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Abstract—We consider a quasi-stationary Markov chain as a
model for a decode and forward wireless multi-hop cooperative
transmission system that forms successive Opportunistic Large
Arrays (OLAs). This paper treats a linear network topology,
where the nodes form a one-dimensional horizontal grid with
equal spacing. In this OLA approach, all nodes are intended to
decode and relay. We derive the transition probability matrix of
the Markov chain based on the hypoexponential distribution of
the received power at a given time instant assuming that all the
nodes have equal transmit power and the channel has Rayleigh
fading and path loss with an arbitrary exponent. The Perron-
Frobenius eigenvalue and the corresponding eigenvector of the
sub-stochastic matrix indicates the signal-to-noise ratio (SNR)
margin that enables a given hop distance.

I. INTRODUCTION

Wireless multi-hop communications, where radios forward

the packets of other radios, has a wide variety of applications,

not only in the cellular and sensor networking regimes, but

in technologies like wireless computer networking and mobile

computing. One promising, very fast, and low-overhead wire-

less transmission technique is the Opportunistic Large Array

(OLA) [1], in which all radios that decode a message relay

the message together very shortly after reception, without co-

ordination with other relays. Synchronization can be achieved

based on a packet preamble that all cooperators receive [2],

on a network time protocol, or from GPS [3]. When paired

with a transmission threshold, OLA broadcasting is an energy-

efficient candidate for large dense wireless sensor networks

[1].

In this paper, we model a special case of the decode and

forward (DF) OLA network, where the nodes are uniformly

spaced along a line. This topology can be considered a pre-

cursor to a strip shaped network or a cooperative route for the

finite density case. The wireless channel is modeled with path

loss and flat Rayleigh fading. All the nodes that can decode

the source packet correctly, relay the packet concurrently

in orthogonal channels, thereby providing transmit diversity.

Then, all the nodes that can decode that OLA transmission will

relay in the next hop, and this process proceeds until it fails.

Specifically, we assume that the conditional probability that the

kth node in a cluster decodes, given that the previous cluster

had at least one node transmitting, is the same for each cluster.

The authors gratefully acknowledge support for this research from the
National Science Foundation under grant CNS-1017984

This allows us to apply the well-established theory of quasi-

stationary discrete time Markov chains with an absorbing state

[7]. The absorbing state represents when the transmissions stop

propagating. Once we have the quasi-stationary distribution,

we can determine network performance, such as packet de-

livery ratio and latency over a given distance as a function of

system parameters such as transmit power, inter-node distance,

and path loss exponent.

The authors in [1], [4], and [5] studied large dense networks,

using the continuum assumption. Under this assumption, the

number of nodes goes to infinity while the power per unit

area is kept fixed. These papers derived conditions under

which broadcasting over an infinite disk or strip is guaranteed.

In contrast, in this paper, we obtain closed-form theoretical

results without the continuum assumption, by deploying a

simple one-dimensional network where the nodes are uni-

formly spaced on a grid. By applying the quasi-stationary

Markov chain analysis, we show that there is no condition

guaranteeing infinite propagation of OLAs, however, there is

only a probability of successfully delivering a packet over a

given distance. In [6], the authors treated a version of the same

problem studied in this paper, with the restriction that the line

network was partitioned into non-overlapping windows, such

that only nodes in the nth window may participate in the nth
hop. This paper treats the more realistic case, which allows

overlapping windows.

The rest of the paper is organized as follows. In the next

section, we define the network parameters and propose a

Markov chain model in Section III. In Section IV, we derive

the transition probability matrix and we propose an iterative

algorithm for optimizing the system parameters in Section V.

The results and system performance is given in Section VI.

The paper then concludes with certain recommendations in

Section VII.

II. SYSTEM DESCRIPTION

Consider an infinite line of nodes where adjacent nodes are

a distance d apart from one another, as shown in Figure 1.

We assume that the nodes transmit synchronously in OLAs or

levels, and that a hop occurs when nodes in one level transmit

a message and at least one node in the following cluster is able

to decode the message for the first time. Correct decoding is

achieved when a node’s received SNR at the output of the
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Fig. 1. The overlapping windows with M = 5 and hd = 2

diversity-combiner, from the previous level only, is greater

than or equal to a modulation-dependent threshold, τ . Exactly
one time slot later, all the nodes that just decoded the message

relay the message. These nodes are said to decode and forward

(DF). Once a node has relayed a message, it will not relay

that message again. Let pn(m) be the membership probability
that the mth node transmits in the nth level, given that at

least one node transmitted in the (n− 1)th level. Also let M
be at least the width of the region of support of pn(m). In
other words, there exists some M0 such that pn(m) ≥ 0 for

M0 ≤ m ≤ M0 + M − 1 and pn(m) = 0 otherwise. As we

will show later, the quasi-stationary property implies that there

exists a hop distance, hd, such that pn−1(m− hd) = pn(m).
The main distinction between this paper and [6] is that in this

paper M > hd is considered, while in [6] only the restricted

case of M = hd is considered. Hence hd can be considered

as a shift to the window of size M . A sample outcome of the

transmissions is shown in Figure 1 where the window size,

M , is 5 and the hop distance or the shift in window, hd, is 2.

The nodes m1, m2, and m4 are able to decode the message

and become part of level n − 2. These nodes will relay the

message in the next time slot and only the nodes in level n−1
may decode that message. Since m4 has already participated

in level n−2, so it cannot be part of any other level including
n−1. Thus the candidate nodes are m3, m5, m6, and m7, out

of which m3, m5, and m6 become DF nodes in level n − 1
and this process continues.

We assume that all the nodes transmit with the same

transmit power Pt. A node receives superimposed copies of

the message signal from the nodes that decoded the mes-

sage correctly in the previous level, over orthogonal fading

channels using equal gain combining (EGC). Let us define

Nn = {1, 2, ..., kn}, where kn is the cardinality of the set Nn,

to be the set of indices of those nodes that decoded the signal

perfectly at the time instant (or hop) n. For example, from
Figure 1, Nn = {3, 4} and Nn+1 = {3, 4, 5}. The received

power at the jth node at the next time instant n + 1 is given

by

Prj(n + 1) =
Pt

dβ

∑

m∈Nn

µmj

|hd −m + j|β
, (1)

where the summation is over the DF nodes in the previous

level. µmj is the flat fading Rayleigh channel gain from node

m in the previous level to node j in the current level. The

elements of µ are independently and identically distributed

(i.i.d) and are drawn from an exponential distribution with the

parameter σ2
µ=1; β is the path loss exponent with a usual range

of 2-4. Consequently, the received SNR at the jth node is given
as γj = Prj/σ2

j , where σ2 is the variance of the noise in the

receiver. We assume perfect timing and frequency recovery

at each receiver, and we also assume that there is sufficient

transmit synchronization between the nodes of a level, such

that all the nodes in a level transmit to the next level at the

same time [2]. In other words, the transmissions only occur at

discrete instants of time n, n+1, ... such that the hop number
and the time instants can be defined by just one index n. By
the overlapping nature of the windows, we have the following

proposition and corollary.

Proposition 1: Given M and hd, a node at a position x can

become part of several levels n, such that ∀x > M − hd
⌈

x−M

hd

⌉

+ 1 ≤ n ≤

⌊

x− 1

hd

⌋

+ 1. (2)

Corollary: ∀x ≤M − hd, we have n = 1, ...,
⌈

x
hd

⌉

.

One goal of this study is to find the hop distance as a

function of the values of system parameters such as relay

transmit power and inter-node distance. However, because of

the discrete nature of the hop distance, solving the problem

is this manner is quite tedious. Hence in this paper we follow

the inverse approach, i.e., for a given hop distance, we will

find the optimal values of the window size, M , and the system

parameters that generate this hop distance.

III. MODELING BY MARKOV CHAIN

At a certain time n, a node from the nth level will take part
in the next transmission, if it has decoded the data perfectly

at the current time, or it will not take part, if it did not decode

correctly or it has already decoded the data in one of the

previous levels. The decisions of all the nodes in the nth level
can be represented as X(n) = [I1(n), I2(n), ..., IM (n)], where
Ij(n) is the tertiary indicator random variable for the jth node
at the nth time instant and is 0 if node j does not decode,

1 if node j decodes and 2 if node j has decoded at some

earlier time. Thus each node is represented by either 0, 1 or 2
depending upon the successful decoding of the received data.

For example, from Figure 1, we have I1(n) = I2(n) = 2,
I3(n) = I4(n) = 1 and I5(n) = 0. We observe that

the outcomes of X(n) are ternary M-tuples, each outcome

constituting a state, and there are 3M number of states, which

are enumerated in decimal form
{

0, 1, ..., 3M − 1
}

. Let in be

the outcome at time n. For example, in = {22110} in ternary,
and in = 228 in decimal in Figure 1. Then we may write

P {X(n) = in|X(n− 1) = in−1, ..., X(1) = i1} =

P {X(n) = in|X(n− 1) = in−1} ,
(3)

where P indicates the probability measure. Equation (3) im-

plies that X(n) is a discrete-time finite-state Markov Process.

Assuming the statistics of the channel are same for all the

hops in the network, the Markov chain can be regarded as a

homogeneous one.
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It can be further noticed that at any point in time, there is

a probability that the Markov chain can go into an absorbing

state, thus terminating the transmission. That can be a state

when all the nodes at a particular hop cannot decode the

message perfectly and thus Markov chain will be in the 0
state (decimal). It can be further noticed, that any possible

combination of 0 and 2 will also make the state an absorbing

state. Since we are enumerating the states using ternary words,

the total number of states appears to be 3M . But since all the

transitions are not possible because of the overlapping nature

of the window, we will have the possible number of states

that can be reached during transitions is N̂ = 3M−hd × 2hd ,

including 2M−hd number of absorbing states.

Hence we consider the Markov chain, X , on a state space

A ∪ S, where A is the set of absorbing states, where

lim
n→∞

P {X(n) ∈ A} ր 1 a.s. (4)

On the other hand, the states in S ( where cardinality of S
is |S| = N̂ − 2M−hd) make an irreducible state space, i.e.,

there is always a non-zero probability to go from any transient

state to another transient state. We will define two matrices to

describe the Markov Chain. The first, P̃, is the full transition

probability matrix for all the states in the set A∪S. Each row
in P̃ sums to one. The second matrix, P, is the submatrix of P̃

that is formed by striking each column and row that involves

transitions to and from the absorbing states in A. Therefore, P
is the matrix corresponding to the states in S. It can be noticed
that the transition probability matrix P on the state space S is

not right stochastic, i.e., the row entries of P do not sum to 1

because of the killing probabilities given as

κi = 1−
∑

j∈S

Pij , i ∈ S. (5)

Since P is a square irreducible nonnegative matrix, then by the

Perron-Frobenius theorem [9], there exists a unique maximum

eigenvalue, ρ, such that the eigenvector associated with ρ is

unique and has strictly positive entries. For proof, please refer

to [9]. Overall our assumptions for P imply that

0 < ρ < 1. (6)

From the theory of Markov chains [9], we know that a distri-

bution u = (ui, i ∈ S) is called ρ-invariant distribution if u is
the left eigenvector of the transition matrix P corresponding

to the eigenvalue ρ, i.e.

uP = ρu. (7)

We are now interested in the limiting behavior of this

Markov chain as time proceeds. Since ∀n, P {X(n) ∈ A} > 0,
eventual killing is certain. But we are interested in finding the

distribution of the transient states, before the killing occurs.

The so-called limiting distribution is called the quasi-stationary

distribution of the Markov chain, which is independent of the

initial conditions of the process. From [7] and [8], this unique

distribution is given by the ρ-invariant distribution for one

step transition probability matrix of the Markov chain on S.

We can find the quasi-stationary distribution by getting the

maximum eigenvector, û of P, then defining u = û/
∑N̂

i=1 ûi

as a normalized version of û that sums to one.

Thus we can define the unconditional probability of being

in state j at time n as

P {X(n) = j} = ρnuj , j ∈ S, n ≥ 0. (8)

We also let T = inf {n ≥ 0 : X(n) ∈ A} denote the end of the
survival time, i.e., the time at which killing occurs. It follows

then,

P {T > n + m|T > n} = ρm, (9)

while the quasi-stationary distribution of the Markov chain is

given as

lim
n→∞

P {X(n) = j|T > n} = uj, j ∈ S. (10)

We also note that the membership probability can be expressed

as

pn(m) =
∑

j∈θ

uj, (11)

where θ = {X(n) ∈ S : Im(n) = 1} .

IV. FORMULATION OF THE TRANSITION PROBABILITY

MATRIX

In this section, we will find the state transition matrix P for

our model, the eigenvector of which will give us the quasi-

stationary distribution. Let i and j denote a pair of states of the
system such that i, j ∈ S, where each i and j are the decimal

equivalents of the tertiary words formed by the set of indicator

random variables. Now for each node m, the probability of

being able to decode at time n is given as

P {node m of level n will decode} =P {γm(n) > τ} . (12)

where

P {γm(n) > τ} =

∫ ∞

τ

pγm
(y)dy. (13)

pγm
(y) is the probability density function (PDF) of the re-

ceived SNR at the mth node. We note that a node can have

three possible states, where the initial state of a node is

always 0. A node can make the transitions shown in Figure 2.
Hence each individual node is a state machine, and Im(n) is
a non-homogeneous Markov chain itself; the probabilities of

transition for a single node are defined only at certain times.

P01 from Figure 2, i.e., the conditional probability of success
of the mth node in the nth level, is given as

P01 = P {γm(n) > τ |Im(k) = 0, X(n− 1) ∈ S} . (14)

for k = n − 1, n − 2, .... Hence the probability of perfect

decoding is based on the PDF of the received power which is

the hypoexponential distribution given as

pY (y) =

K
∑

k=1

Ckλk exp (−λky), (15)
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Fig. 2. State transition diagram of a node

where

Ck =
∏

ζ 6=k

λζ

λζ − λk

. (16)

Let us define a set that consists of all those nodes that

decoded the data perfectly in the previous hop as Nn−1 =
{mi : Imi

(n− 1) = 1} ∀i = 1, 2, ...M , then P01 from (14)
is given as

P01 =
∑

k∈Nn−1

Ck exp
(

−λ
(m)
k τ

)

, (17)

where λ
(m)
k is given as

λ
(m)
k =

dβ |hd − k + m|
β

σ2

Pt

. (18)

Let a superscript on the indicator functions show the value of

the indicator given the ith state. For example, if i = {22110},

then I
(i)
5 (n) = 0. Therefore, the one-step transition probability

going from the state i in level n − 1 to state j in level n is

always 0 when either of the following conditions is true:

Condition I: I
(j)
k (n) ∈ {0, 1} and I

(i)
hd+k(n− 1) ∈ {1, 2},

Condition II: I
(j)
k (n) = 2 and I

(i)
hd+k(n− 1) = 0.

Thus the one step transition probability for going from state

i to state j given the above conditions do not hold is given as

Pij =
∏

k∈N
(j)
n







∑

m∈N
(i)

n−1

Cm exp
(

−λ(k)
m τ

)






•

∏

k∈N
(j)

n






1−

∑

m∈N
(i)

n−1

Cm exp
(

−λ(k)
m τ

)







(19)

where N
(j)
n and N

(j)

n are the indices of those nodes which are

1 and 0, respectively, in state j at level n. Thus it can be

seen that the transition probability matrix will contain a large

number of zeros. The smaller the hop distance, the larger are

the number of zeros in the matrix. Thus the resulting matrix is

highly sparse which helps in evaluating the Perron-Frobenius

eigenvalue pretty quickly.

V. ITERATIVE APPROACH

In the previous section, we have shown how to compute

the quasi-stationary distribution and the membership proba-

bilities for a given specification of system parameters, such

as transmit power, path loss exponent, inter-node distance,

hop distance, and for the one artificial constraint, the window

width. Therefore, an infinite variety of possible solutions exist,

depending on the choice of these parameters. In this section,

we eliminate the artificial constraint and show how the design

space dimension can be further reduced through parameter

normalization and by optimizing the shape of the membership

probability function.

M is an artificial constraint because there is no real physical

need for it, however, it strongly impacts the size of the

state space and therefore the computational complexity of

finding the quasi-stationary distribution. Therefore, we would

like for M to be as small as possible without significantly

impacting the system performance results. The transmissions

from nodes at the trailing edge of a large window will have

only a small contribution to the formation of the next OLA,

because of disparate path loss (especially in a line-shaped

network), and therefore, their contribution can be neglected.

This suggests that an energy efficient solution will be a uni-

modal membership probability function with a narrow region

of support, and therefore a small M can support it. We note

that the number of nodes that relay in each hop determines

the diversity order in this finite density scenario, so the most

narrow membership function (a Kronecker delta) is not desir-

able. A final consideration is that for the broadcast application,

ideally, we want every node to decode the message, and so,

under our assumption that every node that decodes for the first

time also relays, we have that for a hop distance of hd, we

want at least hd nodes to relay.

Based on all of these considerations, we decided to choose

the solution that yields a membership probability function that

most closely resembles a square pulse of unit height that is hd

nodes wide, and takes the value of zero everywhere else on a

window that is M nodes wide. We find M by increasing it until

the one-hop success probability (i.e., the Perron-Frobenius

eigenvalue) ceases to change significantly.

To further decrease the design space dimension, we observe

that the transition matrix in (19) depends on the product λ
(k)
m τ ,

from which we can extract the normalized parameter

Υ =
γ0

τ
=

Pt

dβσ2

1

τ
, (20)

which can be interpreted as the SNR margin from a single

transmitting node a distance d away. However, Υ is not the

only independent parameter, because β and hd also sepa-

rately impact the value of λ
(k)
m τ , in (18) through the factor

|hd − k + m|
β
.

We now formally describe our optimization procedure. We

define our ideal membership probability function as

q̂(k) = u(k − a)− u(k − (a + hd − 1)) k ≥ 1, (21)

where u is the unit step function and a =
⌊

M−hd

2

⌋

+ 1. We

can express the membership probabilities for a given level in

vector form as, q = {pm1 , pm2 , ..., pmM
}, where the values of

pmk
(n) can be found using either (11) or as

pmk
(n) =

|S|
∑

j=1

P {Imk
= 1|X(n) = j}P {X(n) = j}

∀k = {1, 2, ..., M} and j ∈ S.

(22)

Then the problem of finding the best Υ can be formulated as

min
Υ>0

Ξ =
1

M
‖q− q̂‖

2
, (23)
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The iterative algorithm in this case is given as follows.

Algorithm 1:

1) Given hd, initialize the algorithm with a window size of

M = 2hd.

2) Compute the Perron-Frobenius eigenvalue, ρ(M), over
a range of SNR margin.

3) Increment the window size by one, and compute ρ(M +
1) using Step 2.

4) If |ρ(M + 1)− ρ(M)| < ǫ, for ǫ > 0, M is the desired

window size and the convergence is achieved. Otherwise

go to step 3.

By using the iterative technique, we are able to find the

optimal M over a range of SNR margin. To choose the SNR

Margin that gives a close approximation to (21), minimize
(23) over the SNR margin range to get the best value of SNR

margin where we achieve the minimization. This value of Υ is

the one that ensures the given hd with maximum probability.

VI. RESULTS AND SYSTEM PERFORMANCE

In this section, we will show the convergence of iterative

algorithm and show some results for system performance.

Figure 3 depicts the trend of eigenvalues as we increase the

SNR margin for different window sizes and a hop distance of

2. The behavior is quite obvious that increasing SNR margin

increases the probability of survival of the transmissions. It

can be further noticed that for a given value of SNR margin,

the curves start to converge as we increase the window size,

thereby indicating that after a specific window size, even if we

increase M , there is no change in the transmissions outcome

which agrees with the iterative algorithm from Section V.

Figure 4 shows the error surfaces for the overlapping

window case, generated by (23) for a hop distance of 2 and

different window sizes. It can be seen that the error surface is

convex and contains a minimum for a particular value of SNR

margin, Υ. It can be further noticed, that as we increase the

window size the difference between the errors becomes smaller

in the same vicinity of Υ. Thus, for a window size of 10 and

a hop distance of 2, we can select the SNR margin of around

6dB to give us desired membership probability function.

Figure 5 shows the numerical simulation result for condi-

tional membership probabilities of the nodes to different levels,

where the values Υ and M are taken from Figures 3 and 4.
Based on the previous state (assuming an initial distribution

of nodes at the first hop) and Rayleigh fading channel gains,

we use the received power at each node to set the indicator

functions as either 0,1, or 2 depending upon the threshold

criterion. These indicator functions will form the current state

and the process continues. We finally obtain the distribution

of the chain by simulating over 20,000 trials. From Figure

5 it can be seen that the distance between the peaks of any

two membership functions is always 2. Thus a window size of

10 seems reasonable to get a hop distance of 2 with an SNR

margin of approximately 6dB. The inset figure in the right

top corner shows the analytical membership function obtained

from (22) by using the quasi-stationary distribution.

From the deployment perspective of the network, it is

sometimes desirable to optimize the values of certain pa-

rameters like transmit power of relays or distance between

them. This optimization is done to obtain a certain quality of

service (QoS). For example, we are interested in finding the

probability of delivering the message over a certain distance

without having entered the absorbing state, and we desire this

probability to be at least η, where η ∼ 1 ideally. We can use

(9) to get a nice upper bound on the value of m (the number

of hops) one can go with a given η, i.e. ρm ≥ η, which gives

m ≤
ln η

lnρ
. (24)

Thus if the destination is far off, we require more hops, which

will require a larger value of ρ. Figure 6 shows the relationship
between required SNR margin to reach the destination node

at a particular normalized distance for different values of hop

distance. The normalized distance, which is the true distance

divided by d, is defined as the product of hd and the number

of hops, (made to reach the destination). We observe that the

performance of all the cooperative cases exceeds that of non-

cooperative case for a particular value of SNR margin.It can

be further noticed that the transmissions with cooperative case
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can reach a particular point in two ways, i.e., keeping both the

hop distance and SNR margin small or having a higher hop

distance with a higher SNR margin, where the latter has lower

latency, i.e., fewer hops and higher QoS, η. The results are also
plotted for a higher path loss exponent, i.e., β = 3. Thus we
observe that if we increase the path loss exponent and also

the SNR margin, we get results similar to that of small path

loss exponent with small SNR margin. The non-cooperative

results show that only a small distance can be reached with a

small success probability when we use the same SNR margin

as for high path loss exponent.

From the broadcast perspective, another important param-

eter is to find the fraction of nodes in the network that have

decoded. If we assume that the Markov chain is in the quasi-

stationary state, and has not entered the absorbing state over a

linear network of interest, then the fraction of decoded nodes

in the network is the same as the fraction of the nodes in

any one hop. From Figure 5, we can see that we do not

exactly get a rectangular membership function, which implies

that not all the nodes in the network may have decoded the

data. Let Nd be a random variable that denotes the number

of DF nodes such that ndj
are the realizations of this variable

where j = 1, 2, ... |S|. Hence the average number of the nodes
that have decoded the data is given as

E(Nd) =

|S|
∑

j=1

ndj
uj. (25)

Hence for the cases that are described in Figure 6, the results

are summarized in Table I. It can be seen that as we increase

the hop distance (and SNR margin consequently), we get more

nodes that are able to decode in a given hop.

VII. CONCLUSION AND RECOMMENDATIONS

In this paper, we have shown that a one-dimensional multi-

hop network can be modeled as a quasi-stationary Markov

chain in discrete time and we derived the sub-stochastic

matrix of this chain. The Perron-Frobenius eigenvalue and the
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Fig. 6. Normalized distance for various cooperative vs. non-cooperative cases

TABLE I
FRACTION OF DF NODES FOR VARIOUS HOP DISTANCES

Hop distance, hd 2 3 4

% of nodes decoded, β = 2 92.30 94.67 97.02

% of nodes decoded, β = 3 93.54 95.98 98.21

corresponding eigenvector of this matrix helps in determin-

ing different parameters for achieving better performance in

delivering the message to a destination. As an extension to

this work, it is recommended to obtain a framework where

the nodes are aligned on a two dimensional grid, which will

mimic a strip shaped OLA network.
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