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Abstract—With the explosion of wireless communications in
number of users and data rates, the reduction of network
power consumption becomes more and more critical. This is
especially true for base stations which represent a dominant
share of the total power in cellular networks. In order to
study power reduction techniques, a convenient power model
is required, providing estimates of the power consumption in
different scenarios. This paper proposes such a model, accurate
but simple to use. It evaluates the base station power consumption
for different types of cells supporting the 3GPP LTE standard. It
is flexible enough to enable comparisons between state-of-the-art
and advanced configurations, and an easy adaptation to various
scenarios. The model is based on a combination of base station
components and sub-components as well as power scaling rules
as functions of the main system parameters.
Index Terms—LTE, base station, power consumption, power

model, energy efficiency, green radio

I. INTRODUCTION

In a world of exploding wireless communications, improv-

ing the power efficiency of radio networks is an important

research topic [1]. To evaluate the energy efficiency of today’s

mobile communication systems and to identify improvement

areas for next generation systems, a high level energy effi-

ciency evaluation framework (E3F) has been developed within

the Energy Aware Radio and neTwork tecHnologies (EARTH)

project [2]. This framework [3] covers the complete system, in-

cluding network and radios. It enables a quantitative evaluation

in terms of efficiency under different traffic and load scenarios.

The E3F builds on state-of-the-art radio network evaluation

methodology from system level simulations extended with

power models, traffic models, and deployment models.

This paper1 describes the detailed power models of the base

station components and sub-components and focuses on how

the power is scaled over different scenarios. Four different

types of base stations are considered: macro, micro, pico and

femto cells. To increase the application area, power is used

instead of energy because it is a more natural metric to use

1Acknowledgment: The research leading to these results has received
funding from the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement n 247733 project EARTH.

Fig. 1. Overview of base station components included in the power model.

as a function of required throughput or system load, while

energy is depending on a given amount of data to transmit

in a batch but does not directly relate to system load and

efficiency. The model has been designed for good accuracy,

simplicity, and flexibility. It enables relative comparisons over

many scenarios, even if fully accurate absolute power numbers

cannot be guaranteed. This would require extensive physical

measurements, and also prevent the model from being used to

explore non-measured scenario.

Section II describes the general model structure and its

parameters as visible to the model user. Section III details the

model construction for all the main components of a typical

base station. Section IV illustrates the way the model is used

and shows the kind of results that can be obtained. Finally,

Section V summarizes the model and its goals.

II. MODEL STRUCTURE

The power model is built around the split of a base station

into a number of components and sub-components, as shown

in Figure 1. This section introduces those components, distin-

guishes between different base station types, and presents the

main parameters used to compute the power consumption in

a specific scenario.

A. Types of base stations and general parameters

Four types of base stations are included in the model:

macro, micro, pico, and femto. They are different in the sub-

components they contain as well as in the power figures associ-

ated with those sub-components, based on different constraints



TABLE I
PARAMETERS AFFECTING SCALING OF BASEBAND AND RF POWER
CONSUMPTION. DEFAULT VALUES CORRESPOND TO THE BASELINE

CONFIGURATION OF THE BASE STATION. MODULATION IS EXPRESSED IN
BITS PER SYMBOL, I.E., 1, 2, 4 OR 6 FOR BPSK, QPSK, 16-QAM OR

64-QAM, RESPECTIVELY.

Notation Description Range Default

BW Bandwidth [MHz] 1.4 – 20 10

Ant Number of antennas 1, 2, 4 2

M Modulation 1, 2, 4, 6 6
R Coding rate 1/3 – 1 5/6

dt Time-domain duty-cycling 0 – 1 1

df Frequency-domain duty-cycling 0 – 1 1

(output power, maximum load, signal accuracy...). They trans-

late into different basic architectures, for example small base

stations (pico and femto) may use more power-efficient dedi-

cated components while large base stations (macro and micro)

require more reconfigurability, for example using more FPGAs

and less dedicated hardware. This translates into different

intrinsic power efficiencies.

Macro base stations are also characterized in the model by

having a variable number of sectors while other base station

types only have one. The four base station types also differ in

maximum output power.

Next to the base station type, the silicon technology is a

general parameter affecting the power consumption obtained

from the model. It can be specified as either CMOS feature

size in nm or year of deployment. The default value for

technology is 65 nm or 2010 deployment.

The remaining general parameters define the losses of

different sub-components related to the power systems of

the base station. This includes losses from cooling, AC/DC

conversion, DC/DC conversion and antenna feeder. The three

first terms are described in Subsection III-D. Antenna feeder

losses are only present between the PA and the antenna in

macro base stations. They are included together with the PA

model. Other base station types do not have feeder losses due

to their more compact design.

B. Base station sub-components and scaling parameters

The sub-component split is based on both real hardware

and architecture splits, e.g., analog RF part versus digital

baseband part, as well as functional splits, e.g., time-domain

processing versus frequency-domain processing. Architecture

splits include digital baseband, RF (analog), power amplifier,

and overhead (power systems and cooling):

PTotal = PBB + PRF + PPA + POverhead (1)

The reason for those splits is twofold: making clear links

to the power consumption of specific components in the

system in order to get reference numbers but also identifying

how each power figure scales with parameters (time-domain

computations may not scale the same way as frequency-

domain computations when changing the modulation or sys-

tem load). As a consequence, the model is centered around two

types of tables. Power tables contain reference power figures

that were obtained from measurements for the different sub-

components of a base station and reasoning on the architecture

and specifications of the different types of base stations (see

Tables II, III, V and VI). Scaling tables contain specific

scaling factors telling how each power figure evolves with

each specific parameter (see Table IV and Section III-B).

This approach is used for baseband as well as RF

power consumption. Defining IBB the set of baseband sub-
components, IRF the set of analog sub-components, and X =
{BW, Ant, M, R, dt, df} the list of parameters as described
in Table I, we get the following expression2:

PTotal =
∑

i∈IBB

Pi,ref

∏

x∈X

(

xact
xref

)si,x

+
∑

i∈IRF

Pi,ref

∏

x∈X

(

xact
xref

)si,x

+ PPA + POverhead (2)

The number of antennas is assumed to be the same in

transmission and in reception, and also the same as the number

of spatial streams. Time-domain duty-cycling represents the

fraction of time during which the base station is operating,

assuming it fully sleeps during the rest of the time. It is

indeed an interesting technique in order to reduce the average

power consumption [4]. However, depending on the hardware

design and on the speed at which transitions between active

and sleeping states should be performed, the full sleeping

assumption may be too optimistic, as further discussed in

Section IV. Frequency-domain duty-cycling represents the

fractional load of the system in frequency resources, i.e., PRBs

or physical resource blocks.

Scaling factors are exponents relating each power contribu-

tor in the model to each parameter of the model. For example,

if the power of a mixer is not impacted by the number of

resource blocks currently in use, the exponent will be zero,

meaning that a change in resource block allocation (frequency-

domain duty-cycling) has no influence on the power of that

mixer. Similarly, the baseband demapping complexity will

scale linearly with the number of loaded resource blocks, so

the corresponding exponent will be one. Other values than

zero and one are occasionally used, for example in order to

model the quadratic or cubic MIMO processing complexity as

function of the number of antennas.

For digital computations, we use complexity figures (GOPS

or Giga Operations Per Second) that can be translated into

power figures depending on the intrinsic efficiency of the se-

lected technology (GOPS/W). Although this is a crude approx-

imation, this is the only one compatible with the simplicity and

flexibility of the model. The power numbers obtained from

this estimation have been benchmarked to actual values in

existing base stations in order to validate the approach and

ensure meaningful results.

III. MODEL COMPONENTS

This section details the power models of the different

components of a base station, i.e., the digital baseband, the

analog RF, the power amplifier and the power system (power

conversion and cooling). The corresponding power figures

have been derived from existing designs.

2Baseband sub-components are listed in Table II; RF sub-components are
listed in Tables V and VI.



TABLE II
COMPLEXITY OF BASEBAND OPERATIONS IN DOWNLINK (GOPS IN

REFERENCE SCENARIO).

GOPS per operation type Macro Micro Pico Femto

DPD 160 160 0 0
Filter 200 160 120 100

CRPI/SERDES 360 300 0 0

OFDM 80 80 70 60

FD (linear) 30 30 20 20

FD (non-linear) 10 10 5 5
FEC 20 20 20 20

CPU 200 200 30 20

A. Digital baseband processing

The digital processing is modeled based on estimated com-

plexity in GOPS, multiplied by a technology-dependent factor

expressing the number of operations that can be perfomed

per second and per Watt. This factor is 40 GOPS/W for

large base stations and default technology, i.e., 65 nm General

Purpose CMOS. It is three times larger for pico and femto

cells given the more dedicated hardware used, as discussed in

Subsection II-A. The digital complexity is split into a number

of sub-components:

• DPD: Digital Pre-Distortion

• Filter: up/down-sampling and filtering

• CRPI/SERDES: serial link to backbone network

• OFDM: FFT and OFDM-specific processing

• FD: Frequency-Domain processing (mapping/demapping,

MIMO equalization); it is split into two parts, scaling

linearly and non-linearly with the number of antennas

• FEC: Forward Error Correction

• CPU: platform control processor

The non-linear part of frequency-domain processing accounts

for the MIMO operations with quadratic or cubic scaling. The

relatively small contributions for frequency-domain processing

in Table II (single-antenna reference case) can hence make up a

more significant share of the total power with 2 or 4 antennas.

Next to those terms, the leakage power is also taken into

account, leading the following total baseband power consump-

tion:

PBB = PDynamic + PLeak, where (3)

PDynamic = PDPD + PFilter + POFDM + PFD,lin

+ PFD,nl + PCRPI + PFEC + PCPU (4)

The reference leakage power is defined as function of

the reference dynamic power, where ηLeak is 0.1 in 65 nm
technology.

PLeak,Ref = ηLeakPDynamic,Ref (5)

Both dynamic and leakage power have their own scaling

rules with technology. We assume for each CMOS generagion,

e.g., moving from 65 nm to 45 nm, a two-fold reduction of the

dynamic power but a three-fold worsening of leakage power,

i.e., ηLeak is multiplied by 3 [5]. This can be used to assess
the power for 45 nm (2012 deployment) instead of the default

65 nm in 2010.

The complexity values given in Table II are used as refer-

ence case for the baseband in downlink. This reference case

assumes 20 MHz bandwidth, single-antenna, 64-QAM, rate-

TABLE III
COMPLEXITY OF BASEBAND OPERATIONS IN UPLINK (GOPS).

GOPS per operation type Macro Micro Pico Femto

Filter 200 160 160 150

CRPI/SERDES 360 300 0 0

OFDM 80 80 80 60
FD (linear) 60 60 40 30

FD (non-linear) 20 20 10 10

FEC 120 120 120 110

CPU 200 200 30 20

TABLE IV
SCALING EXPONENTS FOR THE BASEBAND SUB-COMPONENTS IN
DOWNLINK (PARAMETERS ARE DEFINED IN SECTION II-B).

Digital scaling exponents BW M R Ant. dt df
DPD, Filter and OFDM 1 0 0 1 1 0

CRPI/SERDES 1 1 1 1 1 1

FD (linear) 1 0 0 1 1 1

FD (non-linear) 1 0 0 2 1 1

FEC 1 1 1 1 1 1
CPU 0 0 0 1 0 0

Leakage 1 0 0 1 0 0

1 encoding3 and a load4 of 100%. This reference scenario is

used within the model and its tables; it should not be confused

with the baseline scenario representing the default operation

of a base station as presented in Table I and illustrated in

Section IV. The reference CMOS technology is 65 nm (2010

reference year). Values are given in GOPS for the different

types of base stations. The figures come from a mixture of

system knowledge — estimating the relative complexity of

different sub-components — and base station design expertise

— matching the total power for selected technology options

to the known order of magnitude in existing designs.

Some of the differences between larger and smaller base

stations can be explained as follows:

• Predistortion is not applied to small base stations given

the different type of PA and power levels.

• Filtering and signal accuracy constraints are more strin-

gent for large base stations, with impact on both up/down-

sampling filters and MIMO-OFDM processing.

• The network link is done differently for small base

stations (no specific backbone network, general IP con-

nection instead).

• The platform control overhead is larger for a large base

station due to the larger platform size including specific

additional components.

The corresponding uplink numbers are provided in Table III.

Most functional blocks are similar to the downlink case

(Table II) but doing reverse operations (the filter is performing

down-conversion in uplink, FEC is decoding. . . ). Comparing

to the downlink cases, we can note the following differences:

• Predistortion is not used in uplink.

• MIMO processing (equalization and detection) is more

complex than the corresponding transmitter steps.

• FEC decoding is significantly more complex (for turbo

or convolutional) than encoding.

3In reality the channel coding is deactivated when the rate is equal to
1, but the corresponding value is used as reference for the largest possible
throughput.
4The load is defined as fractional use of time and frequency resources, i.e.,

load = dt × df .



TABLE V
RF ANALOG COMPONENT POWER (mW ), TRANSMITTER CASE

(DOWNLINK).

Power per analog component [mW] Macro Micro Pico Femto

IQ modulator 1000 1000 1000 1000
Variable attenuator 10 10 0 0

Buffer 300 300 0 0

Forward Voltage-Contr. Osc. (VCO1) 170 170 170 170

Feedback Voltage-Contr. Osc. (VCO2) 170 170 0 0

Feedback mixer 1000 1000 0 0
Clock generation and buffering 990 990 990 990

Digital-to-Analog Converter (DAC) 1370 1370 200 200

Analog-to-Digital Converter (ADC) 730 730 140 140

Predriver (not incl. in total) 2250 2250 0 0

TOTAL (w/o predriver) 5740 5740 2500 2500

Downscaling factor 1 2 7 12
Total after downscaling [W] 5.7 2.9 .4 .2

Table IV gives the scaling exponents in downlink for each

baseband sub-component and each scaling parameter. This

table havs been derived by analyzing whether the amount of

computations to perform in each sub-component was depend-

ing on each of the scaling parameters or not. DPD, filtering and

OFDM are put together as time domain processing category,

with the same scaling properties. Leakage power is also a

category of its own. Clock gating is assumed when duty-

cycling components in time domain, but not power gating

(leakage remains). In uplink, all exponents are the same,

except for the non-linear frequency-domain processing (cubic

dependency— exponent 3 — in uplink instead of the quadratic

dependency — exponent 2 — in downlink).

Example of baseband power scaling: As illustration, let us

assume we want to compute the power of frequency-domain,

linear processing in case of 10-MHz, 2x2 MIMO, 16-QAM,

coding rate 3/4, 100% of time-domain duty-cycling and 30%

of frequency occupation, we start from the reference scenario

(20-MHz, single-antenna, 64-QAM, coding rate 1, 100% time-

domain and frequency-domain duty-cycling), leading for a

macrocell in uplink to 60 GOPS (Table III) or PFD,lin,ref =
1.5 W (with 40 GOPS/W in 65 nm). The scaling vector with
respect to the 6 parameters is [s1, s2 · · · s6] = [1, 0, 0, 1, 1, 1]
(Table IV)5. It is applied to the ratio of all parameters between

actual and reference scenarios, leading the actual power con-

sumption of linearly-scaling frequency-domain processing:

PFD,lin = PFD,lin,ref

(

BWact
BWref

)s1
(

Mact

Mref

)s2
(

Ract
Rref

)s3

(

Antact
Antref

)s4
(

dtact
dtref

)s5
(

dfact
dfref

)s6

= 1.5 W ×

(

10

20

)1 (

4

6

)0 (

3/4

1

)0 (

2

1

)1

(

100

100

)1 (

30

100

)1

= 0.45 W (6)

B. RF sub-components

The RF architecture contains the different elements of a

low-IF/zero-IF architecture, in particular clock/carrier gener-

5Formally the scaling exponents are named [sFD,lin,BW · · · sFD,lin,df] accord-
ing to (2). The shorter notation [s1 · · · s6] has been selected in order to have
a more readable equation (6).

TABLE VI
RF ANALOG COMPONENT POWER (mW ), RECEIVER CASE (UPLINK).

Power per analog component [mW] Macro Micro Pico Femto

First Low-Noise Ampl. (LNA1) 300 300 300 300

Main variable attenuator 10 10 10 10
Second Low-Noise Ampl. (LNA2) 1000 1000 0 0

Dual mixer 1000 1000 1000 1000

Dual IF Variable Gain Ampl. (VGA) 650 650 0 0

Clock generation and buffering 990 990 990 990

Analog-to-Digital Conv. (ADC) 1190 1190 290 290

TOTAL 5140 5140 2590 2590

Downscaling factor 1 2 7 12

Total after downscaling [W] 5.1 2.6 .4 .2

ation and distribution, modulator, mixers, low-noise amplifier

(LNA), variable-gain amplifier (VGA), analog/digital convert-

ers (DAC and ADC), filters, buffer and predriver, and feedback

chain. Only the PA is considered separately (Section III-C)

because it cannot be captured in the same modeling approach.

All the RF elements consume a specific amount of power,

as given in Table V for downlink in reference technology of

65 nm CMOS.

The predriver is shown for information but included into

the PA power. Some of the sub-components are not present

in smaller base stations. Moreover, an overall downscaling

factor reduces the power on smaller base stations due to less

constraining specs and different hardware implementation of

of smaller cells. The reason is two-fold. Firstly, the amount of

blockers a small base station has to face is smaller, leading to

more relaxed linearity specs and hence less power is needed.

Secondly, smaller base stations can work from a lower supply

voltage, further reducing their consumption.

Scaling of RF power with input parameters is done as

follows. All RF sub-components have a scaling exponent 1

with respect to number of antennas and time-domain duty-

cycling. For carrier and clock generation sub-components,

all the other scaling exponents have the value zero. For the

other RF sub-components, the scaling exponent is also 1 with

respect to frequency-domain duty-cycling, assuming a scalable

implementation, and for small base stations with respect to

bandwidth as well.

Technology scaling is used for analog, too, based on a

scaling factor as function of the selected CMOS technology

compared to the reference tech = 65 nm case. This is an
empirical rule from designers’ experience, not a physical law:

Power(tech) = Power(65 nm)

(

1 +
tech/65 − 1

2

)

(7)

Table VI provides the numbers for uplink direction, when

the analog front-end is receiving. The same downscaling

factors are used as in the downlink case.

C. Power amplifier

The power amplifier behavior cannot be captured by a

single reference power number and scaling rules. Hence, the

PA model is represented by a table containing measurements

of output power versus consumed power. Measured points

differ in requested output power and in tuning of the 1 dB

compression point. The power model picks up the point with

minimal power consumption that is satisfying the output power

and linearity constraints.
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Fig. 2. Power consumption as function of load for a 3-sector macro cell and a
pico cell. Load dependency is based on either frequency-domain duty-cycling
or time-domain duty-cycling. FDD is expected (uplink plus downlink).

The maximum total output power is 46 dBm for macro,

41 dBm for micro, 24 dBm for pico and 20 dBm for femto

cells. Additionally, feeder cable losses amount to 3 dB in

macro base stations only. When using multiple antennas, this

output power is divided between the antennas, keeping the

same total value (within one sector). Large base station only

have to support a PAPR of 8 dB thanks to the pre-distortion;

small base stations have to support a PAPR of 12 dB.

The PA selected for macro and micro base stations can

output up to 54 dBm at 1 dB compression for a consumption of

390 W. Output power reduces linearly with frequency-domain

load or explicit power control. The reduction in consumed

power is not proportional given that the PA efficiency degrades

at reduced load. The PA minimal power consumption at low

output power is 11 W. Similarly, small cells (pico and femto)

use a PA design capable of up to 36 dBm for a consumption

of 8 W. Its minimum power consumption is 650 mW.

D. Overhead

In the overhead or power system category, we place all

the sub-components that are related to the system powering,

including AC/DC and DC/DC conversion as well as cooling.

In order to keep a simple model, the power is computed as a

fixed overhead linearly depending on the total power of the

rest of the base station. The corresponding factors can be

given as input parameters (otherwise default values are used,

as specified in Section II-A):

Poverhead = (PBB + PRF + PPA) (8)

× ((1 + ηcool)(1 + ηdcdc)(1 + ηacdc) − 1)

Default values for the linear loss model are 10% for cooling

but in macro base stations only, 5% for DC/DC conversion,

and 10% for AC/DC conversion. There is no cooling for

smaller base stations.

IV. MODEL USAGE AND RESULTS

The model has been implemented in Matlab. This enables

a flexible generation of output power for different scenarios.

All input parameters described in Section II are implemented

including their default values for the baseline scenario. The

BB
RF

PA

OVERHEAD

bb
rf

overhead

Macro (1320 W)
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Fig. 3. Relative share of the different components for two types of base
stations (configuration of Figure 2). UPPERCASE labels denote DOWNLINK;
lowercase labels and shares shifted out of the pie center denote uplink.

output separates power consumption in uplink and downlink,

for each of the main components described in Section III.
Figure 2 illustrates the power obtained model as function of

the system load. Two of the four base station types have been

selected as example. Time-domain duty-cycling outperforms

frequency-domain duty-cycling due to the possibility to let

specific components sleep during inactive periods. However,

the way time-domain duty-cycling it is implemented in the

model and illustrated in this Figure is optimistic in the sense

that duty-cycled components are assumed to be switched on

and off without any overhead. This suits scenarios where

sufficiently long sleeping time is present between transitions.

When considering micro-sleeping for which this assumption

does not hold, more realistic numbers are obtained by using

the sleep mode approach of [3].
In the case of a macro-cell, 87% of the power is used

for downlink and 13% for uplink. The relative share of the

different components is shown on Figure 3. This illustrates that

while large base stations are strongly dominated by PA and to

a lesser extent by the power systems (overhead), smaller base

stations are less PA-dominated and also contain a significant

baseband share.

V. CONCLUSIONS

In this paper, we propose a high-level power consumption

model for LTE base stations. It covers various types of base

stations and is flexible due to a large number of parameters.

It provides power figures for the different sub-components

present in a typical base station. This model is mostly designed

not to give very accurate absolute figures but to enable ex-

ploring different architectures as proposed within exploration

projects (more antennas, trade-offs between macro and small

cells, load impact, role of duty-cycling...).
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