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Abstract—To obtain good position accuracy with state-of-the-
art indoor localization algorithms, multiple anchors must be
within radio range of the user. However, anchor placement and
maintenance is expensive. By reducing the number of anchors
per room, overall costs are reduced. In [1], an algorithm that
can estimate the position of a user using only one anchor and
a priori floor plan information. However, performance for static
localization was poor due to the presence of ambiguities. This
paper describes a cooperative positioning algorithm that utilizes
a single anchor and provides both the position and the position
uncertainty for multiple users, by letting the users exchange their
position information. The problem is represented with a factor
graph, and belief propagation (BP) is used to extract the positions
and their accuracy. The proposed cooperative algorithm leads to
a significant improvement of the positioning accuracy compared
to the non-cooperative method from [1].

[. INTRODUCTION

With the advent of ultra-wide bandwidth transmission tech-
nologies, the possibility of performing highly accurate posi-
tioning in an indoor environment becomes more and more
realistic [2]. The list of potential applications is long and
includes asset tracking, health care monitoring, and robotics.
Most methods for positioning require the presence of multiple
reference nodes (called anchors) at known positions to make
ranging measurements with the user. Assuming there is a line-
of-sight (LOS) between the anchors and the user, these range
measurements can be used to perform multilateration to obtain
the user’s absolute position. Multilateration requires at least
three anchors for two dimensional localization. However, plac-
ing and maintaining anchors is expensive and therefore meth-
ods that reduce the number of anchors have been considered.
In [3] it was observed that not only the LOS signal component
carries useful information about the user position, but also
the signal reflections. With the use of floor plan information,
these reflections could be interpreted as originating from so
called virtual anchors, which can be used for localization [4].
Utilizing these virtual anchors, localization was demonstrated
with a single anchor [1]. Still, the performance was rather poor
because, with the use of virtual anchors, ambiguities are added
to the system so that at times no unique solution can be found.

In cooperative localization, users not only make range
measurements with the anchor nodes but also with their neigh-
boring user nodes. These additional measurements provide
information about the relative position of each user, which

can be used to increase the overall positioning accuracy and
coverage of the system. In [5], [6] and [7] this idea is explored
through optimization techniques, which give point estimates
for the users’ positions. Another class of techniques relies on
Bayesian inference such as belief propagation [8] or variational
message passing [9]. The latter class of techniques has the
advantage that it can work with a wide variety of statistical
models and that can easily represent multimodal distributions.

In this paper, we reconsider the single anchor problem
for indoor multipath localization from [1] and rewrite it as
a Bayesian inference problem. This formulation allows us
to include information from neighbors, naturally leading to
a cooperative algorithm, by means of belief propagation.
Through Monte Carlo simulations, we show the potential
performance gains of cooperation for both static and mobile
scenarios.

II. PROBLEM FORMULATION

We consider a room with one anchor and N mobile users
that are wirelessly connected. At every time step k, every
user ¢ makes measurements zﬁ;; with the anchor and ranging
measurements zfoow- ; with its neighbors j. The measurements
zﬁié depend on the direct LOS signal between the anchor and
the user, as well as signal reflections, while the measurements
z@oop,i ; depend only on the direct LOS signal. Details will be
provided in Section III-B. The measurement are aggre%rated

into the vector z&, | = {z&:1 7:]11 and zf,,, = {Zfoop,ij}i,j:y
respectively. The state of user ¢ at time k is denoted by
oF = [(xH)7, (vf)T}T, and contains both the position x¥
and velocity v¥. We focus on a two dimensional scenario,
but extension to three dimensions is straightforward. We
will assume that the users move independently according
to a first order Markov chain, with transition probability

p (6F | 0?71). The goal of user ¢ at time step k is to determine

p (0 | 25k, 2Lk ), given the distribution of the states at the
previous time step p ()" | 25kt 2Lk 1), vy

III. STATISTICAL DESCRIPTION

A. Global description

Given the Markovian nature of the system, we can write the
joint posterior distribution as follows
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Here, N (7) is the set of users within radio range of user 7. We
have assumed that measurements only depend on positions,
but not on velocities. Substitution of (2) into (1) yields
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We observe that p (67 '|zkE=1 zl%-1) was computed in
the previous time slot, so that when N = 1, (3) leads to
a simple recursive algorithm. The function (2) factorizes into
three major factors: the first factor is responsible for providing
absolute positioning information using only a single anchor;
the second factor is related to the mobility model and is used
for tracking over time steps; the third factor provides relative
position information among users. In the following sections,
we will derive expressions for the three factors from (2) and
provide additional details regarding the models.

B. Single anchor localization

We will consider a rectangular room where one anchor node
is placed. Every signal reflection the user receives can be
considered as a wave coming from some virtual anchor (VA)
behind the walls. A set of virtual anchors can be obtained by
mirroring the anchor’s position at each reflecting surface. In
this paper we will only focus on single and double reflections,
as well as the line-of-sight component, which gives a total
number of (virtual) anchors Nya = 9. An example room is
shown in Fig. 1. Note that for this example room, the set of
anchors is independent of the user’s position and only depends
on the anchor’s position. For different room geometries this
may no longer be true and the effect of this is subject to further
research.

Using ultra-wideband technology, it is possible to accurately
distinguish the different multipath components in a received
waveform due to the fine time-resolution [2]. If we assume
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Figure 1. Example room with one anchor and corresponding virtual anchors.

a synchronized system, the time of arrival (TOA) for all
multipath components can be converted to range estimates.'
Let z’“ be the measurement vector containing M} range
estlmates obtained in the measurement phase. In general, this
vector will contain range measurements corresponding to some
of the virtual anchors,? as well as reflections corresponding
to other scatterers. Furthermore, it is unknown which range
estimate corresponds to which virtual anchor. Because we do
not know this mapping, we cannot use standard multilateration
techniques. Therefore, a probabilistic approach, where every
measurement has a certain chance of coming from a certain
virtual anchor, is an appropriate alternative. If we now consider
all range measurements to be independent,3 we can write the

joint likelihood function for Zmp as follows:

MF

Hp 2 xb). 4)

The function p (2} ,, | xJ') can be written as follows [1]:*

)

p (Zmp

P (Zuipm | %)
Nvya
PVA Z (1 - Pya)
PVP mp mv”x XP”an)) + .

Rmax
We made the following assumptions: A measurement zmp m
has probability Pya of coming from a VA and (1 — PVA)
of not being related to any VA. In the latter case, 2%

mp,m
is uniformly distributed between 0 and the maximum range
Runax. In the former case, we have a weighted sum of Nya

I'The assumption of synchronization can be removed by considering a two-
way ranging protocol.

2Due to obstructions, not every reflection will always be present, leading
to an invisible virtual anchor.

31t should be noted that this independence assumption is a simplification
of reality since all reflections are more or less correlated depending on the
environment. This correlation however is prohibitively complex and therefore
not taken into account.

4We write N (z; u, 02) to denote a Gaussian distribution with variable z,
mean i, and variance o2,

3The maximum range Rmax is the maximum distance between any one
virtual anchor, and one of the corners of the room.
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Figure 2. Plot of logp (z | x2 ) . It can be seen that this function has

many local maxima, and that the global maximum is located almost 10m
away from the true user position. The anchor is located at (5,10), the user at
(10,5), and the global maximum at (2.1, 11.3).

Gaussian rings centered around every virtual anchor (with
position x,,) with radius zmp m and standard deviation o;,. The
pth virtual anchor is visible with probability P, ,. To ensure
proper normalization, we introduce P, = Z;VVA P p.

An example of p (z};;, | x}) is shown in Fig2. As we do
not know the mapping between ranges and VAs, p (z&! | xF)
has many local maxima and might even have a global
maximum far away from the user position. Estimating x*
from p (z&i | xF) will thus lead to poor performance. By
introducing cooperation or tracking, many of the false max-
ima will disappear due to the added constraints, leading to
better estimates. On a side note, we mention that for this
room geometry, the average number of local maxima greatly
increases whenever the anchor is placed on the bisectors of
the walls. This is due to symmetry reasons and in this case
performance is always expected to be low, even with tracking
or cooperation, and should be avoided.

C. Tracking

Secondly, the factor from (2) corresponding to the tracking
of the user states is considered. We assume that the movement
of the user can be described by the following linear time-
invariant model for 2D movement:

p(6F16)71) =N (0570 02GGT),  (5)
with

1 0 AT 0 ATZ g
o1 0o AT | o ar
F = 0 0 1 0 and G = AT 6
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Here, AT is the time between successive measurements and
o, denotes the standard deviation of the user’s acceleration.®

6 Assuming the 3-sigma point for the acceleration equals the maximum
acceleration, the standard deviation for the acceleration equals o, = %
where ALmax is the maximum distance a user is able to cross during time
AT.
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Figure 3. Factor graph representation of the posterior likelihood function for 3
users. Here, f(Bk) =p (zmp | 9’“), g (95,9;“) \ 0{“,0;“)
and h (0%,6) 1) =p (6F | 6F71).
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D. Cooperation

The factor p( Zeoop, i | Xf ,x?) from (2) is derived as fol-
lows: we assume that between users we perform a ranging
protocol and collect only the distance estimates corresponding
to the LOS signal. Multipath information is discarded, since
no fixed set of virtual anchors can be identified for the
cooperating users when they have position uncertainty. We
assume a standard Gaussian model: p (2% | xF,xk) =

N (2o i [ — x5, 02). ’

coop,zy’
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IV. BELIEF PROPAGATION FOR LOCALIZATION

The factorization of (2) can be represented graphically by
a factor graph on which message passing algorithms, such
as belief propagation, can be applied [10]. The factor graph is
created by drawing square vertices for every factor of the joint
probability and circular vertices for every variable. Every fac-
tor vertex is connected by an edge to a variable vertex when the
factor is function of this particular variable. The factor graph in
case of three users (N = 3) and at time step k is shown in the
shaded area in Fig. 3. From the previous time step, every user
has the input p (6} "|zLk=1, zL% 1) Towards the next time

coop
step, the user generates p (9 | zmp, zéé’gp). The distributions
(0’C | zmp, éolf)p) are computed using belief propagation,

which is a message passing algorithm over the factor graph.
The messages are computed as follows, assuming a variable
that appears in 3 factors:’

1) Given a x; that appears in factors f(x;,x;), g(xs,21)
and h(z;, zp,), the message from z; to x; is given by

Mi—j .CE] /f(xuxj H Mp—i xz) dz;.
nef{l,m}

2) The a posteriori distribution of z; is given by

b(x;) x H Mop—si (X5). (6)

ne{l,m,j}

"The generalization to more than three factors is straightforward.



Algorithm 1 Cooperative multipath localization at time step %

Initialization:

mi;(xf) =1 Vi, j € N (i) 7
b(OF) =1 Vi ®)
b(Of ) from previous time step, Vi (9)

Calculate non-cooperative belief:

bac(85) = p (25, | xF) / p (05 | 051) b(0F—1)agr!

(10
For all users
Calculate all outgoing messages:
miy;(x%) = /p(zk | xExh) b(L’k)dOZC (11)
1—=>J\g coop,ij R m]_w(xf) i
Calculate updated belief:
b(0F) o< bue(0F) T[] mji(xF) (12)

JEN()

until stopping criterion is reached.

In our case, as the factor graph has cycles, the beliefs are
approximations of the true a posteriori distributions: b(8%) ~
p(6F |25 2%,

Applying these message update rules to the factor graph
defined by (2), we obtain a sequence of updates as outlined in
Algorithm 1. In this algorithm, the beliefs are calculated for
one time step until convergence or until a stopping criterion is
reached. Then, the beliefs are propagated forward to the next
time step, when new measurements are available.

This algorithm can be employed in either a distributed or
a centralized way. In a distributed way, all users calculate
their own beliefs using (12) and then broadcast this belief to
their neighbors. However, such broadcasting may be energy
consuming, since the messages that are to be transmitted are
probability functions, which need to be represented by either a
dense grid or a large number of particles. It may thus be more
practical to centralize all calculations in the anchor node and
only send the results over the network.

V. SIMULATION RESULTS
A. Static scenario

In the static scenario, the localization is performed at a sin-
gle time step, without prior knowledge of the users’ positions.
This corresponds to the gray shaded area of the factor graph in
Fig. 3. Position estimates are obtained by selecting the maxi-
mum of the beliefs after convergence. Without cooperation, the
algorithm reduces to a maximum likelihood (ML) estimator.
Results were obtained after 1000 independent runs where
the users were randomly positioned inside the room. The
parameters for this simulation are given in TableI. Note that

Table I
SIMULATION PARAMETERS FOR STATIC SCENARIO

Parameter Note Value
Op, On Ranging std. deviation 0.1m for Vp
Py p Visibility for VAs: LOS 0.8forp=1
single reflections 05for2<p<5H
double reflections 03for6 <p<9
Pya Prob. that a zf% ,, is from a VA 0.5
w X h room dimensions 10 m X 25 m
(z1, y1) anchor location (5m, 6m)
Az grid resolution 5 cm
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Figure 4. CDF of the positioning error in a static scenario, for a varying
number of cooperating users.

with these settings the measurement vector zﬁlfn will contain

on average 50% completely unrelated range measurements,
and there even exist a chance that not a single virtual anchor
is visible to the user. For the implementation of the algorithm,
beliefs and messages were represented by a grid.

In Fig. 4, the cumulative distribution function (CDF) of the
positioning error is shown for a varying number of users. It is
observed that the non-cooperative ML estimator performs the
worst: almost half of the time this estimator cannot find the
user. This is due to the false maxima in the likelihood function,
and corroborates the findings from [1]. When the number of
cooperating users increases, we see that the estimator achieves
better performance. For 5 users, we find a positioning error
smaller than 26 cm 90% of the time, compared to the ML
estimator where such low errors are only achieved 44% of
the time. For this static scenario no more than three or four
iterations were needed for the beliefs to converge.

B. Dynamic scenario

In the dynamic scenario all users are following a predefined
trajectory inside the room. The parameters used for the move-
ment model are AT = 0.25s and ALy = 2m. Two types
of trajectories were generated. The first type are independent
trajectories, while the second type are parallel trajectories,
corresponding to two users who are walking next to each other



through the room. Two example, independent trajectories can
be seen in Figl. In a dynamic scenario, where the user is
walking through the room, it might be that one virtual anchor
is obstructed by some object or another user, such that it is
not visible by the user, and that this obstruction remains for
some time. This effect is captured by adding correlation to the
visibilities of the virtual anchors and generating all visibilities
by means of a Markov Chain as described in [1]. In [1], where
no cooperation was present, it was noted that this correlation
has a negative effect on performance.

In order to keep the simulations tractable, all beliefs were
not represented by a fine grid, but rather by a list of particles,
as in [1]. Contrary to the non-cooperative case from [1],
where 2000 particles were sufficient, the cooperative algorithm
required around 15000 particles. This can be explained by
the fact that if a user broadcasts a belief without any particle
close to the true location, this user may affect other user’s
belief as well. The position estimates are obtained by taking
the median of the particles at every time step, as this yields
the best performance.

In Fig.5 the CDF of the estimation error is shown for a
varying number of users on different trajectories. It is observed
that the worst performance is obtained without cooperation.
Adding a second user to the system already gives a significant
performance gain, particularly for the scenario where users
move independently through the room. The lower gain for
the parallel tracks is due to the correlation in the users’
movement. Because of this the likelihoods (4) for both users
will have correlated ambiguities that cannot be eliminated with
cooperation. For 5 users, we find a positioning error smaller
than 20 cm 95% of the time as compared to 70% of the time
with the non-cooperative particle filter of [1]. For this dynamic
scenario the beliefs generally converge faster than in the static
scenario, with two or three iterations being sufficient. This is
due to the fact that the beliefs are already more concentrated
due to the integration of the user state from the previous time
step.

VI. CONCLUSIONS

In this paper we considered the problem of cooperative
indoor localization using a single anchor and a floor plan,
based on signals reflected from walls. We extended the work
from [1] to a cooperative setting, to enable different users to
help each other resolve ambiguities. We have shown that co-
operation significantly improves the localization accuracy, for
both static and dynamic scenarios. Our future work includes
the integration of the multipath extraction step (the extraction
of the localization related measurements from the signals was
not considered in this paper) with the localization step, and
the validation of the algorithms with real-life experiments.
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