
Connected Identifying Codes for

Sensor Network Monitoring

Niloofar Fazlollahi, David Starobinski and Ari Trachtenberg

Dept. of Electrical and Computer Engineering

Boston University, Boston, MA 02215

Email: {nfazl,staro,trachten}@bu.edu

Abstract—Identifying codes have been proposed as an ab-
straction for implementing monitoring tasks such as indoor
localization using wireless sensor networks. In this approach,
sensors’ radio coverage overlaps in unique ways over each
identifiable region, according to the codewords of an identifying
code. While connectivity of the underlying identifying code is
necessary for routing data to a sink, existing algorithms that
produce identifying codes do not guarantee such a property.
As such, we propose a novel polynomial-time algorithm called
ConnectID that transforms any identifying code into a connected
version that is also an identifying code and is provably at most
twice the size of the original. We evaluate the performance of
ConnectID on various random graphs, and our simulations show
that the connected codes generated are actually at most 25%

larger than their non-connected counterparts.

Index Terms—Localization, graph theory, approximation algo-
rithms.

I. INTRODUCTION

Sensor networks are widely used to monitor the envi-

ronment. Thus, sensors gather ambient data and forward it

to a sink for processing. Examples of important monitoring

applications using sensor networks include identification of

contamination source in water pipes [1], location detection

[2–4], structural monitoring of buildings, bridges and air-

crafts [5], patient monitoring [6] and tracking and monitoring

of endangered animal species [7].

Identifying codes were introduced in [8] and later proposed

for sensor network monitoring and particularly for location

detection in indoor environments [2, 3]. In the method pro-

posed in [2], sensors in a building are mapped to graph

vertices. A pair of vertices is connected by an edge if the

two corresponding physical sensors are within each other’s

communication range. Only a fraction of all sensors are kept

active while the rest can be put in energy-saving mode. The

active sensors correspond to codewords of an identifying code

in the graph. A target is located by the unique pattern of

sensors within its radio range.

An example of indoor floor plan and the graph correspond-

ing to sensor placement and sensor connectivity is depicted

in Figure 1. Circles show positions of a sensors. Sensors that

are within each other’s radio communication range, like a and

b, are connected by a graph edge (we assume connectivity

between sensors is symmetrical). Filled circles a, c, d, f ,

g and ℎ represent codewords of an identifying code for the

�

�

�

�

�

�

�

�

	




Fig. 1. An example building floor plan and connectivity graph of sensors
located at positions marked by circles. The filled circles represent codewords
of an identifying code for the sensor network connectivity graph. The dashed
lines show the boundaries of distinguishable regions based on the radio range
of the active sensors.

sensor connectivity graph. Only the mentioned sensors actively

monitor their surrounding for location detection. When a target

is placed at any of the regions marked by dashed lines, one

can uniquely determine its location based on the identifying

code. For instance, the set {a, c} uniquely identifies the region

surrounding position b.

In order to route data over a sensor network and sink

sensor data to a processor for location detection processing,

we need a connected network of active sensors. This important

requirement has been ignored in previous work on identifying

codes. Yet, if we only activate sensors that correspond to

codewords of an identifying code and deactivate the rest, there

is no guarantee that we achieve a connected network of active

sensors. Therefore, although there exist various algorithms in

the literature to create an identifying code for an arbitrary

graph [2, 3, 9], none of them guarantees that the produced

identifying code is connected.

In this work, we consider the problem of generating a con-

nected identifying code for an arbitrary graph. This approach

provides a framework for location detection in sensor networks

with guaranteed routing connectivity between the sensors.

In particular, we focus on building a connected identifying

code out of an identifying code produced by one of the

existing algorithms. Our goal is to add a minimum number



of codewords so as to keep as many sensors as possible in

energy-savings mode. Our contributions are the following:

∙ We propose a new polynomial-time algorithm called

ConnectID that creates a connected identifying code

from any identifying code for a general graph.

∙ We prove that ConnectID produces a connected identi-

fying code with cardinality at most twice larger than that

of the original identifying code. We further show that the

bound is tight.

∙ Using the best known polynomial-time approximation

algorithm for building an identifying code [3], we obtain

an approximation ratio of c ln ∣V ∣ with respect to the

minimum connected identifying code, where c > 0 is

a constant and ∣V ∣ is the number of vertices in the graph.

∙ We evaluate the performance of ConnectID in terms of

the achieved identifying code cardinality through simu-

lations on various random graphs. The simulations show

that the size of the resulting code exceeds the size of the

original code by a multiplicative factor of 1.25 or less

(i.e., significantly smaller than 2).

This paper is organized as follows. In Section II, we for-

mally describe identifying codes and review the related work.

In Section III-A we introduce our model and some of our

notations. In Section III-B we present our proposed algorithm

ConnectID. In Section III-C we provide performance analysis

of ConnectID and its computation complexity. We provide

our numerical results in Section IV and conclude the paper in

Section V.

II. BACKGROUND AND RELATED WORK

Assume we have a graph G with a set of vertices V and a

set of edges E. Every vertex in V is either a codeword or a

non-codeword. We denote I the set of vertices in V that are

codewords. An identifying set for vertex v ∈ V is the set of all

codewords that are within distance one from v (this includes

node v itself and all of its neighbors). If the identifying set

for every vertex is unique, then we call I an identifying code.

Every super-set of I is an identifying code [2]. We require

that no identifying set be empty.

One can verify that for the graph and codewords shown in

Figure 1, the identifying set for every vertex of the graph is

unique, i.e., the identifying set for vertex a is {a}, for vertex

b is {a, c} and so on. Location of a target can be identified at

every region using a look-up table that maps identifying sets

to vertex IDs.

Ref. [2] suggests application of identifying code theory for

indoor location detection. They present a greedy heuristic that

creates an irreducible identifying code (i.e., no codeword is

redundant) for an arbitrary graph. Ref. [3] introduces a more

efficient algorithm for generating identifying codes based on a

reduction to the set covering problem [10]. Accordingly, they

prove an approximation ratio with respect to the minimum

size identifying code that increases logarithmically with the

number of vertices in the graph. They also suggest additional

applications of identifying codes for node labeling and routing

in the underlying sensor network. Both references implicitly

assume that the sensor network can route data toward a sink,

an assumption that may not hold in practice and provides the

motivation for this work.

In [11, 12], the problem of computing a minimum iden-

tifying codes is proved to be NP-complete. Authors in [13]

provide probabilistic existence thresholds for identifying codes

in random graphs and upper and lower bounds on the min-

imum cardinality of identifying codes in a random graph.

Ref. [14] considers identifying codes that are robust to failure

of a bounded number of their codewords over various graph

topologies. They also consider dynamic identifying codes. A

dynamic identifying code is a walk in a graph whose vertices

form an identifying code.

Other related graph abstractions include dominating sets and

connected dominating sets. A dominating set is a subset of

graph vertices such that every vertex is adjacent to at least

one member of the dominating set. In [15] authors present

and compare several heuristics for generating a connected

dominating set for an arbitrary graph and provide a competitive

performance bound. Reference [16] surveys the literature on

connected dominating sets and reviews existing algorithms.

The results on connected dominating sets do not apply to

connected identifying codes. Although every identifying code

is a dominating set, not every dominating set is an identifying

code. Thus, the optimal identifying code generally has larger

cardinality than that of the optimal dominating set.

III. ALGORITHM ConnectID

A. Model and notations

We assume an undirected connected graph G(V,E) (or G in

short) where V is the set of nodes and E is the set of edges

between the nodes. Assume I ∈ V is the set of codewords

of an identifying code in G and a super-set Ic of I is the

set of codewords of a connected identifying code in G. The

redundancy ratio of Ic vs. I is defined to be the ratio of the

cardinality of Ic to that of I , i.e. R = ∣Ic∣/∣I∣ where R ≥ 1
denotes the redundancy ratio. It is desirable to have R as close

as possible to one.

We define a component of connectivity (or a component in

short) C of I in graph G to be a subset of codewords in I such

that the sub-graph of G induced by this subset is connected,

i.e., the graph G′(C,E∩ (C×C) ) is connected where C×C
denotes all pairs of vertices in C. In addition, no codewords

can be added to C while maintaining the connectivity of the

induced graph G′. Back to the example of Figure 1, we have

I = {a, c, d, f, g, ℎ}. The components of connectivity for I
are C1 = {a}, C2 = {c}, C3 = {d} and C4 = {f, g, ℎ}.

A plain path between components C1 and C2 is an ordered

subset of vertices in V that forms a path in G connecting a

vertex x1 belonging to C1 to a vertex x2 belonging to C2.

A plain path consists of non-codeword vertices except for x1

and x2. The term path throughout this paper is more general

than plain path and is not restricted to non-codewords. As an

example, in Figure 1, {a, b, e, f} and {a, j, f} are the only

plain paths between components C1 and C4. Note that path



{a, j, f, e, d} is not a plain path between C1 and C3 because

f is a codeword.

The distance between a given pair of components, say

C1 and C2, is denoted dist(C1, C2) and is defined to be

the length in number of hops of the shortest plain path

between C1 and C2. If there is no plain path between C1

and C2, then dist(C1, C2) =∞. As an example, in Figure 1,

dist(C1, C2) = 2, dist(C1, C3) = 3 and dist(C1, C4) = 2.

B. Algorithm description

We present algorithm ConnectID in the format of a function

which receives the set of codewords of an identifying code

I for a given graph G and returns the set of codewords of

a connected identifying code Ic. First, we present algorithm

ConnectID informally:

In the initialization phase, function ConnectID(G, I) parti-

tions the identifying code I into a set of N distinct components

of connectivity {C1, C2, ..., CN} where 1 ≤ N ≤ ∣I∣. Note

that every pair of components is connected by some path in

G because of the connectivity of G.

We define C to be a set that stores the growing connected

identifying code. It is initialized to the set of codewords in

one of the components, say C1. We define Ĉ to be a set that

stores all components whose codewords are not yet included

in C. Therefore Ĉ is initialized to {C2, ..., CN}.
At every iteration, we first update the distance dist(C,Cj)

between C and every component Cj in Ĉ . Then, we ex-

tract from Ĉ the component C∗ with minimum dist(C,C∗)
(breaking ties arbitrarily). We assign as codewords all vertices

on the shortest plain path connecting C and C∗ denoted

path∗(C,C∗). Then, we unite the codewords in C and C∗

and path∗(C,C∗) to form a single larger component, again

called C. After this step, we examine if there are any other

components in Ĉ which become connected to C via the newly

selected codewords on path∗(C,C∗). We define Γ ⊆ Ĉ to

be the set of such components. If Γ is non-empty, we unite

C with the components in Γ and extract them from Ĉ. In

Section III-C, we briefly explain how to efficiently compute

dist(C,Cj) and path∗(C,Cj) for every component Cj in

Ĉ. We repeat the iteration explained above until Ĉ becomes

empty. At termination, we return Ic = C. Note that I ⊆ Ic
and therefore, Ic is an identifying code.

Below, is a formal presentation of algorithm

ConnectID(G, I):
Algorithm ConnectID(G, I):
Initialization:

1) Partition I into a unique set of components of connec-

tivity {C1, C2, ..., CN} where 1 ≤ N ≤ ∣I∣.
2) Set Ĉ ← {C2, ..., CN}.
3) Set C ← C1.

Iteration:

7) While Ĉ is not empty,

8) Update dist(C,Cj) and path(C,Cj) for every

Cj ∈ Ĉ and set C∗ ← argmin
Cj∈Ĉ

dist(C,Cj).

9) Extract component C∗ from Ĉ.

� �

�

��

�

�

�

	




� �

�

��

�

�

�

	




� �

�

��

�

�

�

	




��� ���

���

Fig. 2. Progress of ConnectID(G, I). The filled circles represent codewords
of an identifying code I for the illustrated graph G (a) initially, I is partitioned
to components C1 = {a}, C2 = {c}, C3 = {d} and C4 = {f, g, ℎ}. We

set C = {a} and Ĉ = {C2, C3, C4} (b) C = {a, b, c} and Ĉ = {C3, C4}
(c) C = {a, b, c, d, e, f, g, ℎ} and Ĉ = {}.

10) Set C ← C ∪ C∗ ∪ path∗(C,C∗).
11) Find the set Γ ⊆ Ĉ of components that are connected

to C.

12) If Γ is not empty,

13) For every component Cj ∈ Γ,

14) Extract Cj from Ĉ .

15) Set C ← C ∪ Cj .

16) Return Ic ← C.

Example. Figure 2 shows the progress of ConnectID(G, I)
for the same graph and the same input identifying code as

shown in Figure 1. The vertices in black are codewords.

The figure shows the progress of ConnectID(G, I) after

every iteration. Assume at initialization we have: C1 = {a},
C2 = {c}, C3 = {d} and C4 = {f, g, ℎ}. In figure 2(a) we

set C = C1 and Ĉ = {C2, C3, C4}. At first iteration, after

we calculate the distance between C and all components in

Ĉ at line 8, we have: dist(C,C2) = 2, dist(C,C3) = 3,

dist(C,C4) = 2. At line 9, we extract one component with

minimum dist from Ĉ, which may be C2 or C4. Assume that

we select C2. Then, we unite C and C2 and vertex b at line

10. Hence, C = {a, b, c} as illustrated in figure 2(b). There

are no components in Ĉ that are connected to C at this stage,

i.e. Γ = {}, and we return back to line 7. We update distances

and paths again: dist(C,C3) = 2 and dist(C,C4) = 2. We

extract the component with minimum dist, which may be

C3 or C4. Assume that we extract C3 at line 9. Hence, we



unite C and C3 and vertex e and obtain C = {a, b, c, d, e}.
Then, we examine the only component remaining in Ĉ which

is C4 to see if it is now connected to C. We get Γ = C4 and

we unite C and C4 at line 15. Finally, in figure 2(c) we have

C = {a, b, c, d, e, f, g, ℎ} which is the connected identifying

code Ic output by the algorithm.

C. Performance analysis

In this section, we first prove two properties of any iden-

tifying code I . These properties are invariably true at every

iteration of ConnectID. Based on this, we prove our main

result, that is, algorithm ConnectID produces a connected

identifying code whose size is tightly bounded with respect

to the original identifying code. Finally, we briefly discuss the

running time of ConnectID.

Lemma 3.1: Consider any identifying code I that is par-

titioned into a set of components of connectivity P =
{C1, ..., C∣P ∣} over graph G. If ∣P ∣ > 1, then every component

Ci in P is at most three hops away from another component

Cj in P where j ∕= i.

Proof: By the definition presented in section II for an

identifying code, every non-codeword vertex in G is adjacent

to at least one codeword in I . Since the graph is connected,

every pair of components in P should be connected by at least

one path. Consider the shortest path connecting component

Ci in P to component Ck in P where k ∕= i. The second

node on this path (the node at the first hop) is obviously not

a codeword because otherwise it would be included in Ci.

The third node on this path (the node at the second hop) is

either a codeword belonging to a component Cj in P or is

a non-codeword adjacent to some component Cj . Component

Cj should be different from Ci because otherwise the selected

path from Ci to Ck will not be the shortest.

Lemma 3.2: Every vertex in graph G that is adjacent to a

component Ci with cardinality one in P , is adjacent to at least

one other component Cj in P where j ∕= i.

Proof: This property follows from the uniqueness of the

identifying sets. The identifying set of the single codeword

belonging to component Ci is itself. If any non-codeword that

is adjacent to Ci is not adjacent to at least one other component

Cj where j ∕= i, then it will have the same identifying set as

the single codeword in Ci which contradicts the definition of

an identifying code.

Corollary 3.3: Consider any identifying code I that is

partitioned into a set of components of connectivity P =
{C1, ..., C∣P ∣} over graph G. If ∣P ∣ > 1, then every component

Ci in P with cardinality one is at most two hops away from

another component Cj in P where j ∕= i.

Lemma 3.1 and 3.2 hold for every identifying code I over

graph G. Therefore, they are true right after the initialization

of algorithm ConnectID. Since at every iteration, we add one

or more codewords and do not remove any codeword, the

set of vertices in C and in every component of Ĉ forms an

identifying code. Hence, Lemmas 3.1 and 3.2 invariably hold

after every iteration.

Theorem 3.4: Assuming I is an identifying code for graph

G and Ic is the identifying code created by algorithm

ConnectID(G, I), we have:

i) Ic is a connected identifying code.

ii) The total number of codewords generated by algorithm

ConnectID(G, I) is at most 2∣I∣ − 1. Furthermore, this

bound is tight.

Proof:

i) Clearly, C is a component of connectivity at initialization

and it remains connected after every iteration of function

ConnectID. The while loop starting at line 7 terminates when

Ĉ is empty. Since every component extracted from Ĉ unites

with C at line 10 or line 15, at termination of the while loop

I ⊆ C. This implies Ic = C is an identifying code. We prove

by contradiction that the while loop must terminate. Assume

Ĉ is not empty at some iteration of the while loop. Then

C will be at distance of at most three hops from at least

one component, say Cj , in Ĉ because Lemma 3.1 holds at

every iteration. As a result, ConnectID will assign Cj a finite

dist(C,Cj) and extract it from Ĉ for union with C. Hence,

Ĉ eventually becomes empty.

ii) At every iteration of ConnectID, we unite C with at

least one component denoted C∗ in Ĉ and add at most two

codewords according to Lemma 3.1. If the newly merged

component C∗ has cardinality one, then either C∗ is two hops

away from C or according to Lemma 3.2, the non-codeword

on path∗(C,C∗) that is adjacent to a codeword in C∗, is also

adjacent to at least one other component Ci in Ĉ. In the latter

case, after the union at line 10, Ci becomes connected to C
and unites with C at line 15. Thus, we are adding at most two

codewords on path∗(C,C∗) per at least two components C∗

and Ci. Overall, we assign at most one new vertex as codeword

for every codeword in I ∖ C1. Thus, the cardinality of the

resulting identifying code ∣Ic∣ is at most 2∣I∣ − 1 codewords

when ConnectID(G, I) terminates.

This bound is tight. Consider a ring topology with 2k nodes

(k being a positive integer). The optimal identifying code (i.e.

that with minimum cardinality) consists of k interleaved ver-

tices and the minimum cardinality of a connected identifying

code for this graph and the mentioned input identifying code

is ∣Ic∣ = 2k − 1.

Corollary 3.5: The redundancy ratio R = ∣Ic∣/∣I∣ of the

connected identifying code Ic achieved by ConnectID(G, I)
is at most two for any given graph G.

Corollary 3.6: If the input identifying code I to

ConnectID(G, I) is an identifying code achieved by

the algorithm in [3], then the cardinality of the connected

identifying code Ic achieved by ConnectID is at most

c ∣I∗c ∣ ln ∣V ∣ where c > 0 is a constant, I∗c is the connected

identifying code with minimum cardinality in graph G and

∣V ∣ is the number of vertices in graph G.

Next, we briefly analyze the running time of ConnectID. In

order to partition the input identifying code, we remove non-

codeword vertices and the edges incident on them and use

a connected components algorithm on the remaining graph,



2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

average node degree

a
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
c
o
m

p
o
n
e
n
ts

 

 

ID−CODE [2]

rID [3]

Fig. 3. Average number of components of connectivity for the identifying
codes produced by ID-CODE [2] and by rID [3] over 100-node random graphs
and varying average node degree.

for example the algorithm by Hopcroft and Tarjan based on

the Breadth First Search (BFS) or Depth First Search (DFS)

[17, 18]. We maintain the components of connectivity using

a disjoint-set data structure [18]. We calculate the distances

dist and the shortest plain paths path∗ between C and the

components in Ĉ using a shortest path calculation algorithm

based on a modified two-stage BFS which visits the codewords

in C prior to other vertices and assigns them distance zero.

Using the above data structure, the overall computational

complexity of ConnectID is O(N ∣E∣) where N ≤ ∣V ∣ is

the total number of components after the initialization.

IV. NUMERICAL RESULTS

We evaluate the performance of ConnectID on various

instances of Erdos-Renyi random graphs. In order to generate

an identifying code for a given graph instance, we use two

existing algorithms [2, 3]. Throughout this section, we denote

by ID-CODE our implementation of the algorithm presented in

[2] and denote by rID our implementation of the algorithm in

[3]. As we will see, the identifying codes generated by rID

and ID-CODE are often disconnected.

We first use graphs with 100 vertices and change the average

degree of the vertices from 3 to 15. We generate 100 instances

of graph per every value of average degree. For every graph

instance, we measure the following metrics: the cardinality

of the identifying code generated by algorithm ID-CODE and

algorithm rID, the number of components of connectivity for

each of the identifying codes, the cardinality of the connected

identifying code generated by ConnectID for each of the two

identifying codes and the corresponding redundancy ratio. Our

measurements are averaged over 100 instances. We present the

empirical mean in Figures 3, 4 and 5. The error bars show 95%
confidence intervals.

Figure 3 shows the average number of components of the

identifying codes produced by ID-CODE and by rID. We expect

lower redundancy when we have fewer components. If the

number of components is 1, the identifying code is connected.

We observe that algorithm rID produces fewer components

2 4 6 8 10 12 14 16
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

average node degree

a
v
e

ra
g

e
 r

e
d

u
n

d
a

n
c
y
 r

a
ti
o

 

 

ID−CODE [2]

rID [3]

Fig. 4. Average redundancy ratio of the connected identifying codes
generated by ConnectID for input identifying codes from ID-CODE [2] and
from rID [3] over 100-node random graphs and varying average node degree.

2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

average node degree

a
v
e

ra
g

e
 i
d

e
n

ti
fy

in
g

 c
o

d
e

 s
iz

e
 (

c
o

d
e

w
o

rd
s
)

 

 

ConnectID−rID

ConnectID−ID−CODE

ID−CODE [2]

rID [3]

Fig. 5. Average cardinality of the input identifying codes from ID-CODE [2]
and from rID [3] and average cardinality of the connected identifying codes
generated by ConnectID in both cases for 100-node random graphs and
varying average node degree.

of connectivity than algorithm ID-CODE on average. We also

observe that the average number of components decreases as

the average node degree increases and reaches about two when

the average node degree equals 15. This is reasonable since

the connectivity between vertices (and codewords) increases

with the average node degree.

Figure 4 shows the average redundancy ratio of ConnectID

with input identifying codes generated by ID-CODE and by

rID. As can be expected based on the results from Figure 3,

we obtain a smaller redundancy ratio using algorithm rID and

the average redundancy ratio decreases as the average node

degree increases. Note that the redundancy ratio is close to

one at average node degree of 15 for both algorithms and is

about 1.25 for ID-CODE at its highest value when average node

degree equals to 3.

Figure 5 compares the cardinality of the connected identi-

fying code generated by ConnectID with the cardinality of

identifying codes generated by ID-CODE and by rID. As also

shown in Figure 4, we observe that the cardinality of the

connected identifying code is far smaller than twice that of



0 20 40 60 80 100 120 140 160
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

graph size (number of nodes)

a
v
e
ra

g
e
 r

e
d
u
n
d
a
n
c
y
 r

a
ti
o

 

 

ID−CODE [2]

rID [3]

Fig. 6. Average redundancy ratio of the connected identifying codes
generated by ConnectID for random graphs of increasing size and the input
identifying codes from ID-CODE [2] and from rID [3]. The average degree of
the graphs is kept fixed to four.

the input identifying code. We also observe that the cardinality

of all four identifying codes decreases with the average node

degree. Algorithm rID not only generates a smaller identifying

code compared to ID-CODE to begin with, but also its resulting

connected identifying code is significantly smaller for all

examined average node degrees.

Figure 6 depicts the average redundancy ratio for Erdos-

Renyi random graphs with fixed average node degree of four

and number of vertices ranging from 20 to 150. Samples are

averaged over 100 graph instances as before. According to the

figure, with the increase in size of the graph while keeping

the average node degree fixed, the redundancy ratio increases

slightly. However, it remains almost fixed for graphs with 90
or more vertices. As before, the redundancy ratio is lower for

rID compared to ID-CODE.

V. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of guaranteeing

the connectivity of identifying codes when applied to location

detection and routing in sensor networks. We introduced

algorithm ConnectID that produces a connected identifying

code by adding codewords to any given identifying code for

an arbitrary graph. The cardinality of the resulting connected

identifying code is upper bounded by 2∣I∣ − 1 where ∣I∣ is

the cardinality of the input identifying code. We have proved

that the mentioned bound is tight and that ConnectID runs in

polynomial time, i.e., at most the product of the number of

graph edges and the number of graph vertices

We numerically evaluated the redundancy ratio of

ConnectID. Redundancy ratio is the ratio of cardinality of

the resulting connected identifying code by ConnectID to that

of the input identifying code. Our simulation results showed

that the resulting connected identifying code by ConnectID

achieves a redundancy ratio of at most 1.25 for all examined

cases. This is far below the theoretical bound of two. We used

two different algorithms to generate the input identifying code.

As one can expect, the achieved redundancy ratio decreases

with the average node degree. Also, as one fixes the average

node degrees and increases the graph size, the redundancy

ratio remains almost unchanged. The analysis of this behavior

remains an interesting area for future work.

ACKNOWLEDGMENT

This work was supported in part by the US National Science

Foundation under grants under grants CCF-0729158, CCF-

0916892, and CNS-1012910.

REFERENCES

[1] T. Berger-Wolf, W. Hart and J. Saia, “Discrete sensor placement prob-
lems in distribution networks,” Mathematical and Computer Modelling,
vol. 42, no. 13, pp. 1385–1396, December 2005.

[2] S. Ray, D. Starobinski, A. Trachtenberg and R. Ungrangsi, “Robust
location detection with sensor networks,” IEEE JSAC (secial Issue on

fundamental performance limits of wireless sensor networks), vol. 22,
no. 6, pp. 1016–1025, August 2004.

[3] M. Laifenfeld, A. Trachtenberg, R. Cohen and D. Starobinski, “Joint
monitoring and routing in wireless sensor networks using robust iden-
tifying codes,” Springer Journal on Mobile Networks and Applications

(MONET), vol. 14, no. 4, pp. 415–432, August 2009.
[4] K. Chakrabarty, S. S. Iyengar, H. Qi and E. Cho, “Grid coverage for

surveillance and target location in distributed sensor networks,” IEEE

Transactions on computers, vol. 51, no. 12, pp. 1448–1453, December
2002.

[5] N. Xu, S. Ranfwala, K. Chintalapudi, D. Ganesan, A. Broad, R.
Govindan and D. Estrin, “A wireless sensor network for structural
monitoring,” in Proc. the ACM Conference on Embedded Networked

Sensor Systems (Sensys04), Baltimore, MD, November 2004.
[6] C. R. Baker, et. al., “Wireless sensor networks for home health care,”

in Proc. the 21st International Conference on Advanced Information

Networking and Applications Workshops (AINAW), Ontario, Canada,
May 2007, pp. 832–837.

[7] E. Biagioni and K. Bridges, “The application of remote sensor technol-
ogy to assist the recovery of rare and endangered species,” International

Journal of High Performance Computing Applications, vol. 16, p.
315324, August 2002.

[8] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, “A new class of
codes for identification of vertices in graphs,” IEEE Transactions on

Information Theory, vol. 44, no. 2, pp. 599–611, March 1998.
[9] M. Laifenfeld and A. Trachtenberg, “Identifying codes and covering

problems,” IEEE Transactions on Information Theory, vol. 54, no. 9,
pp. 3929–3950, September 2008.

[10] U. Feige, “A threshold of ln n for approximating set cover,” Journal of

the ACM, vol. 45, no. 4, pp. 634–652, 1998.
[11] I. Charon, O. Hudry and A. Lobstein, “Identifying and locating-

dominating codes: NP-completeness results for directed graphs,” IEEE

Transactions on Information Theory, vol. 48, no. 8, pp. 2192–2200,
August 2002.

[12] ——, “Minimizing the size of an identifying or locating-dominating
code in a graph is NP-hard,” Theoretical Computer Science, vol. 290,
no. 3, pp. 2109–2120, 2003.

[13] A. Frieze, R. Martin, J. Moncel, M. Ruszink and C. Smyth,, “Codes
identifying sets of vertices in random networks,” Discrete Mathematics,
vol. 307, no. 9-10, pp. 1094–1107, May 2007.

[14] I. Honkala, M. Karpovsky and L. Levitin, “On robust and dynamic
identifying codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 599–612, February 2006.

[15] S. Guha and S. Khuller, “Approximation algorithms for connected
dominating sets,” Algorithmica, vol. 20, no. 4, pp. 374–387, April 1998.

[16] J. Blum, M. Ding, A. Thaeler and X. Cheng, Connected dominating set

in sensor networks and MANETs. Kluwer Academic Publishers, in:
Du D-Z, Pardalos P (eds) Handbook of combinatorial optimization.

[17] J. Hopcroft and R. Tarjan, “Efficient algorithms for graph manipulation,”
Communications of the ACM, vol. 16, no. 6, pp. 372 – 378, June 1973.

[18] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to

Algorithms. The MIT Press, Cambridge, MA, 1990.


