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Abstract—In this paper, we study the subchannel (SC)
power allocation for orthogonal frequency division multiplexing
(OFDM) multiple access points (APs) systems with non-coherent
cooperative transmission. The objective is to maximize the total
capacity under per-AP power constraints. It can be proved
that the optimal solution can be obtained by the combination
of an optimal SC partition search and the power allocation
across SCs for each feasible partition. Existing work exhaustively
searched the optimal SC partition and used Lagrange dual
method to compute the power allocation across SCs. Since the
entire complexity increases exponentially with the number of SCs,
the existing method is unsuitable for practical implementation. In
this paper, we propose a novel optimal power allocation algorithm
for non-coherent cooperative transmission with a much lower
complexity. Firstly, a concept of “cut-off SC” is proposed for
searching the optimal SC partition. Then, an efficient optimal
power allocation algorithm across SCs is proposed for any given
cut-off SC. Simulation results demonstrate that the proposed
algorithm is optimal with a polynomial complexity, and ends
within an acceptable number of iterations.

I. INTRODUCTION

Transmit power allocation across multiple subchannels (SC)

is one of the most key techniques for increasing system ca-

pacity in orthogonal frequency division multiplexing (OFDM)

system. For the single access point (AP) system, the optimal

power allocation for maximizing total capacity is well known

as the “water-filling” power allocation across SCs [1]-[3],

derived via Lagrange dual method [4] with a high complexity.

In [5] and [6], sub-optimal schemes were proposed by equally

distributing transmit power across all SCs, which has lower

complexity at a cost of the total capacity. The optimal and

efficient water-filling algorithm for a single AP system was

studied in [7], where all the SCs with non-positive power are

eliminated at each iteration, and the power on the remaining

SCs are recomputed at the next iteration. The iteration runs

until all power on the remaining SCs become positive.

Recently, cooperative transmission across multiple APs is

proposed to further improve the system performance [8] [9], in

which each user can be served by multiple APs simultaneously.

An optimal power allocation strategy that maximizes the total

capacity of a two-AP system is proposed in [10], considering

non-coherent cooperative transmission. The authors in [10]

proved that at most one SC is jointly transmitted by the

two APs, while the remaining SCs are partitioned into two

parts, with each part transmitted by only one of the two APs.

However, exhaustive search is used in [10] to find the optimal

SC partition with an exponential complexity with respect of

the number of SCs. In addition, Lagrange dual method is used

to compute the optimal power allocation for each feasible SC

partition, leading to an unacceptable high complexity of entire

algorithm.

In this paper, we propose a novel and optimal power allo-

cation algorithm with a much lower complexity. The objective

is to maximize the total capacity of the two-AP system with

non-coherent cooperative transmission. Firstly, based on the

derived necessary condition for the optimal SC partition, a

concept of “cut-off SC” is introduced. Then, we propose an

optimal SC partition search method by checking all possible

cut-off SCs, whose complexity is polynomial with respect

to the number of SCs. In addition, motivated by the power

allocation proposed for the single AP case in [7], we propose

an efficient algorithm for the cooperative two-AP system,

which simultaneously determines the optimal SC partition and

allocates transmit power across SCs for any given cut-off SC.

The optimal allocation is finally obtained by selecting the

SC partition and the corresponding power allocation with the

maximum total capacity. Compared to the algorithm proposed

in [10], numerical results show that our algorithm achieves the

maximum capacity with a polynomial complexity, and ends in

an acceptable number of iterations in most cases.

The remainder of this paper is organized as follows. The

system model for two-AP cooperative transmission, and the

main work of this paper is described in section II. In section

III, the optimal and efficient algorithm is derived with com-

plexity analysis. Simulation results are given in section IV and

the paper is concluded in section V.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section we first introduce the system model and then,

describe the main problem to be solved in this paper.

A. System Model

We consider the downlink of an OFDM two-AP multiuser

system with non-coherent cooperative transmission, see Fig.

1. Each SC can be a single or a group of sub-carriers. Ideal

backhaul is assumed to connect the two APs to a centralized

control unit (CCU). The CCU has the perfect channel state

information and users’ data of all users, and the transmit power
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Fig. 1. OFDM downlink cooperative transmission with two APs

on each SC from different APs can be jointly controlled. To

focus on the power allocation, we assume the SC allocation has

been fixed among users by allocating each SC to at most one

user. Therefore, the channel condition on each SC is constant

during the power allocation. Based on the Shannon theorem,

the capacity on SC j with non-coherent joint transmission is

given as

rj(p1,j , p2,j) = B log2(1 +

2
∑

i=1

γi,jpi,j) (1)

where the γi,j denotes the channel-gain-to-noise-ratio (CNR)

of AP i on SC j. The pi,j is the transmit power from AP i
on SC j and B is the bandwidth of each SC.

B. Problem Description

Assuming the total number of SCs is N , the capacity

maximizing power allocation problem under per-AP power

constraints is formulated as

maximize R(P1,P2) =
N
∑

j=1

rj(p1,j , p2,j)

subject to
N
∑

j=1

pi,j ≤ Pi, i = 1, 2

pi,j ≥ 0, i = 1, 2, j = 1, 2, ..., N (2)

where Pi = [pi,1, ..., pi,j , ..., pi,N ] denotes the power vector

on each SC of AP i and Pi is the maximum transmit power

of AP i.
Now we revisit the optimal solution formulation of (2)

in [10] to describe the main problem to be solved in this

paper. Assume that the power allocation from AP 2 is fixed as

P2 = [p2,1, ..., p2,j, ..., p2,N ]. Then, the optimization problem

(2) becomes strictly concave with respect to p1,j . Define

fi,j(pi,j) =
∂rj

∂pi,j

=
Bγi,j

(1 +

2
∑

i=1

γi,jpi,j) ln 2

(3)

as the bias derivative of (1) with respect to pi,j . Based on KKT

(Karush-Kuhn-Tuker) condition, the optimal p∗1,j satisfies

f1,j(p
∗
1,j) = f1,k(p∗1,k) = λ1, p

∗
1,j, p

∗
1,k > 0, ∀j, k (4)

where λ1 is the Lagrange multiplier. Similarly, we have

f2,j(p
∗
2,j) = f2,k(p∗

2,k) for p∗2,j, p
∗
2,k > 0, where p∗2,j is the

optimal solution of p2,j . Hence, it can be derived that for

∀j, k, j 6= k, if the two APs instantaneously transmit power

on both SC j and k, i.e. p∗1,j , p
∗
2,j, p

∗
1,k, p∗

2,k > 0, then

f1,j(p
∗
1,j)f2,k(p∗2,k) = f1,k(p∗1,k)f2,j(p

∗
2,j) (5)

Define

ηj =
γ1,j

γ2,j

(6)

as the ratio of the CNR of AP 1 to AP 2 on SC j. According

to (3) and (5), we can derive ηj = ηk.

However, in the practical system, the probability of ηj = ηk

is almost zero due to the large randomness of channel condi-

tions. Hence, it can be concluded that at most one SC should

be given power by both the two APs. Then, the SCs can be

partitioned into three sets: 1) Φ1: the SCs only transmitted by

AP 1; 2) Φ2: the SCs only transmitted by AP 2; 3) Φc: the

SC jointly transmitted by two APs, with |Φc| = 1 or |Φc| = 0,

where |Φc| denotes the size of Φc. The power allocated on the

SCs within set Φ1 and Φ2 take the form of single AP water-

filling (SAPWF). For simplicity, we denote a combination of

the three sets (Φ1, Φ2, Φc) as a SC partition. Then, the optimal

solution of (2), named as joint-water-filling (JoWF) in [10],

for any given SC partition can be rewritten as follows:














p∗i,j =

[

B

λi ln 2
−

1

γi,j

]+

, p∗i′,j = 0, ∀j ∈ Φi

p∗i,j =
B

λi ln 2
−

1 + γi′,jp
∗
i′,j

γi,j

, j ∈ Φc

(7)

where i 6= i′, i, i′ = 1, 2. the optimal λi, i = 1, 2 can be

obtained by the Lagrange dual method.

Notice that (7) is calculated based on a given SC partition.

Hence, in order to find the optimal solution of (2), the

optimal partition (Φ1, Φ2, Φc) needs to be determined. In [10],

exhaustive search is used to find the optimal SC partition with

a highly exponential complexity with respect of the number

of SCs N . Hence, the main work in this paper is to design an

optimal algorithm to solve the (2) with much less complexity.

III. OPTIMAL AND EFFICIENT ALGORITHM

In this section, a concept of “cut-off SC” is proposed to find

the optimal SC partition with a polynomial complexity. Then,

motivated by [7], we propose an efficient power allocation al-

gorithm for any given cut-off SC. Finally, the entire algorithm

is described with complexity analysis.

A. Optimal SC Partition Search with Cut-off SC

Based on the water-filling theorem, we prove that the

optimal power allocation must satisfy:

Lemma 1: For any j 6= k, if the SC j is transmitted power

by AP i with p∗i,j > 0, while AP i does not transmit power

on SC k, i.e. p∗i,k = 0, then the bias derivative of rj defined

in (1) with respect to pi,j is no less than the derivative of rk

with respect to pi,k, i.e. fi,j(p
∗
i,j) ≥ fi,k(p∗i,k), i = 1, 2.

The proof is given in Appendix A. Then, consider arbitrary

SC j ∈ Φ1 and SC k ∈ Φ2, with p∗1,j, p
∗
2,k > 0 and p∗2,j , p

∗
1,k =

0, according to Lemma 1 we have

f1,j(p
∗
1,j)f2,k(p∗2,k) ≥ f2,j(p

∗
2,j)f1,k(p∗1,k) ⇒ ηj ≥ ηk (8)
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Fig. 2. Necessary condition for the optimal SC partition with the cut-off SC

Based on (8), a necessary condition for the optimal SC

partition is derived as follows:

Condition 1: Assuming all SCs are sorted in a descending

order of ηj , i.e. ηj ≥ ηk for ∀j ≤ k, there exits a “cut-

off SC” M with 1 ≤ M ≤ N that, j ∈ Φ1, ∀j < M and

j ∈ Φ2, ∀j > M . And if Φc = ∅, SC M belongs to either Φ1

or Φ2, otherwise, Φ1 = {j|j < M}, Φ2 = {j|j > M} and

Φc = {M}. See Fig. 2.

As illustrated in Fig. 2, if the optimal cut-off SC is found,

the optimal SC partition must be one of the Case A, Case B

and Case C. Hence, a method for the optimal SC partition

search is proposed in Algorithm 1. By checking each SC

as the cut-off SC, the corresponding SC partition satisfying

Condition 1 and the optimal power allocation across SCs for

each given cut-off SC are determined. The optimal SC partition

is obtained according to the partition of the cut-off SC with

the maximum total capacity.

Algorithm 1 Optimal SC partition search

1: Sort the SCs in descending order of ηj ;

2: For j=1 : N do

3: Set the SC m = j as the cut-off SC;

4: Decide the SC partition (Φm
1 , Φm

2 , Φm
c ) satisfying

Condition 1 and the power allocation P
m
i=1,2 for m;

5: Compute total capacity Rm = R(Pm
1 ,Pm

2 ) according

to (2);

6: End for

7: Set m∗ = argmax
m

Rm, the optimal SC partition

and the optimal power allocation are selected as

(Φm∗

1 , Φm∗

2 , Φm∗

c ) and P
m∗

i , i = 1, 2.

Note that the Algorithm 1 only needs search over all N
possible cut-off SCs to obtain the optimal partition with

a polynomial complexity with N , which outperforms the

exponential complexity of the exhaustive search used in [10].

B. Efficient Power Allocation for a given Cut-off SC

It can be seen from Algorithm 1 that, in order to obtain the

optimal solution, the SC partition (Φm
1 , Φm

2 , Φm
c ) satisfying

Condition 1 and the corresponding optimal power allocation

P
m
i , i = 1, 2 for a given cut-off SC m need to be determined.

Algorithm 2 Power allocation algorithm for m /∈ Φm
c

1: Initialization: Φm
1 = {j|j < m}, Φm

2 = {j|j > m};

Check the Case A:

2: SAPWF for Φm
1 ∪ {m} with AP 1, obtain pm

1,j(A)

for j ≤ m, set P
m
1 (A) = {pm

1,1(A), .., pm
1,m(A), 0, .., 0};

3: SAPWF for Φm
2 with AP 2, obtain pm

2,j(A) for

j > m, set P
m
2 (A) = {0, .., 0, pm

2,m+1(A), .., pm
2,N (A)};

Check the Case B:

4: SAPWF for Φm
2 ∪ {m} with AP 2, obtain pm

2,j(B)

for j ≥ m, set P
m
2 (B) = {0, .., 0, pm

2,m(B), .., pm
2,N (B)};

5: SAPWF for Φm
1 with AP 1, obtain pm

1,j(B) for

j < m, set P
m
1 (B) = {pm

1,1(B), .., pm
1,m−1(B), 0, .., 0};

Compare the Case A and Case B:

6: Compute the capacity Rm(l) = R(Pm
1 (l),Pm

2 (l))

for l = A, B according to (2);

7: Set l∗ = argmax
l

Rm(l), then the P
m
i (l∗), i = 1, 2

is the desired power allocation for the cut-off SC m.

According to Condition 1, deciding the SC partition for a

given m equivalents to deciding which set, Φm
1 , Φm

2 or Φm
c ,

should m belong to. As shown in Fig. 2, if Φm
c = ∅, i.e.

m ∈ Φm
1 (Case A) or m ∈ Φm

2 (Case B), the corresponding

power allocation P
m
i , i = 1, 2 is equivalent to two separate

SAPWF for Φm
1 and Φm

2 respectively. Then, with the fast

SAPWF algorithm in [7], the power allocation for m ∈ Φm
1

and m ∈ Φm
2 are obtained respectively. Comparing the

total capacities between the two cases, the SC partition and

P
m
i , i = 1, 2 are derived by choosing the one with the larger

capacity. The power allocation for m /∈ Φm
c is given in

Algorithm 2.

Hence, the remaining question of deciding the SC partition

is how to decide whether the m ∈ Φm
c (Case C), which needs

to calculate the optimal power allocation for m ∈ Φm
c , i.e. the

JoWF power allocation of Case C. However, since the SAPWF

method in [7] can’t be directly used in JoWF, efficient method

to allocate power across SCs for m ∈ Φm
c becomes difficult

to design.

To determine the affiliation of the cut-off SC m and calcu-

late the JoWF for m ∈ Φm
c , we first prove that the SAPWF

method in [7] can be extended to the calculation of JoWF by

assuming m ∈ Φm
c . Then, an efficient iterative procedure to

obtain the JoWF power allocation is proposed, based on which

the question that whether the m ∈ Φm
c can be answered.

Assuming m ∈ Φm
c , the power on SCs j 6= m can be

rewritten as follows according to (7)

pm
1,j∈Φm

1

=
Wm + Hm

1,j

|Φm
1 | + |Φm

2 | + 1
, pm

2,j∈Φm
2

=
ηmWm + Hm

2,j

|Φm
1 | + |Φm

2 | + 1
(9)

where

Wm = P1 +
1

ηm

P2



Algorithm 3 Efficient JoWF algorithm for m ∈ Φm
c

1: Initialization: t = 0, P
m
i (t) = {pm

i,1(t), ..., p
m
i,N (t)}

= 0, i = 1, 2, Φm
1 = {j|j < m}, Φm

2 = {j|j > m};

Iteratively compute the JoWF assuming m ∈ Φm
c :

2: Compute pm
i,j 6=m(t), j ∈ Φm

i by (9), and pm
i,m(t) =

Pi −
∑

j∈Φm
i

pm
i,j(t);

3: If pm
i,j 6=m(t) ≤ 0, 0 → pm

i,j 6=m(t), Φm
i /{j}→ Φm

i ;

4: t = t + 1;

5: Repeat 2-4 until all pm
i,j 6=m(t) ≥ 0 or Φm

1 , Φm
2 = ∅;

Check the assumption of m ∈ Φm
c :

6: If the last pm
i,m(t) > 0, i = 1, 2, set the (Φm

1 , Φm
2 , Φm

c )
and P

m
i (t), i = 1, 2 as the desired SC partition and

JoWF power allocation for the cut-off SC m;

7: otherwise, the SC m belongs to either Φm
1 or Φm

2 ,

and Φm
c = ∅.

Hm
1,j =

∑

k∈Φ
m
1
∪{m}

k 6=j

(
1

γ1,k

−
1

γ1,j

)+
1

ηm

∑

k∈Φm
2

(
1

γ2,k

− ηm

1

γ1,j

)

Hm
2,j =

∑

k∈Φ
m
2
∪{m}

k 6=j

(
1

γ2,k

−
1

γ2,j

)+ηm

∑

k∈Φm
1

(
1

γ1,k

−
1

ηm

1

γ2,j

)

and the power on SC m is given as

pm
i,m = Pi −

∑

j∈Φm
i

pm
i,j , i = 1, 2 (10)

The values of (9) and (10) may be non-positive for some

j because the non-negativity constraint on pm
i,j has not been

reflected yet. To extend the method in [7], we propose

Theorem 1: Consider SCs j1, j2 6= m with non-positive

power computed by (9). Assume the SC j1 is eliminated from

its corresponding Φm
i , i = 1, 2. Then if recompute the power

on the remaining SCs according to (9) and (10), the reassigned

power on SC j2 will still be non-positive.

The proof is given in Appendix B. The theorem implies that

all the SCs j 6= m with non-positive power can be eliminated

at the same time. Hence, an iterative procedure to calculate

the JoWF is proposed as follows:

In each iteration, the power on each SC is computed by

(9) and (10), and all the SCs j 6= m with non-positive power

are assigned zero power and eliminated from corresponding

Φm
i , i = 1, 2. Then the power on remaining SCs are recom-

puted at the next iteration. The iteration runs until all power

on remaining SCs become non-negative, or all SCs j 6= m
have been eliminated.

Then, according to the results obtained by the iterative

procedure, it is reasonable that if the assumption of m ∈ Φm
c

is true, the power on the SC m from the two APs pm
i,m, i = 1, 2

are both positive, then the obtained power allocation is exact

the desired JoWF of Case C for the cut-off SC m; otherwise,

the SC m belongs to either Φm
1 or Φm

2 , and Φm
c = ∅, and the

corresponding SC partition and the power allocation can be

obtained following Algorithm 2.
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Fig. 3. Optimal and efficient power allocation algorithm

As a result, an efficient algorithm for m ∈ Φm
c is proposed

in Algorithm 3, where the steps 1-5 iteratively calculate the

JoWF solution by assuming m ∈ Φm
c , and the steps 6 and

7 determine whether the assumption is true. If m ∈ Φm
c is

determined, the result of steps 1-5 is chosen as the JoWF

power allocation for the given cut-off SC m. Hence, with

Algorithm 2 and 3, the SC partition and the corresponding

power allocation for each given cut-off SC are obtained.

C. Entire Algorithm Description and Complexity Analysis

Based on the Algorithm 1-3, the entire proposed algorithm

is described in Fig. 3. For the proposed algorithm, the com-

plexity of SCs sorting is O(N log2 N) and it needs to scan all

N SCs to find the optimal cut-off SC. For each scanned SC, the

four SAPWF in Algorithm 2 and the one JoWF in Algorithm

3 totaly need at most 3N iterations, and each iteration needs a

search in order of O(N) to find all those SCs with non-positive

power, resulting a complexity of O(3N2) for Algorithm 2

and 3. Therefore, the total complexity of entire algorithm is

O(N log2 N) + O(N × 3N2) = O(3N3), i.e. the complexity

of entire proposed algorithm increases polynomially with the

number of SC N .

IV. NUMERICAL RESULTS

In this section, the performance and complexity of the

proposed algorithm is verified. Without loss of generality, we

assume the SC bandwidth is normalized, and the maximum

transmit power on each AP is identical denoted as P . The
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channel conditions γi,j are randomly selected. We also denote

T as the total number of iterations of proposed algorithm.

In Fig. 4, the proposed algorithm is compared with the

optimal exhausted search with respect to total capacity under

different per-AP power constraints. Due to the high complexity

of exhausted search, we limit the number of SCs N ≤ 5. It

can be seen that the results of proposed algorithm are always

identical to the optimal exhausted search. This verifies the

optimality of proposed algorithm.

The total iteration number of the proposed algorithm ex-

cluding SC sorting, T , is given in Fig. 5(a), and the ratio of

iteration number to the SC number, T/N , is shown in Fig.

5(b). This ratio denotes the sum iteration number of the four

SAPWF’s and one JoWF in Algorithm 2 and 3, which at

most is 3N . It can be seen from Fig. 5(b) that, though the

ratio is unpredictable since it strongly depends on the channel

conditions, it is much smaller than 3N in most cases. This

makes the entire algorithm stops in a very limited iterations

number, which is nearly linear to N , as shown in Fig. 5(a).

So the total complexity can be O(TN) ≈ O(KN2) in our

simulation, where K ≪ N . It can be also found that the total

iteration number decreases as the maximum transmit power

of each AP, P , increases. This is because larger the power

constraint is, the less SCs with non-positive power in iterative

computation of JoWF and SAPWF, resulting in a less iteration

number to remove them.

In Table. I, the complexity of proposed algorithm is com-

pared with the algorithm in [10], in which the optimal SCs

partition is obtained by exhaustive searching over 3×N×2N−1

possible combinations. Hence, suppose the identical complex-

ity of the power allocation calculation for each SC partition

is O(N2), the entire complexity of the algorithm in [10] is

O(3 × 2N−1 × N3). The proposed algorithm has a much

lower complexity even at the worst case, and has a even lower

complexity of nearly O(KN2), where K ≪ N , in most cases.

Hence, the proposed algorithm is both optimal and efficient.

TABLE I
COMPLEXITY COMPARISON

Algorithms Complexity

Algorithm in Ref. [10] O(3 × 2N−1
× N3)

Proposed algorithm at the worst case O(3N3)

Simulation results of proposed algorithm nearly O(KN2), K ≪ N

V. CONCLUSION

In this paper, a novel optimal power allocation algorithm

with low complexity is proposed to maximize the total capacity

of a two-AP system with non-coherent cooperative transmis-

sion. Firstly, a concept of “cut-off SC” is proposed for the

optimal subchannel partition search method. Then, we propose

an efficient optimal power allocation across subchannels is

for any given cut-off SC. The optimal allocation is finally

obtained by selecting the SC partition and corresponding

power allocation with the maximum total capacity. Simulation

results demonstrate that the proposed algorithm is optimal with

polynomial complexity, and stops within a small number of

iterations. Algorithm for more than two APs and coherent

cooperative transmission are still open issues for future studies.
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APPENDIX A

PROOF OF LEMMA 1

First, we assume the power of AP 2 is fixed and there

is a integer K < N satisfying that p∗1,j > 0, ∀j ≤ K and

p∗
1,k = 0, ∀k > K . According to (5), there is f1,1(p

∗
1,1) =



f1,2(p
∗
1,2) = ... = f1,K(p∗1,K) = λ. Assuming there is a k that

f1,k(p∗
1,k = 0) > λ, note that f1,j(pi,j) is a monotonically

decreasing function, then it exists a series of positive value

p′1,j , j = 1, ..., K, k that

f1,1(p
′
1,1) = ... = f1,K(p′1,K) = f1,k(p′1,k) = λ′ (11)

where λ < λ′ < f1,k(0),
K
∑

j=1

p′1,j + p′
1,k = P1 and

p′1,j < p∗1,j , j ≤ K . Then with fixed p2,j , the different of total

capacity of SCs 1, 2, ..., K and k between allocation power

p∗1,j and p′1,j is given as

K
∑

j=1

rj(p
∗
1,j) −

K
∑

j=1

rj(p
′
1,j) − rk(p′1,k)

=

K
∑

j=1

∫ p∗

1,j

p′

1,j

f1,j(p1,j)dp1,j −

∫ p′

1,k

0

f1,k(p1,k)dp1,k

=

K
∑

j=1

(p∗1,j − p′1,j)f1,j(ξj) − p′1,kf1,k(ξk) (12)

where p′1,j < ξj < p∗1,j and 0 < ξk < p′
1,k. It is obvious that

f1,j(ξj) < λ′ and f1,k(ξk) > λ′, therefore (12) is less than

K
∑

j=1

(p∗1,j − p′1,j)λ
′ −p′1,kλ′ = (P1 −

K
∑

j=1

p′1,j)λ
′ −p′1,kλ′ = 0

(13)

i.e.
K
∑

j=1

rj(p
∗
1,j) <

K
∑

j=1

rj(p
′
1,j) + rk(p′1,k), which is contradict

to the assumption that p∗1,j is optimal. Hence such k doesn’t

exist. Applying same procedure for p∗2,j , Lemma 1 is proved.

APPENDIX B

PROOF OF THEOREM 1

It can be found that the proof for j1 ∈ Φm
1 , j2 ∈ Φm

1 is

very similar to the SAPWF case in [7], and we first give out

the proof when j1 ∈ Φm
1 , j2 ∈ Φm

2 . According to (9), after

eliminating the SC j1 at iteration t, the numerator of pm
2,j2

of

j2 ∈ Φm
2 at iteration t + 1 becomes

ηmWm +
∑

k∈Φ
m
2
∪{m}

k 6=j2

(
1

γ2,k

−
1

γ2,j2

)

+ηm

∑

k∈Φm
1

(
1

γ1,k

−
1

ηm

1

γ2,j2

)− ηm(
1

γ1,j1

−
1

ηm

1

γ2,j2

) (14)

First assume γ1,j1γ2,m ≤ γ1,mγ2,j2 . The first three terms of

(14) are the numerator of pm
2,j2

, at t which is non-positive.The

last term is also non-positive by the assumption. So pm
2,j2

is

still non-positive at t + 1 in this case.

Now assume γ1,j1γ2,m > γ1,mγ2,j2 . The numerator of pm
1,j1

at t is given as

Wm +
∑

k∈Φ
m
1
∪{m}

k 6=j1

(
1

γ1,k

−
1

γ1,j1

)

+
1

ηm

∑

k∈Φ
m
2

k 6=j2

(
1

γ2,k

− ηm

1

γ1,j1

)+
1

ηm

(
1

γ2,j2

−ηm

1

γ1,j1

) (15)

With the assumption, the last term of (15) is positive, so the

first three terms must be negative which can be rewritten as

1

ηm

[ηmWm + ηm

∑

k∈Φ
m
1
∪Φ

m
c

k 6=j1

(
1

γ1,k

−
1

γ1,j1

)

+
∑

k∈Φ
m
2

k 6=j2

(
1

γ2,k

− ηm

1

γ1,j1

)] (16)

Since γ1,j1γ2,m > γ1,jc
γ2,m, the terms in square bracket of

(16) are larger than

ηmWm + ηm

∑

k∈Φ
m
1

k 6=j1

(
1

γ1,k

−
1

ηm

1

γ2,j2

)

+
∑

k∈Φ
m
2
∪Φ

m
c

k 6=j2

(
1

γ2,k

−
1

γ2,j2

) (17)

Therefore (17) is negative. It can be seen that (17) is the

numerator of pm
2,j2

after eliminating SC j1 at t, so pm
2,j2

is

also non-positive at iteration t + 1 in this case. Then with

reciprocity, the above results also hold for j1 ∈ Φm
2 , j2 ∈ Φm

2

and j1 ∈ Φm
2 , j2 ∈ Φm

1 . These establish the theorem.
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