
ar
X

iv
:1

11
2.

28
42

v1
  [

cs
.N

I] 
 1

3 
D

ec
 2

01
1

1

Joint Rate Selection and Wireless Network Coding
for Time Critical Applications

Xiumin Wang⋆, Chau Yuen⋆, Yinlong Xu†
⋆ Singapore University of Technology and Design, Singapore

† School of Computer Science, University of Science and Technology of China, China
Email: wangxiumin@sutd.edu.sg, yuenchau@sutd.edu.sg, ylxu@ustc.edu.cn

Abstract—In this paper, we dynamically select the transmission
rate and design wireless network coding to improve the quality
of services such as delay for time critical applications. With
low transmission rate, and hence longer transmission range,
more packets may be encoded together, which increases the
coding opportunity. However, low transmission rate may incur
extra transmission delay, which is intolerable for time critical
applications. We design a novel joint rate selection and wireless
network coding (RSNC) scheme with delay constraint, so as to
minimize the total number of packets that miss their deadlines at
the destination nodes. We prove that the proposed problem isNP-
hard, and propose a novel graph model and transmission metric
which consider both the heterogenous transmission rates and the
packet deadline constraints during the graph construction. Using
the graph model, we mathematically formulate the problem and
design an efficient algorithm to determine the transmissionrate
and coding strategy for each transmission. Finally, simulation
results demonstrate the superiority of the RSNC scheme.

I. I NTRODUCTION

With the increase in both wireless channel bandwidth and
the computational capability of wireless devices, wireless
networks now can be used to support time critical applications
such as video streaming or interactive gaming. Such time
critical applications require the data content to reach the
destination node(s) in a timely fashion, i.e., a delay deadline
is imposed on packet reception, beyond which the reception
becomes useless (or invalid) [1].

Recently, network coding becomes a promising approach to
improve wireless network performance [2]–[4]. Specifically,
the work in [4] proposed the first network coding based
packet forwarding architecture, namedCOPE, to improve
the throughput of wireless networks. With COPE, each node
opportunistically overhears some of the packets transmitted by
its neighbors, which are not intended to itself. The relay node
can then intelligently XOR multiple packets and forward it to
multiple next hops with only one transmission, which results
in a significant throughput improvement.

In most recent works for wireless network coding, network
nodes always transmit packets at a fixed rate. However, most
wireless systems are now capable of performing adaptive
modulation to vary the link transmission rate in response tothe
signal to interference plus noise at the receivers. Transmission
rate diversity exhibits a rate-range tradeoff: the higher the
transmission rate, the shorter the transmission range for agiven
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transmission power [5]. To aid overhearing, one may use the
lowest transmission rate, so as to successfully deliver packet to
more receivers/overhearing nodes. Although this may increase
the coding opportunity, it may not yield good performance,
especially for time critical applications, as the arrival times of
packets may be delayed.

In the literature, only a few works studied the relationships
between adapting the transmission rate and the network coding
gain [5]–[8]. The work in [5] showed that compared with
pure network coding scheme, joint rate adaptation and network
coding is more effective in throughput performance. They also
proposed a joint rate selection and coding scheme to minimize
the sum of the uplink and the downlink costs in star network
topology. The work in [6] mathematically formulated the
optimal packet coding and rate selection problem as an integer
programming problem, and proposed an efficient heuristic
algorithm to jointly find a good combination of coding solution
and the transmission rate. However, there are only a few works
considered the delay guarantee of packet receptions, which
is especially important for time critical applications. Sofar,
only [9] considered the delay constraint of packet reception,
and proposed a coding scheme to minimize the number of
packets that miss their deadlines. However, they assume that
the transmission rates on all the links are fixed and the same.

In this paper, by considering the impact of both transmission
rate and network coding on the packet reception delay, we de-
sign a joint rate selection and network coding (RSNC) scheme
for wireless time critical applications, so as to minimize the
total number of packets that will miss their deadlines at the
destination nodes. The main contributions of our paper can be
concluded as follows.
• We propose a novel graph model, which considers both

the heterogenous transmission rates and the deadlines
of the packet receptions during the graph construction.
Based on the graph model, we mathematically formulate
the problem of minimizing the total number of packets
that miss their deadlines by joint rate selection and
network coding, as an integer programming problem.

• We propose a metric to determine the coded packet
and the transmission rate for each packet transmission.
By considering the impact of the transmission rate on
both delay and network coding gain, we also design an
efficient algorithm to optimize the proposed metric.

• We compare the performance of the proposed RSNC
scheme with some existing algorithms. Simulation results
show that the proposed scheme can significantly reduce
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the packet deadline miss ratio.

The rest of the paper is organized as follows. We define our
problem in Sec. II. Sec. III gives the graph model and problem
formulation. The algorithm design for each transmission is
given in Sec. IV. We show the simulation results in Sec. V,
and conclude the paper in Sec. VI.

II. PROBLEM DEFINITION

In this section, we first illustrate the motivation of our prob-
lem. We then give the problem description and its complexity.

A. Motivation Illustration

We now give an example to show how joint rate selection
and network coding affect the time critical applications.

Take Fig. 1 as an example, where source/transmitting node
nodes needs to transmit packetp1, p2, p3 to noded1, d2, d3
respectively. Fig. 1(a) gives the set of overheard packetsH(di)
at destinationdi ∈ {d1, d2, d3}. Suppose that the size of each
packet isB = 10k, and the maximum transmission rates
from s to d1, d2, d3 are 5k/s, 2k/s and 2k/s, respectively.
Fig. 1(b) shows the reception deadline of each “wanted” packet
at its destination. For the current transmission, according to the
work in [4], [9], s will send the encoded packetp1⊕p2⊕p3, as
the most number of destinations can decode it. However, there
is a problem for selecting the transmission rate ats. If 5k/s is
selected,d2, d3 can not successfully receive the packet, as the
maximum transmission rates froms to them are both2k/s. If
2k/s is selected, although all of the three receiversd1, d2, d3
can receive and decode one “wanted” packet,p1 will miss its
deadline atd1, as its arrival time is10k

2k/s = 5s.
As an alternative, we may choose to first send packetp1

with transmission rate5k/s, where destinationsd1 will obtain
a “wanted” packet in2s. After this transmission, the encoded
packet p2 ⊕ p3 can be sent with transmission rate2k/s,
where destinationd2 and d3 will obtain a “wanted” packet
after 7s (including the waiting time of the first transmission).
Obviously, the latter solution is better than the first one, as no
packet will miss their deadline.

B. Problem Description

In this paper, we consider the application of network
coding in wireless networks. Each network node knows the
overheard/routed packets that its neighbors have such thatit
can perform network coding operations. Such information can
be achieved by usingreception reports, as introduced in [4].
We also assume that the forwarding/relaying node knows the
deadlines of the packet receptions at its receivers. Specifically,
we consider the transmission scheme within a single hop since
multi hop can be regarded as multiple single hops. As in COPE
[4], only XORs coding is performed at the node in our work.

Without loss of generality, lets be the current source node,
andP = {p1, p2, · · · , pn} be the set of packets required to
be transmitted froms. Suppose thatD = {d1, d2, · · · , dm}
is the set ofs’s neighbors which requires packets inP sent
from nodes. Let R(di) be the set of “wanted” packets at
di, andH(di) be the set of overheard packets atdi, where
R(di) ⊆ P,H(di) ⊆ P . For eachpj ∈ R(di), let T (di, pj) be
the reception deadline of packetpj at nodedi. We also assume
thatr(s, di) is the maximum transmission rate on link(s, di),
and only if the transmission rate froms to di is less than
r(s, di), the packet sent froms can be successfully received
by di [5]. We also assume that the size of each packet isB.

Our problem is that given the set of overheard packets at
each nodedi, H(di), the set of packets required bydi, R(di),
the deadline of required packetpj at nodedi, T (di, pj), and
the maximum transmission rater(s, di) on the link from s
to di, design the encoding strategy of the packets and select
the transmission rate for each propagation, such that the total
number of packets that miss their deadlines at each destination
is minimized.

Let zi,j be1 if packetpj misses its deadline atdi, otherwise,
let it be 0, where pj ∈ R(di). Thus, our objective is to
minimize ∑

di∈D

∑

pj∈R(di)

zi,j

In this paper, we refer such a problem of joint Rate Selection
and Network Coding (RSNC) for time critical applications as
RSNC problem.

C. Problem Complexity

Lemma 1 The RSNC problem is NP-hard.

Proof: We can consider a special case of the RSNC
problem:T (di, pj) = 1 and the maximum transmission rates
on all the links are the same. Then, this special case is
equivalent to finding a maximum weight clique problem as in
[9], which is known as an NP-hard problem. Thus, the RSNC
problem is also NP-hard.

III. G RAPH MODEL AND RSNC FORMULATION

A. Graph Model

Although the graph model in [9] works well for the case
where the transmission rates on all the links are the same and
fixed, it can not be used directly for our RSNC problem. Here,
we construct a novel graph modelG(V,E), which considers
both the transmission rates and the packet reception deadlines.

We define rmin(s, di|pj) = B
T (di,pj)

as the minimum
transmission rate that can be used to meet the deadline of
pj ∈ R(di) at di. We add a vertexvi,j in V (G), only if the
following two conditions can be met.

(1) pj ∈ R(di);
(2) rmin(s, di|pj) ≤ r(s, di).
Note that, if rmin(s, di|pj) > r(s, di), packet pj will

definitely miss its deadline atdi. Thus, conditions (1) and
(2) ensure that we add a vertexvi,j in V (G) only if the
“wanted” packetpj will not miss its deadline atdj . That is,
V (G) = {vi,j |pj ∈ R(di), rmin(s, di|pj) ≤ r(s, di)}.



3

(a) the graph constructed by [9]
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(b) our graph model

Fig. 2. Different graph model comparison

Then, for any two different verticesvi,j , vi′,j′ ∈ V (G), there
is a link (vi,j , vi′,j′) ∈ E(G) if all the following conditions
can be satisfied.

(a) i 6= i′;
(b) j = j′ or pj ∈ H(di′ ) andpj′ ∈ H(di);
(c) rmin(s, di|pj) ≤ r(s, di′ ) and rmin(s, di′ |pj′) ≤

r(s, di).
For any cliqueQ = {vi1,j1 , vi2,j2 , · · · } in G, let P ′ =

{pj|vi,j ∈ Q}, D′ = {di|vi,j ∈ Q}. According to the work in
[9], if node di ∈ D′ successfully receives the encode packet
pj1 ⊕ pj2 ⊕ · · · ⊕ p|P ′|, wherepj1 , pj2 , · · · , p|P ′| ∈ P ′, di can
decode a “wanted” packetpj, wherevi,j ∈ Q.

Next, we will use an example to show the novelty of our
graph model as compared to others in the literature, e.g., [9].

Still take Fig. 1 as an example. The graph constructed by
[9] is shown in Fig. 2 (a). According to [9], any clique in the
graph represents a feasible encoded packet. Thus,p1⊕p2⊕p3
can be sent and its intended next hops ared1, d2, d3, because
{v1,1,v2,2,v3,3} forms a clique. As described in Sec. II-A,
it is not a good choice. However, with our graph model
shown in Fig. 2(b),p1, p2, p3 will not be encoded as vertices
v1,1,v2,2,v3,3 do not form a clique in the graph. In addition,
for the current transmission, the encoded packet derived from
any clique in the graph can be sent without missing the
deadlines at its intended destinations. For example, ifp2⊕p3,
which is derived from the clique{v2,2, v3,3}, is sent with
the minimum of the maximum transmission rates among
r(s, d2) andr(s, d3), 2k/s, its intended next hopsd2, d3 can
successfully decode the packetsp2, p3 respectively, without
missing their deadlines.

With the graphG(V,E), we have the following lemma.
Lemma 2 For the current packet transmission, if the encode
packetpj1 ⊕ pj2 ⊕ · · · ⊕ p|P ′|, wherepj1 , · · · , p|P ′| ∈ P ′, is
sent with the transmission rater = min{r(s, di)|di ∈ D′}, it
will be received by all the nodes inD′. In addition, for each
vi,j ∈ Q, the packetpj will be decoded bydi without missing
its deadline.

Proof: Firstly, we can easily obtain that with transmission
rate r = min{r(s, di)|di ∈ D′}, all the receivers inD′

can successfully receive the sending packet. This is because
the transmission rater must be lower than the maximum
transmission rate froms to di ∈ D′.

Secondly, our graph is the subgraph of that constructed
in [9]. According to [9], ifpj1⊕pj1⊕· · ·⊕pj|P ′|

is successfully
received bydi ∈ D′, di can decode its “wanted” packetpj,
where vi,j ∈ Q. Thus, any receiverdi ∈ D′ can obtain
a “wanted” packetpj from pj1 ⊕ pj2 ⊕ · · · ⊕ pj|P ′|

with
transmission rater, wherevi,j ∈ Q.

Thirdly, according to the condition (c), we have

rmin(s, di|pj) ≤ min
di∈D′

{r(s, di)} = r (1)

So, its arrival time at receiverdi is
B

r
≤

B

rmin(s, di|pj)
=

B
B

T (di,pj)

= T (di, pj) (2)

In other words, the arrival time of the packetpj ∈ P ′ will
not miss its deadline at its receiverdi ∈ D′, wherevi,j ∈ Q.

As in Lemma 2, a cliqueQ in the graph represents a feasible
transmission solution for the current propagation, with the
encoded packetpj1 ⊕ pj2 ⊕ · · · ⊕ pj|P ′|

, transmission rate
r = min{r(s, di)|di ∈ D′}, intended next hops inD′, and
the propagation delayBr .

B. RSNC Formulation

While Lemma 2 ensures that any encoding strategy based
on any clique in the graph will be delivered within deadline
for the current packet transmission, the transmission orders of
the encoded packets, represented by the cliques inG(V,E),
also affects the timely packet receptions at their destinations.

As shown in Fig. 2(b), if we first schedule packetp1
with transmission rate5k/s, represented by clique{v1,1},
and then schedule packetp2 ⊕ p3 with transmission rate
2k/s, represented by clique{v2,2, v3,3}, all the packets will
be received at their destinations without missing deadlines.
However, if we first schedule packetp2 ⊕ p3, and then packet
p1, packetp1 will miss its deadline atd1.

Thus, the next task for us is to find a set of cliques in the
graph and schedule the transmissions of the encoded packets
represented by each clique, so as to minimize the number of
missed packets for the whole transmission process.

Suppose thatQh = {vi1,j1 , vi2,j2 , · · · , } is a clique in
the graph, and the encoded packet represented by it is sent
as theh-th transmission at nodes. We also assume that
P ′h = {pj |vi,j ∈ Qh}, D′h = {di|vi,j ∈ Qh}. Thus, the
h-th transmission ats is pj1 ⊕ pj2 ⊕ · · · ⊕ pj|P ′

h
|

where
pj1 , pj2 , · · · , pj|P ′

h
|
∈ P ′h, and the transmission rate isrh =

mindi∈D′
h
{r(s, di)}. Let Th be the transmission delay of the

h-th transmission.
We firstly define the following variant.

xi,j,h =

{

1, if vertex vi,j is included in cliqueQh

0, otherwise
,∀vi,j ∈ V (G)

(3)
Then, we can formulate the RSNC problem based on the

graph model as follows.

min
Qh

∑

di∈D

∑

pj∈R(di)

zi,j (4)

subject to
|V (G)|
∑

h=1

xi,j,h = 1,∀vi,j ∈ E(G) (5)

xi,j,h + xi′,j′,h = 1,∀(vi,j , vi′,j′) /∈ E(G) (6)

Th = max
vi,j∈V

{
B ∗ xi,j,h

r(s, di)
}, 1 ≤ h ≤ |V (G)| (7)

|V (G)|
∑

h=1

(xi,j,h ∗
h

∑

j=1

Th) ≤ T (di, pj) + ξzi,j ,∀vi,j (8)

|V (G)|
∑

h=1

(xi,j,h ∗

h
∑

j=1

Th) ≥ T (di, pj)− ξ(1− zi,j),∀vi,j (9)
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whereξ is a sufficient large constant.
In the above formulation, the term of the objective rep-

resents the number of packets that miss their deadlines at
the receivers, which needs to be minimized. Constraint (5)
denotes that each vertex in the graph can only belong to one
clique. Constraint (6) means that if there is no link between
vertex vi,j and vi′,j′ , verticesvi,j , vi′,j′ can not be in the
same clique. Constraint (7) gives the transmission delay for
the h-th transmission, which is equal to the transmission
delay with the minimum transmission rate among the rates
from s to all intended receivers. The sufficient large constant
ξ is used to guarantee that if

∑|V |
h=1(xi,j,h ∗

∑h
j=1 Th) >

T (di, pj), zi,j must be1, as denoted in Constraint 8, and
if

∑|V |
h=1(xi,j,h ∗

∑h
j=1 Th) ≤ T (di, pj), zi,j must be0, as

denoted in Constraint 9. Note that the arrival time of the
packet in theh-th transmission should consist of both the
waiting time of the previoush − 1 transmissions and the
transmission time of theh-th transmission, i.e.,

∑h
j=1 Th.

Thus, Constraint (8) and (9) show that only if the arrival time
of pj at di, i.e.,

∑|V |
h=1(xi,j,h ∗

∑h
j=1 Th), is no more than the

reception deadline ofpj at di, zi,j can be0.
With the above integer nonlinear programming, we can

get the optimal solution of RSNC problem. However, the
computational complexity for the above integer nonlinear
programming is too high when the graph is large. Thus, we
need to find an efficient algorithm to solve it.

IV. JOINT RATE SELECTION AND NETWORK CODING

ALGORITHM

Since each clique in the graph represents a feasible trans-
mission strategy for the current transmission, instead of de-
termining the whole transmission sequence at once, we first
design the algorithm to determine the encoding strategy and
rate selection scheme for each packet propagation, by selecting
a clique at a time. The whole transmission process consists of
multiple packets transmission/cliques selection.

A. Metric Consideration for Each Packet Propagation
First of all, in order to measure the “goodness” of trans-

mitting an encoded packet at a specific transmission rate for
each packet propagation, it is necessary for us to adopt a
reasonable metric which should take into account the impact
of the transmission rate and the packet reception deadlines. In
this section, we shall design a metric, which not only satisfies
as more requests as possible, but also minimizes the number
of packets missing the deadlines after the current transmission.

For the current transmission, given an encoded packet
and a selected transmission rate, letfi,j be 1 if pj is de-
coded/received bydi from the current propagation without
missing its deadline, otherwise, let it be0. In addition, as
described in Fig. 1, the current encoding strategy and trans-
mission rate also affect the timely receptions of the packets in
the following propagations. Letli,j be 1 if pj will definitely
miss its deadline atdi after the current propagation, otherwise,
let it be 0. Later, we will introduce how to calculatefi,j and
li,j for a given encoded packet and transmission rate. Letr
be the transmission rate selected for the current propagation.

Our metric can be defined as follows.

Definition 1 For a coding solutionpj1⊕pj2⊕· · ·⊕pjL , define
the metricU when using the transmission rater as follows:

U =
∑

di∈D

∑

pj∈R(di)

αjfi,j −
∑

di∈D

∑

pj∈R(di)

αj li,j (10)

whereαj is the parameter, which can be defined as the benefit
(e.g., importance) of the packetpj .

Firstly, for a given encoded packetpj1⊕pj2⊕· · ·⊕pjL , fi,j is
1 only if all the following conditions are met: 1)r ≥ r(s, di),
which meansdi can successfully receive the sending packet;
2) pj ∈ R(di), which meanspj is required atdi; 3) All the
other packets combined in the encoded packet exceptpj are
available atdi, which denotes the decoding requirement of
pj at di; 4) B

r ≤ T (di, pj), which shows the requirement of
the reception deadline. Secondly, for each packetpj ∈ R(di)
which is not successfully received/decoded bydi from the
current transmission without missing deadlines (fi,j = 0), li,j
is 1 only if

B

r
+

B

r(s, di)
> T (di, pj) (11)

Here,Br is the transmission delay of the current transmission,
and B

r(s,di)
denotes the minimum delay to meetpj ’s deadline

at di in the next transmission. If the sum of the current
transmission delay and the next minimum transmission delay
is larger than the deadline ofpj at di, pj will definitely miss
its deadline, i.e.,li,j = 1. Thus, given an encoded packet and
its transmission rate,fi,j and li,j are both determined.

Hence the meaning of metricU in (10) can be explained as
follows. The first term

∑
di∈D

∑
pj∈R(di)

αjfi,j denotes the
benefit obtained from the packets that are received without
missing their deadlines from the current transmission. The
second term

∑
di∈D

∑
pj∈R(di)

αj li,j represents the lost due
to packets that will definitely miss their deadlines after the
current transmission. So, the metricU denotes the net benefit
obtained from the current encoded packet and the transmission
rate. Thus, for each packet propagation, we aim to determine
an encoded packet and select the transmission rater, that will
maximize the metricU .

Note that, the problem of maximizing the defined metricU
is also NP-hard. We can prove it by considering its special
case: the transmission rates on all the links are the same, the
reception deadlines for all the packets are the transmission
time of one packet, and each packet has the same benefitαj .
The special case of maximizing the defined metricU becomes
to maximize the total number of the receivers that can decode
one “wanted” packet from the current encoded packet, which
has been proved to be NP-hard in [10].

B. Heuristic Algorithm Design for Each Packet Propagation

Although maximizing the defined metricU is also NP-hard,
we can easily obtain the following observations, based on
which we can design the heuristic algorithm.

P1: Maximizing the first term of the metricU is equal to
find a maximum weight clique in the graph, where the weight
at vertexvi,j is defined as the benefitαj .

P2: The transmission rate is a parameter that adjusts the
trade-off between delay and network coding gain. Ifs uses a
low transmission rate, more receivers can successfully receive
the sending packet, and the current transmission may satisfy
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more receivers’ requirements, denoted by the first term inU .
However, low transmission rate means high transmission delay,
which may cause more packets to miss their deadlines in the
following transmission, denoted by the second term inU .

Based on the above observations, we then design a heuristic
algorithm for each packet propagation, by gradually increasing
the transmission rate. Initially, the transmission rate isset to
be no less than the lowest one froms to its receivers. Let
TR = {r(s, di)|di ∈ D} be the set of available transmission
rates froms to all the destinations, and letTrk be thek-th
lowest rate inTR. As in Sec. III-A, we construct the auxiliary
graph with the given information. We also assign the weight
αj in vertexvi,j for ∀i to denote the benefit ofpj .

In the k-th step, we restrict that the transmission rate used
at s must be no less thanTrk. For di, if its maximum trans-
mission rate froms is less thanTrk, it can not successfully
receive the sending packet. This restriction can be realized
by omitting the vertexvi,j in G(V,E) if r(s, di) < Trk.
Then, we find the maximum weight clique in the subgraph
{vi,j |r(s, di) ≥ Trk, vi,j ∈ V (G)}, and adopt the transmis-
sion rate represented by the found clique. Each vertexvi,j in
the found clique denotes thatpj will be successfully obtained
by di without missing its deadline, for the given transmission
rate. For each of the other packets that can not be obtained at
their receivers from the current transmission, we then judge
whether it will definitely miss its deadline at its destinations,
by (11). Thus, in each step, we calculateU . Such process
continues until all the rates inTR are considered. Finally, we
compare the values ofU obtained from each step and adopt
the one with the largest value as solution. Note that, if there
are more than one solution with the maximum value ofU , we
will choose the one with the smaller lost represented by the
second term of (10). The detailed of the algorithm is shown
in Algorithm 1 of Fig. 3.

C. Algorithm for the Whole Transmission Process
While algorithm 1 in Sec. IV-B describes the encoding

of packets and selection of rate for every transmission, the
whole transmission process will consist of multiple of such
single process. We will first construct the graphG(V,E)
based on model in Sec. III-A, and the graph will be updated
by removing the selected vertices in the found clique by
Algorithm 1, and the vertexvi,j if pj will definitely miss its
deadline at destinationdi. The packet reception deadlines for
the packets also need to be updated after each transmission.
The whole transmission process continues until the vertices set
V of G becomes empty. The detail algorithm for the whole
transmission is given in Algorithm 2 of Fig. 3.

V. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of our
RSNC scheme through simulations. We randomly generate a
set of available packets inH(di) and the “wanted” packets
in R(di) at destinationdi ∈ D, whereH(di)

⋂
R(di) = ∅.

The maximum transmission rate froms to di is randomly
selected in[rmin, rmax], and the packet reception deadline
is randomly generated in[Tmin, Tmax].

For comparison purpose, we include two baseline algo-
rithms, namely,DSF (deadline smallest first) codingalgorithm

Algorithm 1: one packet propagation process
Uk = 0, ∀k ∈ {1, 2, · · · , |TR|};
fk
i,j = lki,j = 0, ∀k ∈ {1, 2, · · · , |TR|}, vi,j ∈ V (G);

for k←− 1 to |TR|
find max weight cliqueQ in subgraph{vi,j |r(s, di) ≥ Trk, vi,j ∈ V };
fk
i,j = 1, if vi,j ∈ Q, for ∀i, j;

r′k = minvi,j∈Q{r(s, di)};
For eachvi,j ∈ V (G), vi,j /∈ Q

lki,j = 1, if B

r′
k

+ B
r(s,di)

> T (di, pj);

Endfor
Uk =

∑
di∈D

∑
pj∈R(di)

αjf
k
i,j −

∑
di∈D

∑
pj∈R(di)

αj l
k
i,j ;

Endfor
addk into W if Uk is the maximum among{Uk|0 ≤ k ≤ |TR|};
k′ = argmink∈W {

∑
di∈D

∑
pj∈R(di)

αj l
k
i,j};

U = Uk′ ;fi,j = fk′

i,j ; li,j = lk
′

i,j ;
the encoded packet is

⊕
vi,j∈Q

pj for the current transmission;

r = minvi,j∈Q{r(s, di)};

Algorithm 2: the whole packet transmission process
construct graphG(V,E);
while (V (G) is not empty)

conduct Algorithm 1 for the current packet propagation;
remove the selected clique fromG(V,E);
remove the vertexvi,j from V (G) if li,j = 1;
update the packet reception deadline, e.g.,T (di, pj) = T (di, pj)−

B
r

;
updateG(V,E) based on the remainingV (G) andE(G);

Endwhile

Fig. 3. Algorithm Design

[9] and SIN-1 algorithm [1]. DSF coding algorithm does not
consider the heterogenous transmission rates on the links,
and in each time slot, always finds the maximum weight
clique in the defined graph. SIN-1 algorithm always sends
the packet with the minimum “SIN-1” in each transmission,
where “SIN-1” of packetpj is defined as the ratio of the
duration from the current time to the deadline of the most
urgent request for packetpj , to the number of requests forpj .
In the simulation, we compare the deadline miss ratio under
different transmission schemes, where deadline miss ratiois
defined as the ratio of the number of packets missing their
deadlines to the total number of requests. For each setting,we
present the average result of 100 samples.

A. The Impact of the Transmission Rate
We first investigate the impact of the transmission rate on

the performance of random one packet propagation during the
whole transmission process. Given the rate for the current
transmission, we run the maximum weight clique algorithm in
the graph model to find the maximum number of packets that
can be obtained at their destinations without missing deadline,
i.e., satisfied requests, based on which we derive the number
of packets that will definitely lose their deadlines in the next
transmissions according to (11), i.e., failed requests. Weset
αj = 1, n = 10,m = 20, rmin = 10, rmax = 100, and
Tmin = 10, Tmax = 50.
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Fig. 4. The impact of the transmission rate on the performance of one
transmission.

As shown in Fig. 4, with the increase of the transmis-
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Fig. 5. The impact of the transmission rate on the performance of the whole
transmission process.
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Fig. 6. The miss deadline ratio vs. the number of destinations.

sion rate, the number of packets that can be successfully
received/decoded by their receivers from the current trans-
mission decreases. The reason is that with the increase of
the transmission rate, higher number of destinations may not
receive the packets due to shorter transmission range, which
thus decreases the encoding opportunity ats. We can also see
that with the increase of the transmission rate, the number of
packets that will definitely miss their deadlines at the receivers
decreases. This is because, higher transmission rates incur
less transmission delay, which gives more chances for the
other packets received timely in the following transmissions.
The above observation motivates the algorithm design in
Sec. IV-B, by deciding the tradeoff between transmission rate
and network encoding strategy.

We then investigate the impact of the transmission rate on
the performance of the whole transmission. We setn = m =
10, αj = 1, Tmin = 10, Tmax = 50 and vary the scale of
the transmission rates, i.e.,[rmin, rmax]. As shown in Fig. 5,
the deadline miss ratio with our RSNC scheme is much lower
than with other schemes. In addition, the deadline miss ratio
also decreases with the increase of the transmission rate. This
is because higher transmission rates incur less transmission
delay, which satisfies more successful transmissions.

B. The Impact of the Number of Destinationsm

We then investigate the impact of the number of destinations
m and the transmission rates on the deadline miss ratio.
In this case, we setn = 10, Tmin = 10, Tmax = 50
by varying m in [5, 15] for rmin = 10, rmax = 50 and
rmin = 50, rmax = 100.

As shown in Fig. 6, the deadline miss ratio with our RSNC
scheme is much lower than with other schemes. With the
increase ofm, the gain of our RSNC scheme increases. We
can also see that the DSF algorithm does not show significant
gain over SIN-1 algorithm. This is because, although with
network coding in DSF, more packets can be combined
together, the encoded packet may still miss its deadline at
some destinations, due to inappropriate transmission rateused.
From Fig. 6, we see that, with the increase ofm, the deadline
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Fig. 7. The miss deadline ratio vs. the total number of packets in P.

miss ratio increases. The reason is that there are more packets
to be sent ats within the same deadline scale.
C. The Impact of the Number of Packetsn

Finally, we investigate the impact of the total number of
packetsn and the reception deadlines on the deadline miss
ratio. We setm = 10, rmin = 10, rmax = 50 by varying
n in [10, 40] for the cases ofTmin = 10, Tmax = 50 and
Tmin = 10, Tmax = 80.

Again, from Fig. 7, we can see that our proposed RSNC
scheme has the lowest deadline miss ratio. In addition, withthe
increase ofn, the deadline miss ratio increases. This is because
more packets need to be transmitted at nodes. From Fig. 7,
it is easy to see that the deadline miss ratio is smaller when
Tmax = 80, compared withTmax = 50. It is reasonable
because with the increase of the deadlines, less packet will
lose its deadline.

VI. CONCLUSION

In this paper, we propose a novel joint rate selection and
network coding (RSNC) scheme for time critical applications.
We first prove that the proposed problem is NP-hard, and
design a novel graph model to model the problem. Using the
graph model, we mathematically formulate the problem. We
also propose a metric, based on which we design an efficient
algorithm to determine transmission rate and coding strategy.
Finally, simulation results demonstrate the proposed RSNC
algorithm effectively reduces the packet deadline miss ratio.
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