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Abstract—Measuring and predicting users quality of expe-
rience (QoE) in dynamic network conditions is a challenging
task. This paper presents results related to a decision-theoretic
methodology incorporating Bayesian networks (BNs) and utility
theory for quality of experience (QoE) measurement and pre-
diction in mobile computing scenarios. In particular, we show
how both generative and discriminative BNs can be used to
measure and predict users QoE accurately for voice applications
under several wireless network conditions such as wireless signal
fading, vertical handoffs, wireless network congestion and normal
hotspot traffic. Through extensive simulation studies and results
analysis, we show that our proposed methodology can achieve
an average accuracy of 98.70% using three different types of
Bayesian network.

I. INTRODUCTION

Quality of experience (QoE) refers to users likes/dislikes
towards a particular service/object/tool used by them. It is
dependent on users experience and expectations and their
cognitive, behavioural and psychological states which are
not observed directly. However, these states do dictate their
QoE [2], [19], [17], [12]. In mobile and pervasive computing
environments, users use their mobile devices such as smart-
phones on-the-move where situations related to them and the
underlying network conditions can be highly dynamic and
uncertain. For example, if a user is in a bus, his/her QoE
might be lower as compared to when they are at home. This
can be caused by the noisy environment or perhaps a number
of people nearby.

There is a need to develop QoE measurement and prediction
approaches that can consider several parameters (both subjec-
tive and objective) under different situations related to users
and network connectivity alike [2], [19], [11]. Once developed,
these approaches can help stakeholders such as network oper-
ators to maximize their revenues by understanding customers
QoE of services being offered to them and thereby minimizing
network churn. These approaches can also be used to provide
users with personalized services on their mobile devices.

Recently, Mitra et al. [11], proposed a context-aware
decision-theoretic approach for QoE measurement and predic-

tion in mobile and pervasive computing environments. How-
ever, they do not consider the problem of QoE measurement
and prediction under multiple diverse network conditions such
as wireless signal fading, handoffs and network congestion.
Thus, this paper presents the following contributions: Firstly,
we carefully study the QoE related to VoIP application in
different scenarios and under several network conditions such
as, wireless signal fading, vertical handoffs, wireless network
congestion and normal background network traffic. Finally,
we show how simple BNs are able to correctly measure and
predict users QoE in these scenarios.

This paper is organized as follows: Section II presents
the related work. Section III presents our approach for QoE
measurement and prediction. Section IV presents the results
analysis. Finally, section V presents the conclusion and future
work.

II. RELATED WORK

Recently, Moller et al. [14] and Tsompanidis et al. [18] con-
sider the problem of QoE measurement for VoIP applications
in heterogeneous access networks by considering network im-
pairments such as handoffs and network congestion. However,
they consider models such as the ITU-T E-Model [4] for QoE
measurement. These models can be inefficient when measuring
QoE in mobile computing scenarios where network QoS and
users situation can be highly dynamic. Further, these models
cannot deal with uncertainty, biased and missing information
which is typical for human judgements [12].

Sung [17], developed algorithms and architectures for QoE
reasoning and adaptation. However, their approach was limited
to mobile video applications. Wu et al. [19] defines and
classify the QoE related parameters and try to find correlation
between QoE and QoS related classes. Their approach can be
impractical when there are several QoE and QoS parameters
as finding correlations between each and every parameter is a
complex task.

Moller et al. [13], develops a taxonomy for QoE based on
which stakeholders such as application designers can select



QoE and QoS parameters to develop multimedia applications.
However, they do not present methods for modelling QoS
and QoE relationships. Brooks and Hestnes [2] consider the
problem of combining subjective and objective methods to
determine overall QoE. Mitra et al. [11] considers aforemen-
tioned problems of defining interdependence of multiple QoE
and QoS parameters to model, measure and predict overall
QoE based on a decision-theoretic approach. However, they do
not measure users’ QoE under several network impairments.

III. A DECISION-THEORETIC APPROACH FOR QUALITY OF
EXPERIENCE MEASUREMENT AND PREDICTION

Relationships between several parameters such as delay,
jitter, packet loss and users QoE has been studied widely
in the literature [14], [18]. Even then, these relationships
may not correctly model users QoE due to dynamic nature
of underlying network conditions and the user environment
where uncertainty plays a dominant role. Further, users QoE
depend on context parameters such as people nearby, location
of the user, their moods, and their stress level [3], [10],
[13], [17]. This problem can become even more difficult
when more parameters for QoE measurement are considered.
The relationships between these parameters can be complex
and defining a suitable mathematical model can be quite
challenging.

It is also important to note that user ratings are subjec-
tive and are measured on ordinal scale such as the 5 or 7
point Likert-like scales. Thus, performing any mathematical
operation using these scales directly will be incorrect as the
alternatives on these scales are rank ordered and the distance
between each alternative cannot be determined [7], [11]. Thus,
techniques like linear regression cannot be applied directly.
Using the approach presented by Mitra et al. [11], researchers
can solve such problems. The authors show that by using BNs
and utility theory, QoE can be measured efficiently on a single
scale. Further, they also provide approaches for QoE learning
and prediction. We now use BN for QoE measurement and
prediction in multiple diverse network conditions which are
prevalent in mobile computing environments.

A BN is a directed acyclic graph (DAG) where random
variables form the nodes of a network. The directed links
between the nodes form the causal relationships. The direction
of a link from node X to node Y means that X is the parent of
Y. Any entry in the network can be calculated using the joint
distribution denoted as [16]:

P(xi, ...,xn) =
n

∏
i=1

P(xi|Parents(Xi)) (1)

where, nodes Parents(Xi), are the parents of node xi. At the
lowest level, context information/attributes (at

n ∈ A) such as
bandwidth (at

bandwidth) and location (at
location) are collected

to infer context states such as technology acceptance (St
TA)

and user satisfaction (St
US) at the next level. These states are

“hidden” as we don’t know users intention and should be
inferred directly from the observed context attributes.

A BN for QoE measurement can be created in many ways.
We can create a BN for QoE measurement by creating ’arcs’
between all these parameters and learn the network parameters
from the collected data. Using e.q.1, any query in the BN can
be answered in a straightforward manner. By using inference
algorithms such as variable elimination and junction tree [16],
we can determine hypotheses about users QoE in an efficient
manner.

Fig. 1(a) and 1(b) shows two BNs for voice quality as-
sessment based on noisy-OR model and Naive Bayes model
[8], [16]. One of the simplest BN is the Naive Bayes network
(NBN) as shown in fig. 1(b) where all the observations or con-
text attributes are conditionally independent given an outcome
such as QoE is “excellent”. Thus, we have a generative model
in the form of:

P(Rt
QoE |at

n) = P(Rt
QoE)∏

n
P(at

n|Rt
QoE) (2)

In some cases, the independence assumptions between the
parameters to determine a hypotheses may be too strict.
In this model, the observations are assumed to the discrete
i.e., at

delay, at
jitter and at

packetlosses are discretized into finite
states. Another form of NBN is the Gaussian Naive Bayes
(GNB) which assumes the observations or context attributes
are represented by Gaussian distribution. This form of model
can handle continuous observations directly without the need
for discretization.

Another simple model as shown in fig. 1(a) is the noisy-
OR model or the discriminative model. This model is used
to predict the state directly from the given observations or
P(Rt

QoE |at
n). For a hybrid BNs (HBN) with continuous and

discrete nodes, one has to use the softmax functions to perform
inference. This model can be written as:

P(R = ri|at
1, ...,a

t
n) =

exp(bi +Σn
l=1wi

l
at

l)

Σm
j=1exp(b j +Σn

l=1w j
l at

l)
(3)

E.q. 3 defines a softmax model, which is similar to performing
multinomial logistic regression when continuous nodes (at

n)
are the parents of the discrete nodes (R). An important
property here is that in a softmax model, stakeholders can add
domain knowledge which is not possible in simple logistic
regression. In this model, parent nodes are defined usually
as Gaussian distribution for continuous attributes such as
at

bandwidth and conditional probability tables (CPT) are defined
for discrete nodes such as at

location. The CPDs of the children
nodes such as St

US is defined as the softmax nodes as St
US is

measured on the ordinal scale. There are various other ways to
construct a BN which is out of the scope of this paper. Indeed,
we will show that how these simple models can measure QoE
very accurately.

For overall QoE measurement based on multiple QoE states
such as St

TA and St
US, firstly, a Bayesian network (BN1) is

created and learned based on the initialdataset which contains
observed context attributes and user provided ratings. Then
the QoE for all states such as St

US and St
TA is inferred based

on e.q.1, 2 or 3. These states are then mapped onto single



(a) A noisy-OR model. (b) A Naive Bayes model.

Fig. 1: Bayesian networks for QoE measurement.

utility values. These utility values are then added together as
a weighted linear combination to determine a single global
utility which is the final QoE value.

For correct QoE estimation, Mitra et al. [11] consider
Bipolar interval scale [7] such that the outcomes of states
St

US such as “excellent” and “poor” are equidistant from each
other. The highest achievable utility value, ’1’, is mapped to
the best possible QoE outcome such as “excellent” and lowest
utility value, ’0’, is mapped to worst possible outcome say,
“poor”. Similarly, they then assign utilities to other outcomes
such as “very good” , “good” and “fair”, as ’0.75’, ’0.50’ and
’0.25’, respectively (assuming 5 point Likert-like scale. Indeed
other scales can be used). This way, subjective measurement
outcomes in the form of hypotheses and utilities can be
mapped on to the objective scale. Consider an example, where
9 out of 10 users’ give QoE ratings for a VoIP call as
“excellent” i.e., p(St

US = “excellent”) = 0.90 and 1 user gives
the outcome “very good” i.e., p(St

US = “verygood”) = 0.10
for context state, St

US. The expected utility of the context state
will be EU(St

US) = [(1*0.90)+(0.75*0.10)] = 0.9750. This,
utility value is then mapped onto the Bipolar interval scale to
determine the QoE of St

US. As EU(St
US) closer to 1, it means

overall QoE is “excellent”.
Similarly, expected utility for other context states such as

technology acceptance EU(St
TA) can be determined. These

states are then added as a weighted linear combination to
determine the single global QoE utility value GU(QoE) for
the overall QoE. GU(QoE) is again mapped on to the Bipolar
scale to determine the overall QoE. Once the overall QoE is
determined for all the cases in the initialdataset , these are then
appended as a new column in initialdataset and is renamed
as the appenddataset . A second BN (BN2) is then created
and is re-learned based on appenddataset to make correct
predictions on the new data. In order to accurately measure
and predict overall QoE based on BN1 and BN2, both BNs
should correctly learn and infer QoE for all the states. We
will now determine whether the BNs can correctly learn and
make correct inference related to QoE in mobile computing
scenarios. In this paper, we assume to have a single QoE class
i.e, user satisfaction (St

US).

IV. RESULTS ANALYSIS

For results analysis, we considered several scenarios such
as wireless signal fading, wireless network congestion, vertical
handoffs and normal hotspot traffic in IEEE 802.11 WLAN
network environments (as shown in fig.2). We considered VoIP
application that can use both ITU-T G.711 and ITU-T G.729

(a) Fading. (b) Vertical handoff.

(c) Network congestion. (d) Normal hotspot traffic.

Fig. 2: Multiple scenarios which impact QoE related to mul-
timedia applications such as VoIP.

voice codecs. To determine user satisfaction (St
US) in terms

of the MOS mapped on the scale of 1 to 5, we considered
the ITU-T E-Model [4]. Where ’1’ means “poor”, ’2’ means
“fair”, ’3’ means “good”, ’4’ means “very good” and ’5’
means “excellent”, respectively. Indeed, our model competes
directly against the ITU-T E-Model but in order to test the
measurement and prediction capability of our proposed model
under diverse network conditions, we find the output of ITU-T
E-Model to be sufficient for our purposes as it consider non-
linearity in delay and packet loss impairments to output the
MOS. Further, using OPNET simulator [1], we can generate
different datasets for several scenarios based on realistic sim-
ulation setup and assumptions. Using our studies, we gather
that our approach is both space and time efficient and can
be used in scenarios where correct QoE measurements are
required on-the-fly. The applications do not have to perform
expensive calculations to obtain MOS using the ITU-T E-
Model yet resulting in significant QoE prediction accuracy.

A. Performance Evaluation of VoIP applications in Mobile
and Pervasive Computing Scenarios

1) Wireless signal fading in IEEE 802.11g WLAN: In case
of wireless signal fading in IEEE 802.11g WLAN, a mobile
node (MN) moved out of the coverage area of an access point
(AP) while having a voice conversation with the correspondent
node (CN). In this scenario, we only wanted to determine the
effects of mobility on the voice conversation. Thus, we do not
consider any background network traffic. The length of a call
was set to 30 seconds after which the user moved out of the
coverage area of the AP and the call was dropped. Fig. 2(a)



TABLE I: Cumulative results related to all the scenarios for ITU-T G.711 voice codec.

Scenario Avg. delay (ms) Avg. PLR (%) Avg jitter (ms) Avg. E-Model MOS
Network congestion 414 0.03 0 2.06

Signal fading 93 0 0.06 3.59
Vertical handoff 108 10.05 0 2.75

Normal hotspot traffic 71 0 0 3.62

TABLE II: Cumulative results related to all the scenarios for ITU-T G.729 voice codec.

Scenario Avg. delay (ms) Avg. PLR (%) Avg. jitter (ms) Avg E-Model MOS
Network congestion 170 0 0 2.41

Signal fading 92 0 0.02 3.00
Vertical handoff 108 7.61 0 2.50

Normal hotspot traffic 70 0 0 3.01

shows the targeted scenario.
Fig. 3 shows the effects of mobility on the MOS for the ITU-

T G.729 codec. As soon as the user reached a certain signal
to noise ratio (SNR) threshold (14 dB), the MOS suddenly
dropped from around 3 to 1. This is also observed for ITU-
T G.711 codec. The cause of the sudden drop in the MOS
can be attributed to the sudden rise in network delay due to
extremely low SNR. As can be seen in fig. 3, the end-to-
end delay increased suddenly from 0.060 milliseconds (ms)
approx. to 1 second (sec) approx. for ITU-T G.729 codec case.

Fig. 3: Observed MOS related to ITU-T G.711 and ITU-T
G.729 codecs in case of wireless signal fading in 802.11g
WLAN.

2) Vertical handoffs in vehicular networks using Mobile
IPv6: In this case, we considered vertical handoffs between
two WLAN networks at low vehicular speeds (10 km/hr). Fig.
2(b) shows the targeted scenario. We considered Mobile IPv6
protocol [9] for mobility management. A vehicle carrying a
MN moved from one WLAN network to another. In this case,
average delay caused due to handoff was quite low at 108 ms
with average packet loss ratio of 10.05% and 7.61% for ITU-T
G.711 and ITU-T G.729 codecs, respectively. These statistics
are fairly typical in case of hard handoffs where connection
from one network is lost so that a MN can attach itself to
a new network. Fig. 4 shows the effects of hard handoff on
the MOS for ITU-T G.711 codec. In both cases, we assume
that handoff occurs at the middle of a voice call. In reality,
location of handoff within a call can have different impact in
users QoE [14].

Fig. 4: MOS related to ITU-T G.711 codec in case of vertical
handoffs.

3) IEEE 802.11b WLAN network congestion : To determine
the effects of network congestion on voice quality, we used
the IEEE 802.11b WLAN connection. To saturate the AP,
we set up three wireless nodes to generate background UDP
traffic as shown in fig 2(c). The maximum achievable bit
rate was approximately 5Mb/s after which the AP dropped
all packets due to buffer overflow. All three nodes generated
175 packets per second towards the CN. Once the network
reached its steady state, the MN initiated a call to the CN and
calculated the required statistics. In this case, we set the call
duration to 16 minutes and calculated the average statistics.
From simulations, we gather that in case of heavy UDP traffic,
network congestion occurs mainly due to increase end-to-end
delay which in turn causes MOS to vary. Fig. 5 shows the
fluctuation of MOS w.r.t average end-to-end delay in case of
ITU-T G.729 codec. We observed that overall packet loss rate
and jitter were close to 0 for both codecs. The average MOS
for ITU-T G.711 codec was 2.06. For ITU-T G.729 codec, it
was 2.41.

4) Normal hotspot network traffic: In this case, the MN
enjoyed near perfect voice call quality with extremely low
delay and jitter. Fig. 2(d) shows the targeted scenario. Two
MNs generated approximately 4 Mb/s of background UDP
network traffic towards the CN without saturating it. After
sometime, a voice call was established between the CN and
the MN. As the amount of traffic generated was not enough to
cause congestion, the VoIP call enjoyed very low delays and
close to zero jitter and packet losses. Hence, the average MOS



calculated was greater than 3 for both codecs. Fig. 6 shows
the average MOS for the voice call using the ITU-T G.729
codec.

Fig. 5: Performance of ITU-T G.729 codec in presence of
network congestion.

Fig. 6: Performance of ITU-T G.729 codec in presence of
normal hotspot network traffic.

Table I and II shows the results related to all the scenarios
for both codecs.

B. QoE Prediction and Measurement for VoIP Applications in
Mobile Computing Scenarios

We developed two prototypes using the Bayes Net Toolbox
for MATLAB (BNT) [15] and Weka data mining software
[5]. We used BNT for the noisy-OR type hybrid Bayesian
network (HBN) and we used Weka data mining software to
create Gaussian Naive Bayes (GNB) and Naive Bayes (NBN)
networks. Based on OPNET-based simulation studies [1], we
obtained two dataets related to both ITU-T G.711 (dataset 1)
and ITU-T G.729 (dataset 2) codecs. For each scenario, we
collected results based on 125 simulation runs with different
random seeds. We then train our BNs to measure and predict
the QoE. For training the model parameters, we use the
expectation maximization (EM) algorithm [16], [6]. In both
datasets, we had 500 training cases (125 runs*4 scenarios)
each representing results related to multiple diverse network
conditions.

Tables III and IV show statistics related to all parameters
and scenarios in both datasets. We can see that both datasets
contains wide variations in terms of parameter values. In par-
ticular, for average end-to-end delay (at

delay), average packet
losses (at

packetloss) and average user satisfaction (St
US). As the

E-Model outputs continuous values for MOS, we discretized

these values such that the values greater than the middle point
in the interval is mapped to the maximum alternative. The
value smaller than the middle point in that interval is mapped
to the lowest alternative. For example, a value of 2.59 is
mapped to 3 and 2.25 is mapped to 2. The reason for doing
this is that in reality, users give ratings on the ordinal scale
and select only few alternatives on the scale. We also tried
several other possible ways of discretization and achieved
similar results.

TABLE III: Statistics related to all parameters in dataset 1.

Parameters Min. value Max. value Mean Standard deviation
at

delay 68 ms 671 ms 172 ms 146 ms
at

jitter 0 ms 3 ms 1 ms 1 ms
at

packetloss 2.5 % 25.4% 2.5% 4.6%
St

US 1 4 - -

TABLE IV: Statistics related to all parameters in dataset 2.

Parameters Min. value Max value Mean Standard deviation
at

delay 67 ms 374 ms 109 ms 41 ms
at

jitter -1 ms 3 ms 1 ms 1 ms
at

packetloss 0 % 20.5% 1.9% 3.7%
St

US 1 3 - -

Based on the collected datasets, we train the BNs using EM
algorithm [16], [6]. As the data is fully available, EM reduces
to maximum likelihood estimation (MLE) [16], [6] as in the
supervised learning case. As we are dealing with learning
the BN parameters, the best approach for their evaluation
is to perform cross validation where the idea is to estimate
models prediction accuracy by keeping aside some fraction of
the training data for learning. The remaining data is used as
the test data for which hypothesis of the states are inferred
[16]. In this paper, we have used 10-fold cross validation for
checking models prediction accuracy. Table V and VI shows
the accuracy of predictions for both datasets.

TABLE V: Prediction accuracy of Bayesian networks for voice
quality measurement for dataset 1.

Bayesian network type prediction accuracy (%)
Naive Bayes Network (NBN) 99.40

Gaussian Naive Bayes Network (GNB) 99.40
Hybrid Bayesian Network (HBN) 99.40

TABLE VI: Prediction accuracy of Bayesian networks for
voice quality measurement for dataset 2.

Bayesian network type prediction accuracy (%)
Naive Bayes Network (NBN) 97

Gaussian Naive Bayes Network (GNB) 97.40
Hybrid Bayesian Network (HBN) 99.60

As can be observed, all three type of BNs give excellent
prediction accuracy based on 10-fold cross validation. Even
these simple BNs (fig. 1(a) and fig.1(b)) are able to correctly



predict users QoE with overall average accuracy of 98.70%. In
dataset 1, both generative (NBN and GNB) and discriminative
(HBN) performs similarly with all three achieving an accuracy
of 99.40%. In case of dataset 2, HBN performs marginally
better than the GNB and NBN with an accuracy of 99.60%.
NBN and GNB achieved an accuracy of 97% and 97.40%,
respectively. Most importantly, in all cases, the prediction
accuracy is greater than 95% which is an excellent result.

C. Discussion and lessons learnt

From our results, we can conclude that BNs can be used for
accurate QoE measurement and prediction. From the imple-
mentation perspective, both discriminative and generative BNs
work very well on our data sets. It might happen however that,
generative or discriminative BNs might outperform each other
in different cases. In such a scenario, a BN should be chosen
which provides better prediction accuracy. Applications can be
developed easily that can take as input the available datasets
and automatically outputs the correct QoE measurements by
selecting optimal BNs automatically.

Its worth noting that more objective and subjective pa-
rameters can be added and deleted as the per the stake-
holders requirement and the BNs can easily accommodate
such changes while maintaining low complexity and higher
accuracy. Further, domain knowledge can be added in BNs
which can be beneficial for the stakeholders in case they
want to understand the effects of some parameters without
collecting additional data. These BNs can also be applied
directly for real-time applications and protocols for dynamic
network selection and codec change. Inference in these models
usually takes less than 50 milliseconds for NBN and GNB and
around 120 milliseconds for HBN for our datasets which also
include learning the model parameters.

V. CONCLUSION AND FUTURE WORK

This paper presents performance evaluation of a decision-
theoretic approach for efficient quality of experience mea-
surement and prediction. Through extensive simulations, we
study the impairments caused by diverse network conditions
such as wireless signal fading, vertical handoffs and network
congestion on VoIP applications. Using prototype implementa-
tions, we further show that Bayesian networks, both generative
and discriminative are efficient methods for QoE measurement
and prediction. Using the results presented in this paper,
stakeholders such as network operators can apply our approach
to correctly measure QoE related to multimedia applications
efficiently. We are currently applying the insights gained in
this paper to develop efficient mobility management protocols
for QoE guaranties in mobile and pervasive computing envi-
ronments.
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