αi
)

and f2(
1

1−αi
) (i=1, 2) as in (67) and (68) respectively. To

achieve a point on the line joining the pointsA andB, we
need to time-share between the pointsA andB, for a fraction
of time β and (1 − β) (0 < β < 1) respectively. Now, let,
βα1+(1−β)α2 = α′, β(1−α1)+(1−β)(1−α2) = (1−α′),
W1

′ = α′W , andW2
′ = (1− α′)W . The rate-pair, (R′′

1 , R
′′
2 ),

achieved by time-sharing between the pointsA andB is given
in (69) and (72). Equation (71) follows from the fact that
f1 is a concave function of1/α and, so, we apply Jensen’s
inequality in (70) to arrive at (71). Similarly, we arrive at(57).
Equations (71) and (72) imply that there exists a point on the
FDMA curve in the (R1, R2) plane which achieves a greater
sum rate than is achieved on the line joining the two points
(A,B) on the curve andα′ lies betweenα1 andα2. Hence,
α′′ = P1

P1+P2
is the required optimumα, i.e. αopt.

We characterize the behaviour of finite constellation FDMA
under strong-interference and weak-interference in the follow-
ing two subsections.

C. Finite Constellation FDMA in Strong-Interference Channel

For |h12|=|h21|=1, it is easy to see from (41), (47) and (48)
that the FDMA rate curve using Gaussian alphabet will touch
the capacity curve atα = αopt = P1

P1+P2
. But with finite

constellation, it is not clear from (38) and (46) whether, at
αopt, the FDMA rate point will lie on the CC capacity curve
or not. So, we need to plot it for some cases and observe
the behaviour. Rate pairs achieved by FDMA with Gaussian
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Fig. 4. FDMA and Capacity Region for QPSK pair atP1=7 Watt (=8.45dB),
P2=12 Watt (=10.79dB), h12=1∠10◦, h21=1∠20◦.

alphabets and FDMA with QPSK alphabets are shown in Fig.
4. Fig. 4 represents a case when|h12|=|h21|=1. Since rotation
offers increase in the CC capacity, from now on, we consider
only the rotated version of the signal set. As seen in Fig. 4,
the FDMA rate curve does not touch the CC capacity curve
(rotated version) and it moves away from it with decreasing
W . We can consider, without loss of generality, the power
constraint for User-i, for the full bandwidth case, asPi

W (i=1, 2)
and the noise variances as 1 by dividing (30) by

√
W and



similarly for the FDMA case we take the power constraints to
be Pi

Wi
(i=1,2). The same effect of decreasingW is observed

by increasing bothP1 andP2 with the same factor by which
W is decreased. Note thatαopt remains the same whenP1

andP2 are increased by the same factor. The reason why the
FDMA rate curve goes away from the CC capacity curve by
increasing bothP1 andP2 by the same factor is given below.
IW

(√
P1X1,

√
P2X2;Y1

)

and IW
(√

P1X1,
√
P2X2;Y2

)

,
the CC capacities of the16-point constellationsSsum1 and
Ssum2 respectively, both of which have an effective average
power of (P1+P2)

W , have to saturate at4 bits while both
IW1

(√
P1X1;Y1|

√
P2X2

)

and IW2

(√
P2X2;Y2|

√
P1X1

)

,
the CC capacities of4-point constellations which also
have effective average powers of(P1+P2)

W (as they are
evaluated atα = αopt), have to saturate at2 bits
when P1 and P2 are increased by the same factor. So,
IW

(√
P1X1,

√
P2X2;Y1

)

and IW
(√

P1X1,
√
P2X2;Y2

)

in-
crease at a faster rate thanIW1

(√
P1X1;Y1|

√
P2X2

)

and
IW2

(√
P2X2;Y2|

√
P1X1

)

. Hence, the difference, normalized
with respect toW ,

1

W

[

min
{

WIW

(

√

P1X1,
√

P2X2;Y1

)

,
}]

{

WIW

(

√

P1X1,
√

P2X2;Y2

)}

−
(

W1IW1

(

√

P1X1;Y1|
√

P2X2

)

+
)

[(

W2IW2

(

√

P2X2;Y2|
√

P1X1

))]

evaluated atαopt, increases by increasing (P1,P2) by the same
factor or decreasingW .

The argument with regards to the constellation-constrained
FDMA rate curve moving away from the CC capacity curve
with decrease inW holds good for constellations with arbi-
trary size and arbitrary complex values ofh12 andh21, with
|h12| = |h12| = 1. Hence, at a given finiteW , for the finite
constellation case, the FDMA rate curve, under constellation
constraints, does not touch the CC capacity curve. But the
difference between the optimum FDMA sum-rate and the CC
sum-capacity, for a given value of channel gains, will depend
on the constellation size.

When either|h12|=1 and|h21| > 1 or |h12| > 1 and|h21|=1,
it is easily seen from (41), (47) and (48), that for the Gaussian
alphabet case, the FDMA rate curve will touch the capacity
curve atα = αopt =

P1

P1+P2
. But, for the finite alphabet case,

it is not clear again from (38) and (46) whether, atαopt, the
FDMA rate point will lie on the CC capacity curve or not. Fig.
5 is representative of the case when|h12|=1 and |h21| > 1.
In Fig. 5, the FDMA rate curve with constellation constraints
strictly lies within the CC capacity curve. The behaviour with
decreasingW is the same as for the case when|h12|=1 and
|h21|=1. The reason for this is the same as stated for|h12|=1
and |h21|=1 except that only one of the sum-constellations
(Ssum1 ,Ssum2 ) will have an average power ofP1+P2

W and that
will dominate the CC capacity. Hence, for|h12|=1 and|h21| >
1, under constellation constraints, the FDMA rate curve lies
strictly within the CC capacity curve. The results for|h12|=1
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Fig. 5. FDMA and capacity curves for QPSK pair atP1=7 Watt (=8.45dB),
P2=12 Watt (=10.79dB), h12=1∠10◦, h21=1.1∠20◦.

and |h21| > 1 are applicable to|h12| > 1 and |h21|=1 also.
When |h12| > 1 and |h21| > 1, as represented by Fig. 6,

the FDMA rate curve with Gaussian alphabet doesn’t touch
the capacity curve (as indicated in [1]) which is obvious from
(41), (47) and (48). For the finite constellation case too, the
FDMA rate curve doesn’t touch the CC capacity curve which
is also implied by the result that, at|h12| = 1 and |h21| = 1,
the FDMA rate curve doesn’t touch the CC capacity curve.

Hence, when|h12|=|h21|=1, |h12|=1 and |h21| > 1, and,
|h12| > 1 and |h21| = 1, the Gaussian alphabet FDMA rate
curve will touch the capacity curve while the finite constella-
tion FDMA rate curve will never touch the CC capacity curve
in the strong-interference regime.

D. Finite Constellation FDMA in Weak-Interference Channel

When either|h12| or |h21| or both are less than1, (36)-(41)
and (44)-(48) are just inner bounds (i.e. achievable regions).
From (36)-(38), it is seen that the simultaneous-decoding
inner-bound for the finite constellation case is enlarged by
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relative rotation of the finite input constellations. It is clear
from (41), (47) and (48) that, for the Gaussian alphabet case,
when |h12| or |h21| or both are less than1, the FDMA
inner-bound, atαopt, is always better than the simultaneous-
decoding inner-bound. One interesting observation that can be
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h21=0.9∠20◦, W=2 Hz.

made from Fig. 7 is that, for the finite constellation case, the
simultaneous-decoding inner-bound still remains strictly better
than the FDMA inner-bound. Hence, under weak-interference,
when|h12| and|h21| are close to1, the simultaneous-decoding
inner-bound outperforms the FDMA inner-bound, atαopt,
for the finite constellation case, unlike the Gaussian alphabet
case. However, under constellation constraints, the values of
cross channel gains at which the FDMA inner-bound, atαopt,
outperforms the simultaneous-decoding inner-bound depends
on the constellations used. One instance of the FDMA inner-
bound, at αopt, outperforming the simultaneous-decoding
inner-bound, under constellation constraints, is shown inFig.
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8.

IV. DISCUSSION

We showed that throughout the strong-interference regime,
with finite constellation, the FDMA rate curve never touches
the CC capacity curve while for the Gaussian alphabet case,
the FDMA rate curve touches the capacity curve for some por-
tion of the strong-interference regime. This is another instance
of what holds good for the Gaussian alphabet case need not
hold good when finite input constellations are employed (for
GMAC such results have already been shown). An interesting
direction of future work lies in the weak-interference regime.
For some portion of the weak-interference regime, with a
symmetric channel and equal powers for both the users, using
Gaussian alphabets, the inner-bound obtained from orthogonal
signaling is better than the inner-bound obtained from treating
interference as noise [11]. It would be interesting to see what
happens when finite input constellations are used in such a
case.

An important direction to pursue is to develop non-
orthogonal multiple access schemes for interference channels
which exploit the enlarged portion of the CC capacity and
operate above the FDMA rate curve.
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