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Abstract—Optimizing energy efficiency (EE) for the MIMO
broadcasting channels (BC) is considered in this paper, where
a practical power model is taken into account. Although the
EE of the MIMO BC is non-concave, we reformulate it as a
quasiconcave function based on the uplink-downlink duality.
After that, an energy efficient iterative waterfilling scheme is
proposed based on the block-coordinate ascent algorithm to
obtain the optimal transmission policy efficiently, and thesolution
is proved to be convergent. Through simulations, we validate
the efficiency of the proposed scheme and discuss the system
parameters’ effect on the EE.

Index Terms—Energy efficiency, MIMO broadcasting chan-
nels, iterative waterfilling.

I. I NTRODUCTION

Wireless communication turns to the era of green. This is
not only because of the exponential traffic growth with the
popularity of the smart phone but also the limited energy
source with ever higher prices. Energy efficiency (EE), as a
result, becomes one of the major topics in the research of
wireless communications [1] and plenty of research projects
either government funded or industrial funded start to investi-
gate the energy efficient solutions for the wireless networkas
well as the sustainable future for the wireless communications.
Meanwhile, multiple input multiple output (MIMO), especially
downlink multiuser MIMO (also called MIMO broadcasting
channels, BC), has become a key technology in the cellular
networks due to its significant spectral efficiency (SE) im-
provement. Therefore, studying the EE of the MIMO BC is a
critical issue.

The EE is in general defined as the capacity divided by the
power consumption, which denotes the delivered bits per-unit
energy measured in bits per-Joule. There are a lot of literatures
discussing the EE of the point to point MIMO channels
[2]–[7]. The point to point MIMO channels can always be
separated into parallel sub-channels through singular value
decomposition (SVD) or after detection. In this case, only
power allocation across the sub-channels needs to be optimized
to compromise the transmit power and circuit power, and thus
maximize the EE [3]–[5]. As the sub-channels are parallel, the
solution is similar with the energy efficient power allocation
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in OFDM systems [8], [9]. The optimization for point to
point MIMO channels is not applicable for the MIMO BC,
as the MIMO BC cannot be simply transformed into parallel
sub-channels1. There are few literatures discussing the EE
for the MIMO BC. To the best of the authors’ knowledge,
only [11] and our previous work [12] addressed this topic,
but they both assumed linear precoding design and equal
transmit power allocation for simplification. The assumption of
linear precoding makes both works far away from the optimal
solution. To optimize the system performance (both SE and
EE) of the MIMO BC, the precoding matrices and power
allocation should be jointly decided. For instance, the common
way to achieve the maximum sum capacity is employing the
dirty paper coding (DPC) and iterative waterfilling [10], [13]–
[15]. From the standpoint of EE, joint precoding and power
allocation design should also be carefully designed to achieve
the optimum, which is the main concern of this paper.

We consider the problem of optimizing EE with joint
precoding and power allocation for the MIMO BC, where
a practical power model including signal processing, circuit
power, etc. at the base station (BS) [12], [16] is taken into
account. After formulating the maximum EE problem, we find
that the energy efficient joint precoding and power allocation
design is equivalent to only optimizing the transmit covari-
ance matrices. However, optimizing the transmit covariance
matrices is difficult, as the EE function achieved by DPC is
nonconcave. Fortunately, we find an efficient iterative solution
based on uplink-downlink duality and the contributions are
summarized as follows.

Contributions: We transform the EE into a quasiconcave
function through employing the famous uplink-downlink dual-
ity. The duality transforms the nonconcave MIMO BC capacity
into the dual convex MIMO multi-access channels (MAC).
After that, we propose a novel energy efficient iterative water-
filling scheme based on the block-coordinate ascent algorithm
to solve the quasiconcave EE optimizing problem efficiently.
During each iteration, the transmit covariance matrices opti-
mization is formulated as a concave fractional program, and
solved through relating it to a parametric concave program and
then applying the Karush-Kuhn-Tucker optimality conditions.

1Although after zero-forcing (ZF) precoding, for example, the MIMO can
be separated into parallel sub-channels, the ZF scheme is far away from the
optimal solution [10].
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Fig. 1. System model of the MIMO BC (left) and its dual MIMO MAC
(right).

Interestingly, the solution of each iteration has a featureof
waterfilling. We prove the convergence of the proposed scheme
and validates it through simulations. Moreover, the system
parameters’ effect on the EE is discussed finally.

II. SYSTEM MODEL

The system consists of a single BS withM antennas and
K users each withN antennas2, which is shown in Fig. 1.
The downlink channel can be denoted as

yi = Hix+ ni, i = 1, . . . ,K, (1)

and the dual uplink channel is denoted as

yMAC =
K
∑

i=1

HH
i xi + n, (2)

whereHi ∈ CN×M is the channel matrix of theith user,
x ∈ CM×1 is the transmitted signal on the downlink,xi ∈
CN×1 is the transmitted signal on the uplink,ni ∈ CN×1

and n ∈ CM×1 are the independent Gaussian noise with
each entryCN (0, σ2). Frequency flat fading channels with
bandwidthW is considered and the channel state information
(CSI) is assumed to be perfectly known at the transmitter and
receivers.

About the power model, as BSs take the main power
consumption in the cellular networks, the users’ consumed
power is omitted. The BS power model is motivated by [12],
[16]. As the power radiated to the environment for signal
transmission is only a portion of its total power consumption
[16], the practical circuit power, signal processing power,
cooling loss etc. at the BS should be taken into account.
Without loss of generality, given the total BS antenna number
M and total transmit powerP , the total power consumption
of a BS can be denoted as

Ptotal =
P

η
+MPdyn + Psta, (3)

2The results here can be extended to the general case with different antenna
number at each user. Moreover, the results are also applicable to the multi-cell
scenario with BS cooperation.

whereη denotes the power amplifier (PA) efficiency;MPdyn

denotes the dynamic power consumption proportional to the
number of radio frequency (RF) chains, e.g. circuit power
of RF chains which is always proportional toM ; and Psta

accounts for the static power independent of bothM andP

which includes power consumption of the baseband process-
ing, battery unit etc..

III. A CHIEVABLE SUM CAPACITY AND ENERGY

EFFICIENCY

The sum capacity of the MIMO BC is achieved by DPC,
which can be denoted as follows [10] given a total transmit
powerP .

CBC (H1, . . . ,HK , P )

= max
{Σi}

K
i=1:Σi≥0,

∑

K
i=1 Tr(Σi)≤P

W log

∣

∣

∣

∣

I+
1

σ2
H1Σ1H

H
1

∣

∣

∣

∣

+W log

∣

∣I+ 1
σ2H2 (Σ1 +Σ2)H

H
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∣

∣

∣

∣I+ 1
σ2H2 (Σ1)HH
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∣

∣

+ · · ·

+W log

∣

∣I+ 1
σ2HK (Σ1 + · · ·+ΣK)HH

K

∣

∣

∣

∣I+ 1
σ2HK (Σ1 + · · ·+ΣK−1)HH

K

∣

∣

,

(4)
where the optimization is performed to choose the optimal
downlink transmit covariance matricesΣi ∈ CM×M , i =
1, . . . ,K.

The EE is defined as the achievable sum capacity of MIMO
BC divided by the total power consumption at the BS, which
can be denoted as

ξBC (H1, . . . ,HK , P ) =
CBC (H1, . . . ,HK , P )

P
η +MPdyn + Psta

(5)

under a fixed transmit powerP . Based on (5), the optimal EE
for the MIMO BC can be obtained through optimizingP 3,
which is denoted as

ξBC (H1, . . . ,HK) = max
P :P≥0

CBC (H1, . . . ,HK , P )
P
η +MPdyn + Psta

. (6)

In the above optimization problem, transmit power levelP

and transmit covariance matricesΣi ∈ CM×M , i = 1, . . . ,K
need to be jointly optimized. Note that although no maximum
transmit power constraint is considered in (6), the solution can
be easily extended to the constrained case based on [8], [18].
We omit the extension here due to page limit.

As (6) is nonconcave, optimizing (6) is nontrivial. Fortu-
nately, motivated by [19], [20], we find out that the following
property. If the numerator (sum capacity) can be transformed
into a convex function, the EE can be formulated as a
quasiconcave function, because the denominator (total power
consumption) is affine. Based on this observation, we try to
transform the sum capacity into a concave function.

Applying the uplink-downlink duality [13], the MIMO BC
sum capacity (4) is equal to the concave sum capacity of the

3Indeed, the EE of MIMO BC is highly affected by the transmit power P
and transmit antenna numberM , and jointly optimizingP andM is required
to maximize the EE. We only consider the optimization ofP in this paper,
and theM optimizing to further improve the EE based on active transmit
antenna selection can be found in [17].



MIMO MAC (2) with sum transmit power constraint, which
can be denoted as

CMAC

(

HH
1 , . . . ,HH

K , P
)

= max
{Qi}

K
i=1:Qi≥0,

∑

K
i=1 Tr(Qi)≤P

W log

∣

∣

∣

∣

∣

I+
1

σ2

K
∑

i=1

HH
i QiHi

∣

∣

∣

∣

∣

,

(7)
where the uplink transmit covariance matricesQi ∈
CN×N , i = 1, . . . ,K need to be optimized. Thus, the dual
MAC optimal EE should be rewritten as

ξMAC (H1, . . . ,HK) = max
P :P≥0

CMAC

(

HH
1 , . . . ,HH

K , P
)

P
η +MPdyn + Pcon

.

(8)
According to the duality and the mapping betweenΣi and
Qi [13], optimal Σi, i = 1, . . . ,K and P can be obtained
if we can get the optimalQi, i = 1, . . . ,K and P in
(8). Furthermore, since the maximum power constraint is

not considered and
K
∑

i=1

Tr (Qi) = P is always required for

optimizing (7) [14], (8) can be simplified and rewritten as

ξMAC

(

HH
1 , . . . ,HH

K

)

= max
{Qi}

K
i=1:Qi≥0

W log

∣

∣

∣

∣

I+ 1
σ2

K
∑

i=1

HH
i QiHi

∣

∣

∣

∣

∑

K
i=1 Tr(Qi)

η +MPdyn + Psta

.
(9)

Finally, the optimization of (6) is transformed into optimizing
(9). If we can obtain the optimalQi, i = 1, . . . ,K for
(9), the optimalP can be decided correspondingly based

on
K
∑

i=1

Tr (Qi) = P . That is to say, designing the joint

precoding and power allocation to maximize EE is equivalent
to optimizing the transmit covariance matrices. Once transmit
covariance matrices are decided, the transmit power level can
be correspondingly determined.

Let us look at (9) again. Since the numerator is concave and
the denominator is affine, (9) is a quasiconcave optimization,
which can be solved through the bisection method or interior-
point methods. However, the numerical methods would be
still too complex when the user number becomes significantly
large. Motivated by [14], [15], an energy efficient iterative
waterfilling is proposed in the next section to solve it more
efficiently.

IV. ENERGY EFFICIENT ITERATIVE OPTIMIZATION

A. Motivation

As the EE is distinct from the capacity, the spectral efficient
iterative waterfilling [14] is not applicable for the EE any
longer. Nevertheless, we notice that the basic idea of the
spectral efficient iterative algorithms are based on the block-
coordinate ascent algorithm [21, Sec. 2.7]. That is to say, if
we can write the EE as the similar structure with the block-
coordinate ascent algorithm and then prove it satisfies the
condition of [21, Sec. 2.7], we can obtain an iterative solution
of the problem (9).

For ease of description, we define the following function
g (·) at first.

g (Q1, . . . ,QK) =
W log

∣

∣

∣

∣

I+ 1
σ2

K
∑

i=1

HH
i QiHi

∣

∣

∣

∣

∑K
i=1

Tr(Qi)
η

+MPdyn+Psta

. (10)

For the block-coordinate ascent algorithm, given the current
iterateQ(k) =

(

Q
(k)
1 , . . . ,Q

(k)
K

)

, the next iterateQ(k+1) =
(

Q
(k+1)
1 , . . . ,Q

(k+1)
K

)

can be generated as

Q
(k+1)
i

= arg max
Qi:Qi≥0

g
(

Q
(k+1)
1 , . . . ,Q

(k+1)
i−1 ,Qi,Q

(k)
i+1, . . . ,Q

(k)
K

)

.

(11)
However, to apply the iterative algorithm efficiently, there are
conditions need to be satisfied. For one thing, the solution of
(11) should be uniquely attained [21, Proposition 2.7.1]. For
another, the solution should be simple and easy to employ.

Very fortunately, the two conditions both fulfill and the solu-
tion can be obtained following an energy efficient waterfilling
feature. We are interested to show it in the next subsection.

B. Energy Efficient Waterfilling

Based on [14], [15], it is fulfilled that
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×HH
i QiHi

(

σ2I+
∑

j 6=i

HH
j QjHj

)−1/2
∣

∣

∣

∣

∣

∣

= log |Zi|+ log
∣

∣I+GH
i QiGi

∣

∣ ,

(12)

where Zi = I + 1
σ2

∑

j 6=i

HH
j QjHj and Gi =

Hi

(

σ2I+
∑

j 6=i

HH
j QjHj

)−1/2

. By denoting

ai =

∑

j 6=i

Tr (Qj)

η
+MPdyn + Psta,

bi = W log |Zi|

and substituting (12) into (10) we have that

g (Q1, . . . ,QK) =
bi +W log

∣

∣I+GH
i QiGi

∣

∣

Tr(Qi)
η + ai

(13)

Therefore, we can redefine the problem (11) by removing
the iteration number as to

maximize
Qi:Qi≥0

g (Q1, . . . ,Qi−1,Qi,Qi+1, . . . ,QK)

=
bi +W log

∣

∣I+GH
i QiGi

∣

∣

Tr(Qi)
η + ai

(14)



by treatingQ1, . . . ,Qi−1,Qi+1, . . . ,QK as constant. Based
on section IV-A, we need to solve the above problem and
prove that the solution is unique.

Since the numerator and denominator in (13) are concave
and affine respectively, (14) is a concave fractional program
[20]. Define a non-negative parameterλ, (14) is related to the
following convex function separating numerator and denomi-
nator with help ofλ.

F (Qi, λ) = bi +W log
∣

∣I+GH
i QiGi

∣

∣− λ
(

Tr(Qi)
η + ai

)

(15)
And then define a convex optimization problem as

Y (λ) = max
Qi:Qi≥0

F (Qi, λ). (16)

We will try to solve (16), and then the solution of (14) can be
obtained correspondingly based on the following Theorem.

Theorem 1:The optimum feasible transmit covariance ma-
trix Q∗

i achieves the maximum value of (14) if and only if
Y (λ∗) = F (Q∗

i , λ
∗) = maxF (Qi, λ

∗|Qi ≥ 0) = 0.
Proof: See Appendix A.
Theorem 1 gives us insights to solve (14). We should

optimizing (16) at first under a givenλ and then solve the
equationY (λ) = 0 to get the optimalλ.

To solve (16), we can denote

GH
i Gi = UDiU

H (17)

based on the eigenvalue decomposition at first, whereDi ∈
CM×M is diagonal with nonnegative entries andU ∈ CM×M

is unitary. Without loss of generality, we assume thatDi has
L non-zero diagonal entries (1 ≤ L ≤ M ), which means
[Di]kk > 0 for k = 1, . . . , L and [Di]kk = 0 for k = L +
1, . . . ,M .

And then we have the following equation based on
I+AB = I+BA [14]:

log
∣

∣I+GH
i QiGi

∣

∣ = log
∣

∣I+QiG
H
i Gi

∣

∣

= log
∣

∣I+QiUDiU
H
∣

∣ = log
∣

∣I+UHQiUDi

∣

∣

(18)

DefineSi = UHQiU. AsU is unitary, we have thatTr(Si) =
Tr(Qi). Thus, (15) can be rewritten as

G(Si, λ) = bi +W log |I+ SiDi| − λ

(

Tr (Si)

η
+ ai

)

(19)
As eachSi corresponds to aQi via the invertible mapping

Si = UHQiU, solving (16) is equivalent to solving the
following convex optimization problem.

Y (λ) = max
Si:Si≥0

G(Si, λ) (20)

It is proved in the Appendix B that the optimalS∗
i to

solve (20) is diagonal with[S∗
i ]kk > 0 for k = 1, . . . , L

and [S∗
i ]kk = 0 for k = L + 1, . . . ,M . Thus,G(Si, λ) with

diagonalSi is

G(Si, λ) = bi +W
L
∑

k=1

log (1 + [Si]kk[Di]kk)

−λ





L
∑

k=1

[Si]kk

η + ai



 .

(21)

As (21) is concave inSi, the problem (20) can be solved
for a givenλ by solving the Karush-Kuhn-Tucker optimality
conditions, and the solution can be denoted as

[S∗
i ]

λ
kk =

[

η
ln(2)λ − 1

[Di]kk

]+

, k = 1, . . . , L, (22)

where [x]+ = max(x, 0). Then the water levelλ∗ can be
decided by settingY (λ∗) = 0 based on Theorem 1 as

bi +
L
∑

k=1

log

(

1 +
[

η
ln(2)λ∗ − 1

[Di]kk

]+

[Di]kk

)

−λ∗ ×





L
∑

k=1

[

η

ln(2)λ∗ − 1
[Di]kk

]+

η + ai



 = 0.

(23)

As Y (λ) is strictly decreasing, andF (0) = ∞, F (∞) =
−∞ (see detailed proof in Appendix C), we can solve (23)
efficiently based on the bisection methods.

Based on (23) and (22), the optimalS∗
i
λ∗

is derived. Based
on the mapping betweenSi and Qi, finally, the optimal
solution of (14) can be derived as

Q∗
i = US∗

i
λ∗

UH . (24)

To prove that the solution of (14) is unique, we only need
to prove thatλ∗ is unique. We give the following Theorem
and the proof is given in the Appendix C.

Theorem 2:The derived water levelλ∗ in (23) is unique
and globally optimal.

To make the description more clearly, we summarize the
energy efficient waterfilling algorithm for optimizing (13)in
TABLE I.

TABLE I
ENERGY EFFICIENT WATERFILLING ALGORITHM

1) Calculate Zi = I + 1
σ2

∑

j 6=i
HH

j QjHj , Gi =

Hi

(

σ2I+
∑

j 6=i

HH
j QjHj

)−1/2

, ai =

∑

j 6=i

Tr(Qj)

η
+

MPdyn + Psta, bi = W log |Zi| ;
2) Define the related parametric convex program in (15) and (16);
3) Transform the parametric convex program into diagonal forms

(19) and (20) by performing eigenvalue decomposition in(17);
4) Solve (20) by solving the Karush-Kuhn-Tucker optimalitycon-

ditions and obtain the solutionS∗
i
λ in (22);

5) Calculate the energy efficient water levelλ∗ based on (23) and
determine the optimalS∗

i
λ∗

;
6) ObtainQ∗

i based on the mapping (24) finally;

C. Iterative Algorithm

Based on the derivation in section IV-B and the block-
coordinate ascent algorithm, the energy efficient iterative wa-
terfilling scheme can be derived as shown in TABLE II, and
the proof of converge is given as follows.

Proof of converge: Firstly, during each step, the energy
efficient waterfilling can achieve an global maximization of
(14) treating the other users’ transmit covariance matrices as



TABLE II
ENERGY EFFICIENT ITERATIVE WATERFILLING SCHEME

Initialization : SetQi = 0, i = 1, . . . ,K.,

Repeat:

For i = 1 : K

1) CalculateQ∗
i based on the energy efficient waterfilling algorithm

in TABLE I;
2) RefreshQi asQ∗

i ;
End

Until the EE converges.
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Fig. 2. EE converge behavior of the proposed scheme.

constant, the EE is non-decreasing with each step. As the EE
is bounded, the EE converges to a limit.

Secondly, according to Theorem 1 and Theorem 2, the
derivation of each step is unique. Based on [21, Sec. 2.7],
the set ofQ1, . . . ,QK also converge to a limit.�

Note that as the proof does not depend on the starting
point, we can start the algorithm from any starting values of
Q1, . . . ,QK . To show the efficiency of the proposed scheme,
we give the simulation results in the next section.

V. SIMULATION RESULTS

In the simulation, large scale pathloss and small scale
Rayleigh fading are considered. The parameters are set in
TABLE III based on [12] and all users are with the same
distance. In Fig. 2, the converge behavior of the proposed
scheme is shown and it is set thatd = 1km, M = 4, N = 4
andK = 10. We can see that our proposed iterative scheme
converges very fast. It can achieve the optimal EE under nearly
five iterations.

Fig. 3 compares the effect ofM on the EE with different
K, whereN = 1, d =1km are considered. Different from
the SE which is always increasing linearly asM increases
whenM ≤ N × K, the EE increases much slower or even
decreases. For example, whenK = 8, the EE withM = 7 is
better thanM = 8. The reason comes from the effect of the
practical dynamic powerMPdyn. In this case, increasingM
can cause the linear increasing of both capacity and dynamic
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Fig. 3. The effect of antenna numberM on the EE, whereN = 1, d =1km
are considered.
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Fig. 4. Effect of distance between BS and users on the EE, where N = 1,
K = 4 are considered.

power. Moreover, whenM > K × N , the increasing ofM
always decreases the EE performance. That is because the
benefits of transmit diversity gain caused by the increasing
of M is much smaller than the drawbacks of dynamic power
increasing. The user numberK and transmit antenna number
M affect the EE in a complicated manner, adjusting these
parameters adaptively is important for improving the EE. This
is distinct from the spectral efficient systems, where moreM

always benefits.
Fig. 4 compares the effect ofd on the EE with differentM ,

whereN = 1, K = 4 are considered. It is observed that the
optimal BS antenna number is different under differentd. For
example,M = 4 is optimal whend = 0.2km andM = 2 is
less best, but the trends change whenK = 5km, whereM = 2
performs worst. This situation varies due to the tradeoff among
capacity, transmit power, dynamic power and static power. For
instance, when the distance is large, transmit power would take
the main part of the total power consumption, thus,M = 2



TABLE III
SIMULATION PARAMETERS

Bandwidth 5MHz
Noise power -110dBm
Pathloss 128.1+37.6 log10 di,j (d

in kilometers)
Pdyn 83W
PSta 45.5W
η 0.38

with the smallest BS antennas number would consume highest
transmit power and has the worst EE. How to study these
parameters in a comprehensive manner is a challenge, which
should be left for the future work.

VI. CONCLUSION

Based on uplink-downlink duality, the EE of the MIMO BC
can be transformed into a quasiconcave problem. Based on this
feature, we propose an energy efficient iterative waterfilling
scheme to maximize the EE for the MIMO BC based on
the block-coordinate ascent algorithm. We prove the converge
of the proposed scheme and validates it through simulations.
Finally, the effect of system parameters is discussed.

APPENDIX A

As in (14) the numerator is concave and differentiable, and
the denominator is convex and differentiable, Theorem 1 can
be directly obtained based on [20, Proposition 6].

APPENDIX B

The proof is motivated by [14, Appendix II].
We prove that[S∗

i ]jk = 0, ∀j, k > L at first. ConsiderS ≥
0 with [S]jk 6= 0 for some j > L and k > L. Based on
[14, Appendix II], we have

∑M
k=L+1[S]kk > 0. Thus, we can

redefine another diagonal matrixS′ ≥ 0 as

[S′]kk =















[S]11 +
M
∑

j=L+1

[S]jj , k = 1

[S]kk, k = 2, . . . , L
0, k = L+ 1, . . . ,M

(25)

with Tr(S′) = Tr(S) and log |I+ S′Di| > log |I+ SDi|.
Hence,G(S′, λ) > G(S, λ). Therefore,[S∗

i ]jk = 0, ∀j, k > L.
We need to prove thatS∗

i is diagonal then. Consider any
S ≥ 0 with [S]jk = 0 for any j > L and k > L but is
not diagonal. We can have another diagonal matrixS′ with
[S′]kk = [S]kk, k = 1, . . . ,M . Based on [14, Appendix II],
Tr(S′) = Tr(S) and log |I+ S′Di| > log |I+ SDi|.

Therefore, the optimalS∗
i is diagonal with[S∗

i ]kk > 0 for
k = 1, . . . , L and [S∗

i ]kk = 0 for k = L+ 1, . . . ,M .

APPENDIX C

As in (14) the numerator is concave and continuous, and
the denominator is convex and continuous,F (λ) is strictly
decreasing and continuous based on [20].

Look at (23), we have thatF (0) = ∞ andF (∞) = −∞.
Therefore, there exists a uniqueλ∗ with F (λ∗) = 0.

Furthermore, as shown in [20], in a concave fractional
program, any local maximum is a global maximum. Therefore,
the derivedλ∗ is global optimal.
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[7] F. Hèliot, O. Onireti, and M. Imran, “An accurate closed-form approx-
imation of the energy efficiency-spectral eficiency trade-off over the
mimo rayleigh fading channel,” inproc. of IEEE ICC 2011 Workshop
on Green Communications.

[8] G. Miao, N. Himayat, and G. Y. Li, “Energy-Efficient Link Adaptation in
Frequency-Selective Channels,”IEEE Transactions on Communications,
vol. 58, no. 2, pp. 545–554, Feb. 2010.

[9] R. S. Prabhu and B. Daneshrad, “An energy-efficient water-filling
algorithm for OFDM systems,” inIEEE Proc. of ICC’10, 2010.

[10] G. Caire and S. S. (Shitz), “On the Achievable Throughput of a
Multiantenna Gaussian Broadcast Channel,”IEEE Trans. Inf. Theory,
vol. 49, no. 7, pp. 1691–1706, Jul. 2003.

[11] Z. Chong and E. Jorswieck, “Energy Efficiency in Random Opportunistic
Beamforming,” inProc. of IEEE 73rd Vehicular Technology Conference,
Budapest, Hungary (VTC 2011 Spring), 2011.

[12] J. Xu, L. Qiu, and C. Yu, “Improving energy efficiency through
multimode transmission in the downlink MIMO systems,”EURASIP
Journal On Wireless Communications and Networking, vol. 2011, no. 1,
p. 200, 2011.

[13] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of MIMO broadcast channels,”IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[14] N. Jindal, W. Rhee, S. Vishwanath, S. Jafar, and A. Goldsmith, “Sum
power iterative water-filling for multi-antenna Gaussian broadcast chan-
nels,” IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1570–1580, Apr.
2005.

[15] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative water-filling for
Gaussian vector multiple-access channels,”IEEE Trans. Inform. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[16] O. Arnold, F. Richter, G. Fettweis, and O. Blume, “PowerConsumption
Modeling of Different Base Station Types in Heterogeneous Cellular
Networks,” in Proceedings of the ICT MobileSummit (ICT Summit’10),
Florence, Italy.

[17] J. Xu and L. Qiu, “Energy efficiency optimization for MIMO broadcast-
ing channels,” in preparation.

[18] C. Fung, W. Yu, and T. Lim, “Multi-antenna downlink precoding with
individual rate constraints: power minimization and user ordering,” in
The Ninth International Conference on Communications Systems (ICCS
2004), Sep. 2004, pp. 45–49.

[19] Z. Chong and E. Jorswieck, “Analytical Foundation for Energy Effi-
ciency Optimisation in Cellular Networks with Elastic Traffic,” in Mobile
Lightweight Wireless Systems: 3rd Internationnal ICST Conference
(MobiLight 2011).

[20] S. Schaible, “Fractional programming,”Zeitschrift fúr Operations Re-
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