arXiv:1301.4444v1 [cs.IT] 18 Jan 2013

Binary Diversity for Non-Binary LDPC Codes over
the Rayleigh Channel

Matteo Gorgogliong Valentin Saviri, David Declerce
*CEA-LETI, Minatec Campus, Grenoble, France {matteo.gglgme, valentin.savin}@cea.fr
#ETIS, ENSEA Univ. Cergy-Pontoise/CNRS, Cergy-PontoisanEe, declercq@ensea.fr

Abstract—In this paper we analyze the performance of several graphs withd, = 2, as demonstrated inl[6].1[7]. It has also
bit-interleaving strategies applied to Non-Binary Low-Desity peen pointed out[[8],[]3] that when the size of the non-
Parity-Check (LDPC) codes over the Rayleigh fading channel binary alphabet grows, best decoding thresholds are atain
The technique of bit-interleaving used over fading channel f d it f d | d cl Hio— 9
introduces diversity which could provide important gains in terms or a\_/erage ensity ol edges Cos_er ana close 7_10__ :
of frame error probability and detection. Practically, for NB-LDPC codes defined over Galois fieltls

This paper demonstrates the importance of the way of im- with ¢ > 64, best codes, both asymptotically and at finite
plementing the bit-interleaving, and proposes a design of ra |engths, areultra-sparse codes. Despite those advantages,
optimized bit-interleaver inspired from the Progressive Ege ihe ultra-sparse LDPC codes inF, suffer from a serious

Growth algorithm. This optimization algorithm depends on the d back their mini dist is limited and ¢
topological structure of a given LDPC code and can also be rawback, as their minimum distance Is limited and grows a

applied to any degree distribution and code realization. best 35(9(109(]_\7)) [9]. This Iimitation is howe_ver_ not critical
In particular, we focus on non-binary LDPC codes based on when the desired error rate is aboM& >, which is the case

graph with constant symbol-node connectiond, = 2. These of the wireless transmissions that we target in this paper.
regular (2, dc)-NB-LDPC codes demonstrate best performance,  Radio channels in multipath environments, such as mobile

thanks to their large girths and improved decoding threshotls . - L
growing with the order of Finite Field. Simulations show exellent or indoor contexts, can be modeled by a Rayleigh distributed

results of the proposed interleaving technique compared tahe fading [10]. A classical way to fight against the fading effec
random interleaver as well as to the system without interleger.  of Rayleigh model is to introduce binary diversity by the mea

Index Terms — Non-binary LDPC codes, bit-interleaver, of a bit-interleaver at the transmitter side. Such intedgahat
Rayleigh fading channel, Tanner Graph. operates between the encoder and the symbol mapper (see
Fig.[) drastically improves error rates in most of situasio
involving a fading channel.

Since their rediscovery by MacKay[[1] in 1996, Low- |n this paper, we demonstrate that in the case we make
Density Parity-Check codes have attracted a lot of attentigse of NB-LDPC codes for the forward error correction, the
because they exhibit rates close to the Shannon capacity falinterleaver is still of great importance to reach goedfor-
for many transmission channels, despite their low decodifgance, and moreover, we show that the performance are even
complexity. With the evolution of the technology, new faiesl better when the bit-interleaver is well fitted to the NB-LDPC
of LDPC codes defined on non-binary alphabets have beg#de structure. The proposed optimized interleaving étyor
proposed and studied. They demonstrate better performapcgspired from the Progressive Edge Growth algorithm, and
with respect to the binary case, especially for moderate cogssociates the consecutive channel bits to the wepsirated
lengths [3] but at the expense of more complex decodiggmbol-nodes.
architectures. The rest of the paper is organized as follows. A brief

Non-binary LDPC codes can be defined by consideringigroduction of the NB-LDPC codes and the channel model
non-binary alphabe, which for practical reasons is oftenare discussed in Sectidnl Il. In Sectibnl lll the interleaving
considered to be endowed with a vector-space structure oggjorithm is presented. Performance analysis are shown in
the binary fieldF, = {0,1}, and a semigroug acting on.A.  Section(TV. Finally, SectiofiV concludes the paper.

A non-binary code of lengtlVv is hence defined as the set of

solutionss € A of a linear systenHs” = 0, whereH is a Il. BACKGROUND AND NOTATION

matrix with coefficients ing, referred to as the parity-checky NB.L DPC codes over F

matrix of the code. !

LDPC codes are decoded using the belief propagation (B
algorithm based on an iterative exchange of messages hetw
nodes [[4], [5].

The case of codes for which the underlying bipartite graph
is ultra-sparse, in the sense that each symbol-node is ctathe Elements off", are calledsymbols, and their images under the
to exactlyd, = 2 linear constraint-nodes, is of particularabove isomorphism are callggdnary images. A non-binary
interest. First, very large girths can be obtained for TanneDPC code oveif, is defined as the kernel of a sparse matrix

|I. INTRODUCTION

p\We consider a non-binary alphafi&twith ¢ = 2 elements.
fix once for all the isomorphism:

F, — F}
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H € Muyxn(Fq). Thus, each codewors composed ofN
symbols, represents the solution of the linear sydtarh = 0.
Associated with the matribH is the Tanner Graph [11], Fig. 2. Non-Binary LDPC codes - Tanner Graph
which is constituted by N symbol-nodes on the top, represe
ing the coded symbols, and M constraint-nodes on the bottc
representing, with the labeled edges, the linear cons$raithe marginalization. Nevertheless, the loss of infornratiae
between these symbols (see Hig. 2). Each incident edge frtemmarginalization is counterbalanced by the gain that fhe b
symbol-node s; to constraint-node c; corresponds to a non-interleaver brings in the case of fading channels. We show in
zero entryh;; € H. the result section that the diversity gain surpasses gréa|
We definenode degree as the number of incident edgedoss due to marginalization both in the waterfall and in the
into such a node. In particulad,, indicates the variable nodeerror floor regions.
degree, wheread,. indicates the constraint-node degree. In Now let us present in short the non-binary decoder equa-
Fig.[2 a Tanner graph for a (2,4)-regular code is representighs. Let P(v = a) denotes the probability that a random
in which all the symbol-nodes are of degrég = 2 and all variablev € F, takes on valuez. A message exchanged

Constraint-nodes

the constraint-nodes are of degrée= 4. between a symbol-node and a check-node is a probability
B. Modulation and Channel Model vector of sizey:
In this paper, we assume a Rayleigh channel model, typical P(v)=[P(v=0),...,P(v=g—1)]

of a mobile/multipath environment. Therefore, the envelop

R of a random variable € F,.
the channel response follows this distribution: a

Let (i — j) be the message from symbol-nogleto an

p(h) = ﬁexp_% adjacent check-node; and 5(j — ) be the message from
o2 a check-node; to an adjacent symbol-nodg. With ~; we
and the received symbgi, is: indicate the channel likelihood for the symbol-noge
Considers € C a transmitted codeword of an LDPC cade
Pr = hiy + zx The decoder aims to detect a codewdrg s. The decoding

where z;, stands for thekth transmitted modulated symbolProcess is generally composed by two half-iterations: gaie
scaled by i.i.d. Rayleigh factors;, and z, is the Additive ©Of symbol-node messages(i — j), taking into account
White Gaussian Noise with varianeé. the check-node messageki — j');.»; and the channel

The symbolsz;, are modulated by #1-QAM constellation ealizationsy;, ii) update of check-node messagés — 1)
in which each mapped symbol is associatedrto= log, M taking into account the symbol-node messag@s$ — j)irxi-
bits; we denote byV,, the number of modulated symbols. At the end of each iteration, the decoder computes the symbol

probabilities relative to each symbol-node in order to make
C. Belief Propagation Decoding decision abous.

The Belief Propagation (BP) decodér [12] is based on anUsually, one makes the decoder stop in two situationa:
iterative message-passing algorithm. For non-binary LDPC maximum number of iterations is reached, tises computed
codes, thextrinsic messages that circulate on the graph afeom the messages at the last iteration, or ii) the syndrame i
multidimensional messagesg| vectors). verified Hs” = 0, and a codeword is identified.

The initialization messages are Likelihood probability A detected error happens ifs does not belong to the
weights, dependent on the channel statistics. For NB-LDR@deword set. IE belongs to the codeword set but it is not the
codes, the decoder input consists 8f Likelihood vectors transmitted codeword, the decoder makesiadetected error.
(P(s; = a)),c 4, Wheres; denotes théth transmitted symbol, Undetected errors are due to codewords with a low Hamming
1={1,...,N}. weight, which is one the weaknesses of the consid&gd}. )-

In the case the order of the constellation and the order B-LDPC codes. We will make in secti@nllV a detailed study
the coded symbols match, the Likelihood vectors are directyf the percentages of detected and un-detected errors In eac
derived from the demapped symbols. On the contrary, wharierleaving situation.

a de-interleaver is placed before the decoder, the demappéfinally, we discuss the computation of the input Likelihood
performs a marginalization to transform the symbol likebds messages in each of the considered cases= bt the vector
into bit-wise likelihoods, inducing a performance loss dae of received symbols antl be the Likelihood messages at the



inputs of symbol-nodes. In the case &f, = N and no bit- ™oduatior % % %
interleaver, there exists a one-to-one correspondeneesbat ‘ A

the modulated and coded symbols:

E=1[Prys - Prrr--Prn. ) \V\V \J/\V \V
[ T (%) SIDI

I'= ['YSU ""YSi?""YSN]

The other case corresponds to the use of a bit-interleaver
when the size of the constellation does not match the size _
the coded symbols\,,, # N). In such a case, an intermediatt “ndee
operation is used to transform the Likelihoods between itse k

of the mapped symbols and the bits of the coded symbols Fig. 3. Global graph
E= [pzlv"'pINm ]
Therefore, the aim of the a bit-interleaving design is to
Zvin = [(Prr1s -+ Perm) - (Panyas - Pany )] look for aninterleaving pattern that contains the scrambled
(3 bit positions in the interleaving graph (upper part of thapjr
D =1[7s - Vsn | in the Fig.[3).

Though random interleaving shows already good perfor-
mance as demonstrated in the secfioh IV, we have devised
An algorithm to optimize the interleaver design, which even

ore improves the performance, especially in the erromfloo
region. The bit-interleaver optimization algorithm is geated
in the next section.

where 2 Ebin contains then,, received bits. These bits are

which composd’. In the rest of the paper, we consider onl
the case wheren = p, so that the latter marginalization
transformation is used only when a bit-interleaver is erygtb

Ill. I NTERLEAVING ALGORITHM A. PEG Optimization Interleaving

The effect of a bit-interleaver is to spread the coded bits in Qur bit-interleaver design is inspired from the Progressiv
different modulation symbols, such that these bits commpsiEdge-Growth (PEG) method][6] used for constructing Tanner
a single coded symbol are affected by different fading fiacto graphs with large girths that progressively connects sysbo
The advantage of using an interleaver is that the deep fadiagd constraint-nodes. For this reason, from now on, our
effects on the received bits are mitigated by the fact thaptimization algorithm will be identified as PEG interleagi
those bits are distributed among the codewords after the @ggorithm.
interleaver. The PEG interleaving algorithm is efficient for creating

The bit-interleaver can be seen as the construction ofgaod connections between the modulation and the symbol-
superimposed regulafm, p)-bipartite graph (from now on nodes in a best effort way. Good connections are meant to
called simply interleaving graph) on the Tanner Graph. It give the largest possible girth to both the LDPC Tanner graph
connects themodulation-nodes z;, to the symbol-nodes; and the interleaving graph. Starting with the knowledge of
of a pre-designed Tanner Graph. The modulation-nodes ai¢ p and the LDPC Tanner graph topology, the algorithm
another type of nodes representing the modulated symbolsénnects each modulation-node i@ symbol-nodes. The
the interleaving graph. rationale behind the optimization algorithm is to find, fach

In the interleaving graph, edges conné€i, modulation modulation-node, then most distant coded symbol-nodes
symbol-nodesz;, to N coded symbol-nodes; (see Fig[B). (from a topological distance point of view), and therefoe t
In this part of the graphd, denotes the modulation symbolbuild connections in the interleaving graph which resutts i
degree, whilel; denotes the coded symbol degree. To simplifthe best girth. It should also be noted that the bit-inteea
the study, we can assume that each modulation symbol hisign is code-dependent. As a matter of fact, the girth
constant modulation-node degrée= m and that each coded computation during the interleaver design takes into aatou
symbol has constant interleaving symbol-node degtee p. the topology of the already designed NB-LDPC cagdlelt

Of course, since the number of coded bitscan be results in particular that the bit-interleaver built withuro
computed either as the number of bits within tNecoded- algorithm is actuallymatched to a particular NB-LDPC code,
symbolss;, or as the number of bits within th¥,,, modulated- which explains the further performance gains that we oleserv
symbolsz;, we have thath = Np = N,,m.

Fig. [3 shows an example of a superimposed interleavingWe now explain the principles of the PEG interleaving
graph on the Tanner graph of Fifl 2. The interleaver @gorithm. Recall thatd; denotes the coded symbol-node
represented as a block denoted Hs with m = 4 edges degree andi; denotes the modulation-node degree. Before
for each modulation-node ang = 3 edges for each codedthe algorithm starts, all the degrees are sef.t@uring the
symbol-node. algorithm execution, the current node degrees represent th
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Fig. 4. Frame Error Rates for (2,6) and (2,12) NB-LDPC codessig. 5. Frame Error Rates for (2,6) and (2,12) NB-LDPC codes,
n = 612, F64, 64-QAM n = 816, F256, 256-QAM

IV. SIMULATION RESULTS

number of established connections for the nodes. Thus, for 4" this section, we present the simulation results for tie bi
coded symbol-node;,, i € {1,...,N}, the degree range is interleaved and not bit-interleaved NB-LDPC codes. Mdé&da

0 < d; < p; for a modulation-node, k € {1,...,Ny,}, the py the good asymptotical thresholds that grows with the rorde
degree range i6 < d;, < m. field, we have focused on LDPC code_ alphabBtg and
Faos6. It has been shown that, for those high orders, the ultra-
Let z; be a modulation-node to be connected. The PE§parse NB-LDPC codes with node degrge= 2 is the best
interleaving algorithm chooses the first connection betweghoice. We have therefore simulated LDPC codes for those two
ry ands,. s, is a randomly chosen symbol-node among thgifferent alphabets and two different coding rai¢2,6)-NB-
available ones with the lowest current degree. Then, werekpa DPC codes corresponding to a rae= 2/3 andii) (2,12)-
both the Tanner and the interleaving graphs through thethiB-LDPC codes corresponding to a rafe = 5/6. These
types of nodes taking into account the new connection. OngR8-L.DPC code Tanner graphs are designed with PEG method
the graph expansion is complete, the bottom of this gragg] (minimum girth ¢ = 6) and decoded by using a Belief-
is the set of symbol-node$s.} that are the most distantpropagation decoder[5]. As said in the previous sectioa, th
symbol-nodes froms,,. Hence, the algorithm can conneckize of the alphabet is the same of the size of modulation
the modulation-noder;, to one of the coded symbol-nodeconstellation: codes defined ovEg, are transmitted using
s. € {s.} with the lowest degree. A new connection is therebhe 64-QAM modulation, whereas codes defined oWk
chosen, and the algorithm goes to the next edge selectigre transmitted using tH256-QAM modulation.
by performing the same steps - graph expansion and nod&ach LDPC code is simulated on the Rayleigh fading
selection. The procedure is iterated until it reaches thieecd channel with three possible transmission systems: firshra n
degreed;, = m. The algorithm stops when all the modulationinterleaved system with direct mapping from the modulation
nodes are connected. to the coded symbols, then with a random bit-interleaver and

Note that with this PEG interleaving algorithm, only thémlIIy with our PEG-optimized interleaver.

coded symbol index is important for the global girth of the -
graph, and not the location of the bitside the coded symbol The curves in FidlJ4 represent the Frame Error Rates (FER)

binary map. Actually, an extra local scrambler could be adq&f the considered (2,)-LDPC codes defined ovefgy for

; ; - ; Il codewords7{ = 612 bits, N = 102 coded symbols)
— at the coded symbol level — without impacting the gwtﬁma X I :
of the global graph. In our simulations, however, this ext odulated with 264-QAM. A significant performance gain

local scrambler did not impact significantly on the erroerat-2" be _observed both in the.vyaterfall and n the error floor

performance. regions in the presence of a b|_t-|_nterleav§r. This showssthiea
diversity gain brought by the bit-interleaving surpassesatly

Although the above described construction could be adaptbeé information loss due to symbol-to-bit marginalization

to any NB-LDPC code, including codes with irregular node As expected, the PEG interleaved system (represented by

distributions, we restricted our study to regulard(2;LDPC [J) achieves roughly the same gain as random interleaving

codes. For these codes, the error rate simulation results @represented by) in the waterfall region, but shows also

the study of detected vs. undetected errors are conductedaimimproved error-floor. This was our goal of building bit-

the next section. interleavers that optimize the girth of the global graph.
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In Fig.[@ we show the performance of the codes defingtyer short size regula, d.)-LDPC codes.
overlF,s¢ with codelength = 816 (N = 102 coded symbols) ~ The optimized interleaving algorithm is inspired from the
and modulated with 256-QAM. As can be seen, when theProgressive Edge Growth (PEG) method and it ensures max-
size of alphabet grows, bit-interleavers still gain in theoe imum girth of the global graph. Although the bit demapping
floor region, but the gap between the two kinds of interlesveeeded in the interleaved leads to information loss, it keenb
vanishes. Now, let us discuss the effect of bit-interleguind demonstrated that the use of the interleaves ensures iegprov
our optimized construction for the detection of frame esrorframe-error probabilities compared to a system without it.
We have drawn in Figi]6 and] 7 the percentage of detectBdditionally, in all considered cases, the optimized ifgaver
frame errors with respect to the FER, for the (2,6)-LDPC sodéhowed an even better gain with respect to the random

defined respectively iffg, and inFasg.

interleaver, as far as performance and error detectios et

Although it was expected, this study confirms that the bettépncerned.

performance in the error floor region results from a better
detection of frame errors. More precisely, bit-interlegyion
a Rayleigh channel helps the decoder to avoid convergenc%]
to low-weight codewords, therefore improving at the same
time the performance and the probability of error detection
This last feature is very interesting since in most wireless
mobile transmissions, a link adaptation strategy impleimgn
retransmission of detected wrong frames is generally usedf!
(ARQ or Hybrid-ARQ). (4]
Note that even in the case of codes Iisg, our bit-
interleaving optimization shows an interesting gain ireded [
frame errors 100% for all FER simulated) compared to the
randome-interleavers, although the error rates were thee samie)
(see Fig[h).

[2]

V. CONCLUSIONS 7]

In this paper we investigate the non-binary LDPC codes[S]
transmitted over a Rayleigh fading channel. Since moddlate
symbols can be affected by different fading factors, deep fa [9]
ing could make some codeword symbols totally unrecoverable
in case of one-to-one correspondence between modulated q@éj
coded symbols, leading to a poor system performance.

In order to avoid this phenomenon, binary diversity can b?ll]
exploited by using a bit-interleaver module placed betwiben
encoder and the modulator. A random interleaver and an opfit2]
mized interleaver have been analyzed by running simulgtion
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