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Abstract

This paper deals with the challenging problem of spectrumsisg in cognitive radio. We consider a
stochastic system model where the Primary User (PU) traasarperiodic signal over fading channels.
The effect of frequency offsets due to oscillator mismateihgd Doppler offset is studied. We show
that for this case the Likelihood Ratio Test (LRT) cannot baleated pointwise. We present a novel
approach to approximate the marginilisation of the fregyenffset using a single point estimate. This
is obtained via a low complexity Constrained Adaptive Nokgler (CANF) to estimate the frequency
offset. Performance is evaluated via numerical simulatiand it is shown that the proposed spectrum
sensing scheme can achieve the same performance as theofrieaal” scheme, that is based on a

bank of matched filters, using only a fraction of the compglexéquired.

Index Terms

Spectrum Sensing, Likelihood Ratio Test, Adaptive NotditeFi

I. INTRODUCTION

In recent years, cognitive radio has attracted intensigearh focus due to the pressing
demand for efficient usage of the frequency spectfudm [1]. dognitive radio system, secondary
radio users try to find "blank spaces”, in which the licensedjfiency band is not being used by

primary radio users, for communications. A key problem igratve radio is that the secondary
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users need to vacate the frequency band as quickly as postitle corresponding primary
radio emerges, and begins transmission.

Spectrum sensing is a mandatory functionality in any CReflasireless system that shares
spectrum bands with primary services, such as the IEEE 80gahdard[[2], which proposes
to reuse vacant spectrum in the TV broadcast bands. Therddes significant research on
spectrum sensing for cognitive radio, see [B], [4] for anreiav. Essentially, spectrum sensing
is a decision making or classification problem, of the forwmolming first an estimation stage,
followed a decision stage. The secondary network needs ke mdecision between two possible
hypotheses given an observation vector: that the frequeaoy is either occupied or vacant.
The more knowledge we have on the nature of the primary usggrsl, the more reliable our
decision process will become. If no prior knowledge of thanary user’s signal, the energy
detector based approaches (also called radiometry) amadlse common for spectrum sensing,
mainly due to their low computational complexity, s€é [SHaeferences within. If additional
prior knowledge about the primary signal exists, more adedrtechniques can be explored. For
example, if the primary signal ia priori known, the matched filter is optimal in the sense that
it maximises the Signal to Noise Ratio (SNR) [5]] [6].

In practical systems, suchpriori knowledge often exists in the form of a pilot signal, which
is used by the primary network, enabling a Waveform-Baseatkigg [5]. For example, in the
standard of digital TV (DTV) system, made by advanced tsiewvi standard committee (ATSC),
there are multiple sinusoid pilots located at differentjfrencies([2].

Previous works: A few papers considered the problem of spectrum sensingy usipilot
signal in the form of sinusoids. These includé [7], [8] ah§l ihere the detection scheme was
designed for the case that the primary user transmitskatoa/n deter ministic frequency and
the amplitude/channel may or may not be knoavpriori.

Contribution: in contrast to those papers, we extend the system model asitleo two practical
effects which are of significance in a wireless communicasystem: first, we consider the
case ofunknown Rayleigh fading channel. Second, we allow fofrequency offsets due to
Doppler offset and mismatched oscillators being presemhéncommunications system. These

two assumptions make the sensing algorithm complex. Inrdadevercome this difficulty, we
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shall present two “close to optimal” sensing algorithmst thiee based on a bank of matched
filters, and on a frequency estimation (periodogram) appres. While these solutions perform
close to optimal, their high complexity may prevent themnirdeing practical. Instead, we
propose a low complexity algorithm that is based on the placof Generalised Likelihood
Ratio Test (GLRT), where we condition the LRT on an estimdtdhe nuisance frequency
parameter (the estimate is not the Maximum Likelihood (Mlsfireate, and therefore, the
proposed algorithm is not the GLRT). The estimation of thesawce frequency parameter is
based on the Constrained Adaptive Notch Filter (CANF). Thea perform a single matched
filter centered on the estimated frequency, providing vexydgperformance with only a fraction
of the computational complexity.
The following notation is used throughout: random variakdee denoted by upper case letters
and their realizations by lower case letters. In additiaridwill be used to denote a vector or
matrix quantity.
[I. SYSTEM MODEL

Consider a secondary radio communication network usingnglesisensor. The secondary
sensor needs to monitor the activity of the primary netwdvke. assume that the primary radio
signal uses a pilot signal in the form of a sinusoid, asin [8]and [9], see Fi¢ll. For example,
in High-definition TV (HDTV) systems, developed by advandebbvision standard committee

(ATSC), there are multiple sinusoid pilots located at d#f& frequency points.

A. Model Assumptions

We introduce the system model for spectrum sensing
« Assume a secondary radio communication network using desiegeive antenna.
. The primary isactive in a frame (block) of length! samples, with probability’ (H,) and
idle with probability P (H.,).
« The observation at the sensor can be written as the followingry hypothesis:
Ho:Y(m)=V(m), m=1,....M
Hi:Y(m)=Hsin(mQ+0)+V(m), m=1,..., M,

(1)
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where H is the unknown random channel gain (assumed to be fixed thoauig frame),
(2 is the fixed unknown random angular frequency of the primasgr wsignal, which is
not known a-priori, due to oscillator mismatch and Doppldfset, and© is the random

unknown phase offset of the pilot signal, avi¢in) is the random additive noise.

B. Prior specification

We present the relevant aspects of the Bayesian model.

« The channel gairff is Rayleigh fading. Therefore its density function is

%exp (—h—Z) , h >0
p(hy=14 20} 7
0 , otherwise
whereo? is the known variance of the channel gain.

. The phase offseéb is random and follows a uniform density functién~ U [0, 27) .

« The angular frequency of the primary user’s sign@l, can be parametrised by density
function distribution,p (w), over the supporfw — ¢, + €|, with @ being the nominal
known angular frequency andas the maximal offset, determined by the Doppler offset and
oscillators mismatch. In this paper, for ease of presentgtive assume a uniform prior.

« The received signal is corrupt by zero-mean i.i.d. additigte Gaussian noise (AWGN)

V(m) ~ CN(0,02), with a known variancer?> and power spectral density (PSD).N

[1l. SPECTRUM SENSING - PROBLEM DEFINITION

The objective of spectrum sensing is to make a decision orbihary hypothesis testing

(chooseH,, or H,) based on the received signal.

A. Decision criterion

Here we formulate the problem using Bayes’ criterioh [6].diting so, two assumptions are
made. First, the probabilitie® (#,) and P (#,) are known. The second assumption is that a
cost,C,,, is assigned to each possible decisiof, is the associated cost of making a decision

H., given that the true hypothesis 1$,.
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The problem of designing the decision rule can be modeled aptmization problem whose

objective is to minimize the cost function

C = P (Ho) (Coo/ P (y1m|Ho) dy1.m + C1o/
Ao

Aq

p (YI:M|HO) dYI:M>

3)
+ P (H1) (Cm/ P (yim|Hi) dyar + 011/ p(Yl:M|H1)dy1:M) .
Ao Al
It can be shown that the optimum decision rule is a likelihoatib test given by
Ha
A(Yya) 2 p(yum|Hi) = P(Ho)Cio—Coo a (@)

p (y1:m|Ho) 7.?0 P(H)Cop —Ci1 B
where(C,, is the associated cost of making a decisiop given that the true hypothesisis,,
and we defingy.,; = [y (1),...,y (M)].

The major difficulty in using the LRT is its requirement on aiping the exact distributions
under each hypothesis il (1). Under the NULL hypothesis,dbservations are independent,

and the evaluation of the evidenqegyl v|Ho), can be decomposed as

WH b (~ 55207 ®

The distribution of the alternatlvep (y1.m|H1), may be harder to obtain depending on the

Y1M|7'lo Hp |7'l0)

knowledge of the system parameters. Here we develop themofar several cases with different

levels of knowledge of the system parameters.

B. Case I: no frequency offset & @w) and known channel gaii/

With no frequency offset present (is known exactly) and the channel gainis known

a-priori, the likelihood ratio has the following expression [6]
P (y1:m|Ha) (—MhQ) <2h )
ALY —T L= Iy | —=r ), 6
(Yim) = (}’1.M|HO) Xp 202 0 ) (6)
where I, is the modified Bessel function andis defined as

r(w) £ V/(y2+y2), where (7a)

Ye (W) y(m) cos (mw) , (7b)

3
Il

4

NE

Ys (w) y(m) sin (mw) . (7¢)

3
Il
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Here a single matched filter is required to perform the LRT.

C. Case IlI: no frequency offset (= @) and unknown channel gaiff

With no frequency offset present, but the realisation ofdhannel gaim. unknowna-priori,

the LRT can be evaluated exactly by marginalising (6) overihknown channelf, as

AT (Y1) = /000 A (Yyr|h) p (h) dh

B /°° —Mh? ] 2h \ h h? dh 8
o P 202 0 O’%UT o} P 207 ®)
afu 202 9
= P\ ey W)
wherer (w) is defined in[(7la). Again, a single matched filter is requiregerform the LRT.

D. Case lll: unknown frequency and unknown channel gain

When a frequency offset is present and the channel fasmunknowna-priori, we consider

(8) and marginalise over the unknown random frequengcy

A (Yrn) = /

W€
A (Y yp|w) p () dw

L ©)

N 20
=iz ) P\ pr ey W)W

w—e€

The integral in [(P) is not analytic and requires approximratiechniques, and we shall derive

numerical approximations of](9) in the following sections.

V. HIGH-COMPLEXITY BLIND SPECTRUM SENSING ESTIMATION

In this section we briefly present two possible approxinregiavhich have high complexity
relative to the solution we propose in this paper. They adveaschmarks for comparison with
our solution. The first approach is based on a bank of matcltedsfiWe approximate (w)

using a discrete density functign (w) with K discrete values as

Pd ((A)) ~~ Zp (wk) ) (w — wk) s (10)
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wherew;, = (@ —€) + kA, k={1,2,..., K}, K= X
We can now approximat@](9) using a discretization, written a

K 2 K 2
O 207
A(Yim) = ZA (Yim|w)p (we) = o2 1 Mo? Zp (wk) exp <02 (02 + MUQ)Tz (Wk)) :
k=1 w w a

a kJ:l w
(11)

Here, the LR function is evaluated by using a bankiofatched filters, one per frequengy.

This solution has high complexity since it performs a wetghaverage of {9). Clearly, with this
approach a strong trade-off between performance and caityplairden occurs . The matched
filter is sensitive to frequency mismatch (see Sedtidn Vidioalysis) and it is therefore desirable
to set K to be very large. This would make the gap between consecdisoeete frequencies,
Aw, very small and make the frequency mismat€hvs. w;) negligible. This however would
result in a very costly implementation. In cases where onfgvamatched filters are used, it is
likely that a frequency mismatch will occur, leading to pg@arformance.

The second approach is based on a GLRT and discrete Fouaiggfdrm. This solution
first produces a periodogram, followed by a LRT conditionedtiee maximum value of the
frequency obtained from the periodogram. This has high d¢exity due to the construction of
the periodogram. In the GLRT, we condition on frequeinityobtained from a point estimate
from the periodograni [6]. Hence, we approximaie (9) as

~ p <y1:M|§ML7H1> o2 9252 N
AT (Y 1) = = o *(0w)). @2
Vo=~ i (e fae () @2

It is well known thatQy, can be asymptotically obtained by maximising the periodogf€], so

D1 Y (m) exp e

estimator depends on the number of samples in the fratheAs with the bank of matched

that Qu = arg max,, , wherej £ /—1. The accuracy of the frequency

filters, a fine grid of frequencies is required, resulting ihighly computational algorithm. If,
on the other hand, we used only a coarse grid with only a fequiacies, that would result in

a significant loss of accuracy and high estimation error.

V. NOVEL Low COMPLEXITY BLIND SPECTRUM SENSING ESTIMATION

In this section we present a novel algorithm to perform a l@mplexity spectrum sensing

for Case Ill. As in the case of approach two, our solution sodbased on the GLRT, but
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replaces the grid search required by the periodogram aatgtn with an adaptive notch filter
based frequency estimator. This reduces the computatonaplexity significantly for the same
estimation accuracy. Here we develop a non-standard solddir the GLRT which involves
designing a notch filter which performs adaptive frequenstyngation. The key to our solution
is to utilise the result involving the representation of thensmitted signal undek; in () as

a 2-nd order autoregressive process, obtained via a trigotrameentity,
sin (M4 0) =2cos () sin (m —1)Q+ O) +sin((m —2)Q + 0O). (13)

In the frequency domain, the transmitted signal is represehy Dirac masses, with unknown
locations. Using[(13), we can estimate this location viacalised filter in the family of notch
filters. A notch filter is a filter that contains a null in its fpgency response characteristics. Here,
for simplicity, we concentrate on a 2-nd order Infinite ImgriResponse (IIR) which contains
a pair of complex-conjugate zeros on the unit circle and a gacomplex-conjugate poles at
the same frequency inside the unit circle, and has the fallgwransfer function

_ 1—B(m)z"t + 272
T pm)5(m)e T + )

where the valueg/(m) determine the centre of the notch filter frequency, and p(m) < 1

(14)

H(z)

defines the location of the poles inside the unit disk. Thisigtehas the properties of having a
symmetric frequency response and a narrow bandwidth, gedvihatp(m) is close tol. This
filter is simple to design, requiring the estimation of twagmaeters, keeping complexity low,
whilst providing narrow-band frequency selectivity. Wewnpresent the specific details of the
proposed frequency estimation algorithm.

The output of the filters(m), as defined by[{14) can be expressed as
s(m) = y(m) + B(m)y(m — 1) + y(m — 2) — p(m)B(m)s(m — 1) — p*(m)s(m — 2).  (15)
We formulate the joint optimisation fo¥ and p using the following criterion
. 1 & 1
~\ . - 2
(ﬁ,p) = arg min A7 mz::I (s (m) + —p(m)) :
Bmin S B S Bmaxa (16)

P S Pmax
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where i, fmax are determined by the allowed frequency offseand p,.... < 1 to ensure the
filter is stable, according to Lyapunov stability criterifff0]. This cost function is designed to
achieve two goals: the first is to minimise the variance atabgput of the filter (this is given
by the first term in the summation on the RHD term); and pemgifor poles located far from
the unit disk, as this makes the bandwidth of filter wider ats @reates bias in the resulting
estimated frequency (this is given by the second term in tinensation on the RHD term). The
bandwidth of the notch filter is determined pym) as BW= 7 (1 — p(m)) [11]. The estimated
frequency,), can be retrieved b{) = arccos (—@) . and used to approximate the GLRT in
(@I2). Although this estimator is asymptotically biased thas can be made arbitrarily small by
choosingp — 1 [11]. However, the initial radiusp(1), should be set such that BW 2¢, to

ensure that the realised frequency lies within the filtesisge.

Direct optimisation of[(16) is difficult due to its non-lingy. However, this problem can be
easily solved in a sequential manner, by utilising adadilter theory. Here we use the steepest
descent approach to minimise the associated cost funatiq@d). This results in adapting
and p and tracking the location of the null frequency as follows

S2m
m) = Bm = 1) = s 20 = o~ 1) = 2uss(on) (o — 1) = ps(on — 1), (7a)
= m — — g 82m L = m — s{m m)sim — m)sim — L
plon) = pm = 1) =y (530m) + ) = plom = 1)+ 2pps(on) (3m)stom = 1) + 2p(om)son — 2) 4 L
(17b)

where 15 and p, are predefined step size parameters. Since the support dfetlngency is
bounded over the interval — ¢,w + €], the values ofs(m) can be constrained by2 cos (W — €) >
B(m) > —2cos (w + ¢€). These constraints are useful in case of low SNR and pretentilter
from wondering outside the boundaries of the allowed fregies. For the first samplén = 1),

we center the filter frequency @(1) = —2cos (w) and setp(1) =1 — 2.

VI. COMPUTATIONAL COMPLEXITY AND ANALYSIS

Computational Complexity: here we analyse the computational complexity involvedhia t
proposed algorithms. We define the overall complexity oflgnrithm as the number of complex
multiplications €M) and complex additionsc@) required.

Energy Detector - the test statistics i$(Y.,/) = fo:l ly(m)|*. The computational complexity
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is thereforeM (CM + CA).
Single Matched Filter - the test statistics is defined in{7a). Obtaining ) involves evaluating
y. (w) andys (w). The total computational effort is therefoed/ (CM + ca).
CANF based Detector - the steps involved in the proposed algorithm are:
1) Evaluation of the filter in[(1I5)3M (CM + CA).
2) Adaptings in (I7a):2M (CM + CA).
3) Adaptingp in (I78): 3M (CM + CA).
4) Performing a single matched filte?/ (CM + CA).
Therefore, the overall complexity of the proposed algonitis 100 (CM + CA).
Performance Analysis. we now provide an analysis regarding the performance ghiaired

by the CANF algorithm over the Energy Detector and the Madchieer.

« CANF vs. Energy Detector: here we show the SNR ratio gain ®@QANF over the Energy

detector. We do so by evaluating their ratio of SNRs

SNRCANF . Ps / ( Ps ) . f@ NO dw d

= == =—>>1 (18)
SNRep  ["“Nydw' \JpNodw/ — [*7Nydw 2

where P, is the signal’s energy, Nis the PSD of the AWGN an@ is the system’s band-

width. Thus, the narrower the notch filter is, the greater 3INR improvement, providing

better performance. This is directly related to the secena bf the optimisation formulation
in (18).

. Matched Filter analysis: here we demonstrate the sergitofi the matched filter to fre-
quency offsets. In the complex domain the test statistic;) in (Zd) can be expressed

as
M
Z (Hexp (jmQ + ©) + V(m)) exp (—jmw)

m=1

W) | H1 = ZY m)exp (—jmQ)| =

M
Zexp (jmQ) exp (—jmw)| =

m=1

M
[H| | exp (jmd)

SA0-m m=1 M>>275

(19)

& H[|lexp

— 0.
~—
zero mean AWGN 1

Hence, the test statistic convergesitéor frame lengths that are larger than the period of

the frequency offsetj, rendering the matched filter incapable of performing rohusT.
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VIlI. SIMULATION RESULTS

We present the performance of the proposed algorithm angaoson via simulations. We
begin by evaluating the performance of the adaptive nottdr tib perform frequency estimation.
We tested the algorithm for a frame length bf = 64. The nominal angular frequency was
set t01.9635 and the maximal allowed offset was set(®8. The realised angular frequency
was set t@2.45. Fig.[2 presents boxplot results for normalised frequerstyration error of the
CANF, which clearly shows the good performance obtainedhieyrotch filter based frequency
estimator.

Next, we compare the proposed algorithm (labeled as CANH) ather detection schemes:
the energy detector; the “close to optimal” solution based dbank of matched filters as peri11),
with K = 20 (this makes the computational complexity of this algorithmaghly 4 times the
complexity of the CANF algorithm); a mismatched detectoiichimakes the realised frequency
is the nominal one; and as a lower bound we use a detector #sathfull knowledge of
the realised frequency; The Receiver Operating Charatiteyi(ROC) results are presented in
Fig.[3, for various SNR values. As seen from the results, tbegsed algorithm performs much
better than the energy and the mismatched detectors. Theobamatched filters provides poorer
performance than the CANF detector. It would tdke~ 40 to achieve similar performance as the
CANF detector, which makes its computational complexityuad 8 times more for the same
performance characteristics. The mismatched filter per$overy poorly, which demonstrates
how important it is to take into account frequency offsetdhia design of the system. As the
results depict, the CANF performs close to the lower bound.

Next, we fixedPr, to 0.1 and obtainedP,, for various frame lengths and different SNRs. The
simulation results are presented in Hif). 4. We observe tiattismatched detector performs
poorly and that increasing the frame length does not impitsveerformance. We also note that

the proposed algorithm performs very close to the lower doun

VIIl. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a low complexity algorithm for ctpen sensing over fading

channels with frequency offsets. The scheme was based odagtivee notch filter to perform a
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low complexity frequency estimation followed by a singletateed filter. Simulation results show

that the comparable performance to the “close to optimateste can be obtained with only a

fraction of the algorithmic complexity. Future researchi wiclude the scenario of collaboration

of multiple sensors, and dynamic evolution of the frequeoiftget.
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ATSC pilot

5.38 MHz used

6 MHz channel allocation

\

Fig. 1. Spectrum of ATSC channel spectrum. The channel des@pMHz and is relatively flat except for the pilot signal

located in310 kHz above the lower edge of the channel.
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Fig. 2. Frequency estimation error of the adaptive notchrflts. SNR forN = 64
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Fig. 3. Comparison of’ysp Vs. Pra for the proposed algorithm, fav = 64 and SNR= |0, 3, 6]dB
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Fig. 4. Detection probabilities for various frame lengthé £ {64, 128, 256}) and Pra = 0.1
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