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Abstract— In this work, the problem of receiver design for phase
noise estimation and data detection in the presence of oscilla-
tor phase noise in a point-to-point multiple-input multiple-output
(MIMO) system is addressed. First, we discuss some interesting
and challenging aspects in receiver design for MIMO systems in the
presence of Wiener phase noise. Then, using the variational Bayesian
(VB) framework, a joint iterative phase noise estimator and symbol
detector are developed based on inverse Gibbs or variational free
energy maximization. Further, the symbol error probability (SEP) of
the newly proposed iterative scheme is compared with the optimal
maximum likelihood (ML) detector with perfect phase information
for 16-phase shift keying (PSK) and 16-quadrature amplitude
modulation (QAM) schemes.

I. INTRODUCTION

Employing multiple-input multiple-output (MIMO) system for

wireless communication has proven to significantly enhance

performance in terms of capacity and link reliability in fading

environments [1]. However, performance analysis of MIMO

systems is based on the assumption that carrier phase is known

to the receiver, and that the random, time varying phase differ-

ence between the transmitter and receiver are essentially absent.

Practical receiver designs for MIMO systems based on this

assumption can result in significant performance loss, and have

to be appropriately addressed [2].

The problem of receiver design in the presence of random, time

varying phase noise originating from the local oscillator has been

studied extensively for single-input single-output (SISO) systems.

We refer the readers to [2]–[5] and the references therein for

relevant work. Receiver designs in the presence of random phase

noise have also received considerable attention in orthogonal

frequency-division multiplexing (OFDM) [12] and MIMO-OFDM

[6] systems. Though some authors have addressed various issues

concerning phase noise in MIMO systems [7], [8], there is

severely limited understanding in literature about receiver design

for MIMO systems in the presence of time varying random phase

noise. The work in [7] discusses the impact of random phase

noise on MIMO channel measurement systems and the estimated

capacity. The impact of phase noise from free running oscillator

in MIMO systems on estimated channel capacity, doppler of

multipath components, and delay is discussed in [8].

In general, much of the research focus for receiver design in a

MIMO setting has been on developing receiver algorithms for

joint channel estimation and data detection, refer to [9] and

the references therein. In this context, there exists a perception

that the problem of receiver design in MIMO in the presence

of random phase noise (from the oscillator), is effectively a

channel estimation/data detection problem, since the impact of

phase noise can be moved into the channel matrix [7].

In this work, we consider the problem of receiver design in

the presence of random, time varying phase noise arising from

oscillator instabilities in a point-to-point MIMO system. In the

ensuing sections, we first motivate the problem in a MIMO

setting and discuss why the problem is interesting and different

from the channel estimation/data detection problem in some cases

of interest. Specifically we discuss scenarios where the impact

of phase noise need not be moved into the channel matrix

that in turn results in significant complexity reduction of the

problem. Further we develop an iterative phase noise estimation

and data detection scheme based on the Variational Bayesian

(VB) framework [10], [11] and investigate its performance in the

presence of Rayleigh fading channels. The VB theory provides

an optimization framework to approximate inference algorithms

involving computation of mariginal probability distribution func-

tions (pdf) [11]. The framework has been used for developing

highly efficient receiver algorithms with parameter uncertainty

for SISO and OFDM systems in [4], [12] respectively.

The contributions and organization of this paper are as follows

- In Section II, the MIMO system model under study is presented.

Based on the system model, we present simple illustrations in

Section III to demonstrate the new challenges in receiver design

in the presence of random time varying phase noise in MIMO.

Further, in sections IV and V, we discuss the VB framework and

analytically derive the structure of the receiver comprised of an

iterative phase estimator and symbol detector. In Section VI, we

present our simulation results to demonstrate the performance

of the proposed receiver and give interesting insights into the

problem.

II. SYSTEM MODEL

Consider a point-to-point MIMO system with Nt transmit

antennas and Nr receive antennas. Data is transmitted from each

transmit antenna in the form of frames, each of length Nf , and

is uncoded. Further, the symbols transmitted from each transmit

antenna are independent of each other. The channel between

the transmit and receiver antennas are assumed to be known

(estimated). As we shall see in the sequel, this is a realistic

assumption and corresponds to the scenario where the channel

varies much slower than the phase noise process, and has been

already estimated. Each of the transmit and receive antennas is

equipped with an independent free-running oscillator, perturbed

by random phase noise process modeled as a random walk. The

received signal model at the kth antenna at time instant n is

modeled as follows

yk(n) =

Nt∑

l=1

ejθ
[r]
k

(n)hlk(n)ejθ
[t]
l

(n)sl(n) + wk(n), (1)

=

Nt∑

l=1

hlk(n)ejθlk(n)sl(n) + wk(n),

l = 1, . . . , Nt, k = 1, . . . , Nr, n = 1, . . . , Nf ,



where θlk(n) is the sum of transmit and receive phase noise

samples at the lth transmit antenna and kth receive antenna at

time instant n, and is also referred to as the phase noise in each

link. The phase noise samples at the lth transmit antenna and the

kth receive antenna at time instant n are denoted as θ
[t]
l (n) and

θ
[r]
k (n) respectively. Both θ

[t]
l (n), ∀l ∈ {1, . . . , Nt} and θ

[r]
k (n)

, ∀k ∈ {1, . . . , Nr} are assumed to be samples from a Wiener

phase noise process given as

θ
[t]
l (n) = θ

[t]
l (n − 1) + ∆l,t(n),

θ
[r]
k (n) = θ

[r]
k (n − 1) + ∆k,r(n),

where ∆l,t(n) ∼ N (0, σ2
l,t) and ∆k,r(n) ∼ N (0, σ2

4k,r
).

Further, the phase noise samples in all the antennas are assumed

to be varying from symbol-to-symbol, but constant over a symbol

period. The data transmitted from the lth transmit antenna at

time instant n is uncoded and drawn from an M -ary signal

constellation with equal probability, and denoted as sl(n); i.e.,

sl(n) ∈ C, where C is the set of all symbols in the signal

constellation. The channel gain from the lth transmit antenna

to the kth receive antenna is denoted as hlk(n) ∼ CN (0, σ2
hlk

).
wk(n) ∼ CN (0, σ2

w) is the zero-mean additive white Gaussian

noise (AWGN) at the kth receive antenna at time instant n. At

time instant n, we denote the vector of all received signals at all

receive antennas as y(n) = [y1(n), . . . , yNr
(n)], vector of phase

noise samples as θ(n) = {θlk(n)}, and the transmitted symbol

vector as s(n) = [s1(n), . . . , sNt
(n)] , l = 1, . . . , Nt, k =

1, . . . , Nr, n = 1, . . . , Nf .

III. RECEIVER DESIGN IN MIMO - CHALLENGES

Based on the MIMO system model above, we now present

some interesting aspects and challenges in receiver design for

MIMO systems in the presence of Wiener phase noise. It is

generally perceived that the problem of receiver design in the

presence of random phase noise can be handled by moving the

impact of phase noise (from the oscillator) into the channel

matrix [7]. Then the only novel aspect of the problem of receiver

design in the presence of phase noise would be to include the

characteristics of the Wiener process in an equivalent channel

estimation/data detection problem. In the sequel, using a few

illustrations, we demonstrate that in some scenarios, the receiver

design problem in the presence of time varying phase noise

process is different, and can be handled differently from a

channel estimation/data detection problem.

• There are several scenarios of interest, where the Wiener

phase noise process drifts much faster than a random chan-

nel process. For the receiver design problem involving phase

estimation and data detection in these scenarios, the channel

can be assumed to be known (estimated) and static, and

the phase noise impact need not be moved into the channel

matrix. Consider, e.g., a system with point-to-point commu-

nication, transmitting at a symbol rate of 106 symbols/sec.

Let the center carrier frequency for transmission be 2.4 GHz

and the relative velocity between the communicating point

be 5 km/hr. Then the maximum doppler spread for this

link is given as fm ≈ 13 Hz. Let the sampling interval

be Ts = 10−6s, variance of the innovation of phase noise

process be σ2
l,t = σ2

k,r = 1×10−3. Then the 3dB bandwidth

of the phase noise process is f3db =
σ2

k,r

2πTs
≈ 160 Hz [13].

Hence for small relative velocity, of the range of pedestrian

velocity, the phase noise process can be assumed to vary

much faster than the channel. This is because in these

scenarios, the bandwidth of the Wiener phase noise process

is much higher than the doppler spread.

• For the case of channels (known and static) as discussed,

the actual number of phase variables to be estimated can

be reduced to Nt + Nr, as opposed to estimating Nt × Nr

variables. This is because though the number of phases to

be estimated is Nt ×Nr, only Nt + Nr of the variables are

relatively more fast varying. Hence by excluding them from

the channel matrix, the problem is made considerably less

complex. 1

• Oscillator phase noise in MIMO systems result in both

phase distortions and amplitude distortions, unlike in the

case of SISO systems. This can be illustrated using a simple

example :- for a 2×2 MIMO system, the received signal at

receive antenna k = 1 at high SNR (without the time index

n) can be written as

y1 ≈ ejθ11h11s1 + ejθ21h21s2,

y1y
∗
1 = s1s

∗
1h11h

∗
11 + s2s

∗
2h21h

∗
21 (2)

+2<{s1s
∗
2h11h

∗
21e

j(θ11−θ21)}.

As evident from (2), the amplitude of the received signal

depends on the phase difference between the signals arriving

at the receive antenna. This is irrespective of whether an

equal energy constellation like PSK or a non-equal energy

constellation like QAM is used.

IV. VARIATIONAL BAYESIAN FRAMEWORK - THEORY

An optimal maximum a-posteriori (MAP) symbol detector for

transmitted from all transmit antennas at time instant n is given

as

ŝ(n) = argmax
s(n)∈C

P (s(n)|y(n)),

= argmax
s(n)∈C

∫

θ(n)

P (s(n), θ(n)|y(n))dθ(n), (3)

= argmax
s(n)∈C

∫

θ(n)

P (s(n)|θ(n),y(n))P (θ(n)|y(n))dθ(n).

The detector in (3) is analytically intractable, and to work around

this intractability, approximate probabilistic graphical models and

inference techniques are widely used. The variational Bayesian

approach [10] is one such probabilistic inference technique that

is used for approximate inference and learning. This technique

provides an optimization-based framework for approximating

marginal pdfs and have been used to develop effective detectors

for SISO and OFDM systems [4], [12] for time varying phase

noise. The technique can be explained as follows - consider the

problem of computing the log likelihood of y(n). Dropping the

1It is possible to achieve further reduction to Nt +Nr−1 variables. This is by
subtracting all transmit phases by any one of the transmit phases and adding the
same amount to all the receive antenna phases. For instance, in (1) the phase states
to be estimated are {θlk}, l = 1, . . . , Nt, k = 1, . . . , Nr implying that there
are Nt×Nr phase noise variables to be estimated (in Nt×Nr links). However,

the transmit phase states can be transformed to {0, θ
[t]
l

− θ
[t]
1 }, l = 2, . . . , Nt,

and the receive phase states can be changed to {θ
[r]
k

+ θ
[t]
1 }, k = 1, . . . , Nr .

This transformation in effect produces the same received signal model in (1),
though the transmit and receive phase states to be estimated have been altered
and reduced to Nt + Nr − 1 states.



time index n for convenience and applying Jensen’s inequality,

the log likelihood can be lower bounded as follows

log P (y) = log
∑

s

∫

θ

Q(s, θ)
P (s, θ,y)

Q(s,θ)
dθ,

≥
∑

s

∫

θ

Q(s, θ) log
P (s, θ,y)

Q(s, θ)
dθ. (4)

When the variational distribution Q(s, θ) is set as P (s,θ|y),
the lower bound in (4) is achieved. However, the algorithm is

restricted to search over a family of factorized distributions of the

form: Q(s, θ) = qs(s)qθ(θ). This corresponds to assuming that

s and θ being independent of each other given the observation

y. Hence the lower bound is given by

log P (y) ≥
∑

s

∫

θ

qs(s)qθ(θ) log
P (s, θ,y)

qs(s)qθ(θ)
dθ,

, H(qs(s), qθ(θ),y). (5)

Here, H(qs(s), qθ(θ),y) is referred to as the inverse Gibbs

or variational free energy whose maximization results in the

minimization of the Kullback-Leibler (KL) distance measure

between qs(s)qθ(θ) and P (s, θ|y). In order to determine the

free distributions qs(s) and qθ(θ) that maximize H, a coordinate

ascent algorithm is used that maximizes over one free distribution

while keeping the other fixed, in an alternate manner. Based

on the functional derivatives of H with respect to the free

distributions, the update equations in the ith iteration are given

as follows

q
(i)
θ

(θ) ∝ P (θ)e
∑

s
q(i−1)
s

(s) ln P (y|s,θ), (6)

q(i)
s

(s) ∝ P (s)e
∫

θ
q
(i)
θ

(θ) ln P (y|s,θ)dθ.

The VB based algorithm described is ensured to converge to a

fixed point [10]. However, in general global optimality is not

guaranteed.

V. RECEIVER DESIGN BASED ON VB FRAMEWORK

In this section, we present an iterative receiver algorithm

comprising of a phase estimator and symbol detector based

on the VB framework. In order to arrive at the algorithm, the

functional form of the free distributions in (6) has to be derived.

The received signal model considered is (1). Additionally, the

nonlinearity in the received signal model is simplified by locally

linearizing the set of phasors ejθlk(n) at time instant n using first

order Taylor series approximation; i.e., ejθlk(n) ≈ ejθ̂lk(n−1)(1+
j(θlk(n)− θ̂lk(n− 1))), where {θ̂lk(n− 1)} l = 1, . . . , Nt, k =

1, . . . , Nr are the phase estimates from the previous time instant

n − 1.

Based on (6), the free distribution for the phase noise samples

q
(i)
θ (θ(n)) is given ∀l ∈ {1, . . . , Nt} in the ith iteration as

q
(i)
θ (θ(n)) ≈ P (θ(n)|y(n), s(n)), where, (7a)
∑

s(n)∈C
s(n) 6=sl(n)

q(i−1)
s

(s(n)) = q(i−1)
sl

(sl(n)), (7b)

∑

∀sl(n)∈C

q(i−1)
sl

(sl(n))sl(n) = s
(i−1)
l (n), (7c)

Varqs
{sl} ,

∑

s(n)∈C

q(i−1)
s (s(n))sl(n)sl(n)∗ − sl(n)sl(n)∗

≈ 0.

where s(n) , {s
(i−1)
l (n)},∀ l ∈ {1, . . . , Nt} is the set of aver-

age symbols transmitted by all transmit antennas, as determined

in the ith iteration. We refer readers to Appendix A for the proof

of this result. Equation (7a) shows that the free distribution of

phase that minimizes the KL distance is the posteriori pdf of

the phase noise samples given the observation at time instant

n and the soft symbols {sl(n)},∀l ∈ 1, . . . , Nt obtained based

on the free distribution of s(n). Note that the soft symbols are

computed by first marginalizing the joint posteriori pdf of all

symbols to find the posteriori of each symbol at time instant n

as in (7b). This is then used to determine the average symbol or

a soft symbol as in (7b) and (7c). The approximation of the free

distribution in (7a) is tight when Varqs
{sl} ≈ 0, which implies

that the soft symbols are explicitly treated as the true value of

s(n) for the computation of free distribution of θ(n).
Further, based on (6), the free distribution of the transmitted

symbols q
(i)
s (s(n)) is given as in (8a). The constant C1 in

(8a) normalizes the probability mass function (pmf), and is

independent of the symbols transmitted. It is interesting to note

the dependencies of the symbol posteriori pmf are as follows

• The posteriori mass of each symbol depends on the distance

of the symbol from the received signal after being de-rotated

with the estimated phase noise values E
q
(i)
θ

(θ(n))
{θlk(n)}.

• Elements of the covariance matrix of the phase noise esti-

mates in (8c) are weighted by the magnitude of the symbol

transmitted by the antennas.

Note that it is possible to replace the exponent I2 in (8a) with

any other appropriate metric (like the one in derived [3]) for the

computation of posteriori symbol pmfs.

The phase noise estimates and the covariance matrix are

obtained using an Extended Kalman Filter (EKF) [4], [15]. This

q(i)
s

(s(n)) = C1P (s(n))

Nr∏

k=1

exp{−I2}, where,

I2 ,

Nr∑

k=1

∣∣∣∣yk(n) −
Nt∑
l=1

hlksl(n)ejθ̂lk(n−1)

∣∣∣∣
2

2σ2
w

+

Nt∑

l=1

|hlksl(n)|2 Mlk,lk(n)

2σ2
w

+

Nt∑

l=1

Nt∑

m=1
m6=l

hlkh∗
mksl(n)sm(n)∗Mlk,mk(n)ej(∆̂lm)

2σ2
w

,

where, ∆̂lm , θ̂lk(n − 1) − θ̂mk(n − 1). (8a)

θ̂lk(n) = E
q
(i)
θ

(θ(n))
{θlk(n)} (8b)

Mlk,mk(n) = E
q
(i)
θ

(θ(n))
(θlk(n) − θ̂lk(n − 1))(θmk(n) − θ̂mk(n − 1)), (8c)



is a reasonable choice for the linearized observation model since

qθ(θ(n)) in (7a) is Gaussian, given the joint Gaussianity of y(n)
and θ(n). Note that it is possible to use other nonlinear filters

that may not require linearization of the observation model [4],

[15]. The linearized state space model for deriving the EKF is

given as

yk(n) =

Nt∑

l=1

hlk(n)ejθ̂lk(n)(1 + j(θlk − θ̂lk))sl(n) + wk(n),

θlk(n) = θ
[t]
l (n − 1) + θ

[t]
k (n − 1) + ∆l,t(n) + ∆k,r(n),

l = 1, . . . , Nt, k = 1, . . . , Nr, n = 1, . . . , Nf .

1) Algorithm Summary: Based on the free distributions qs(s)
and qθ(θ) derived, it is now possible to explain the joint

estimator-detector algorithm that naturally falls out of the VB

framework as follows

• Initialize sl(n) ∀l ∈ {1, . . . , Nt} before the first iteration.

Use sl(n) as the true value of transmitted symbols to

compute phase noise estimates {θ̂lk(n)} and the covari-

ance matrix at time instant n based on the posteriori pdf

P (θ(n)|y(n), s(n)).
• Based on the phase estimates and its covariance matrix,

compute the posteriori pmf of the symbols from (8a) and

then soft/average symbols using (7b) and (7c).

• Iterate between the estimator and the detector till the

values of {sl(n)} and {θ̂lk(n)}, l = 1, . . . , Nt, k =
1, . . . , Nr, n = 1, . . . , Nf converge. After convergence, the

detector computes the final hard decisions as

ŝ(n) = argmax
s(n)∈C

qs(s(n)).

2) A Short Note on Complexity: Computation of the posteriori

symbol probabilities according to (8a) involves all possible

combination of symbols transmitted from each antenna. This

is known to incur high computational complexity, which can

be a limiting factor as in any large antenna systems and large

constellations [16], [17]. However, it is possible to use a sphere

decoder algorithm [16], [17] that helps to reduce the original

signal space to a much smaller subset. Hence the posteriori

symbol probabilities are only computed for the smaller subset

of symbols as decided by the sphere decoder algorithm.

VI. SIMULATION RESULTS

In this section, we present results that demonstrate the per-

formance of the newly proposed receiver in terms of symbol

error probability (SEP) versus signal-to-noise ratio (SNR) per

bit. We simulate a MIMO system with Nt = 2 transmit antennas,

and Nr = 2 receive antennas. The channel is assumed to be

Rayleigh fading,i.e., hkl(n) ∼ CN (0, 1) and is assumed to be

known (estimated). It is assumed that the 3dB bandwidth of the

phase noise process is much higher than the doppler spread of the

channel. The data transmitted from each antenna is considered to

be uncoded and independent of each other. We consider an equal

energy constellation - 16-phase shift keying (PSK) and a non-

equal energy constellation - 16-quadrature amplitude modulation

(QAM) scheme. The phase noise at all the antennas are samples

from a Wiener process with innovation variance σ2
l,t = σ2

k,r =
0.5 × 10−3 rad2, which corresponds to a strong phase noise

scenario. The performance of the proposed detector is compared

to that of the optimal maximum-likelihood (ML) detector with

perfect phase information. Each data frame is considered to be

2000 symbols long with 5 pilot symbols being transmitted at

the beginning of each frame. Further a pilot symbol is also

transmitted every 15 data symbols resulting in an overall pilot

density of around 7.0%. The number of iterations for estimating

phase noise and detecting symbols in a time instant n is fixed

to 5. Note that SNR/bit used in the simulations depends on the

ratio of total useful signal power from all transmit antennas to

the AWGN noise at each receive antenna.

15 20 25 30 35
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−4

10
−3

10
−2

10
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SNR/bit
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SEP vs SNR/bit 16PSK

ML Detector with known phase

VB Detector, imperfect decision feedback

VB Detector, perfect decision feedback

Fig. 1: Comparison of SEP performance between the Optimal ML with perfect
phase knowledge and VB based receiver for 16-PSK, σ2

l,t
= σ2

k,r
= 0.5×10−3

rad2.

Fig. 1 illustrates the performance of VB detector (with imper-

fect feedback to estimator) with the optimal ML detector having

perfect phase noise information, and perfect decision feedback

from the detector to the estimator for 16-PSK modulation

scheme. We observe that in the low SNR regime, performance is

poor compared to the ML detector with perfect phase information

and no improvement is noted even with increase of pilot density

to 10%. With increase in SNR, the performance of the detector

improves till an error floor is observed at SEP of around 10−3.

In Fig. 2, the SEP performance of 16-QAM is presented. It is

observed at that low SNR, the performance of the VB detector is

similar to that of the ML detector with perfect phase information

and the VB detector with perfect decision feedback. As the

SNR increases, phase noise becomes more dominant compared

to AWGN noise, and the gap between the performance of the two

schemes widens till an error floor is observed at SEP of around

4 × 10−3.

In general, for both constellations, it is unclear whether the

error floor observed is a result of the sub-optimality of the

detector, or the performance of the estimator. In this regard, it

is important to determine a lower bound on the performance

of the estimator that incorporates soft symbol decisions (where

the symbols are assumed to be random variables themselves)

and also develop the estimator that achieves that performance,

assuming that the bound is tight. Further for both PSK and QAM

constellations, we observe that the symbol posteriori distribution

becomes multi-peaked in high SNR scenarios, and the symbol

decisions from the VB detector depends on the initial value of

the estimator-detector algorithm. This is however not observed

in low SNR scenarios.



I1 =
−1

2σ2
w

Nr∑

k=1

∑

s(n)∈C

q(i−1)
s (s(n))



yk(n)yk(n)∗ −
Nt∑

l=1



|hlksl(n)|2 +

Nt∑

m=1
m 6=l

hlkh∗
mksl(n)sm(n)∗ej(θlk(n)−θmk(n))





−yk(n)∗
Nt∑

l=1

hlksl(n)ejθlk(n) − yk(n)

Nt∑

l=1

h∗
lksl(n)∗e−jθlk(n)

)
, (A-2)

=
−1

2σ2
w

Nr∑

k=1



yk(n)yk(n)∗ +

Nt∑

l=1



|hlksl(n)|2 +

Nt∑

m=1
m 6=l

hlkh∗
mksl(n)sm(n)∗ej(θlk(n)−θmk(n))



 − yk(n)∗
Nt∑

l=1

hlksl(n)ejθlk(n)

−yk(n)

Nt∑

l=1

h∗
lksl(n)∗e−jθlk(n) −

Nt∑

l=1

Var{sl}

)
, (A-3)

Put Var{sl} =
∑

s(n)∈C

q(i−1)
s (s(n))sl(n)sl(n)∗ − sl(n)sl(n)∗ ≈ 0.
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Fig. 2: Comparison of SEP performance between the Optimal ML with perfect
phase knowledge and VB based receiver for 16-QAM, σ2

l,t
= σ2

k,r
= 0.5×10−3

rad2.

VII. CONCLUSIONS

In this paper, we motivate the problem of receiver design in

the presence of time varying random oscillator phase noise in a

MIMO system. We observe that there are interesting scenarios

where the time varying oscillator phase noise varies much faster

than a time varying channel. In such scenarios, the impact of

phase noise need not be moved into the channel matrix for

the purpose of complexity reduction. Also we observe that the

phase noise in MIMO impacts both phase and amplitude of the

signal, unlike in SISO systems. Then using the VB framework,

an iterative estimator-detector algorithm is developed for data

detection in the presence of Wiener phase noise. The SEP of

the newly proposed iterative scheme is compared with that of

the optimal ML detector with perfect phase information and the

VB detector with perfect decision feedback for 16-PSK and 16-

QAM modulation schemes. In both modulation schemes, the gap

of performance of the proposed technique with respect to the

optimal ML detector with perfect phase information increases

with SNR till an error floor (due to phase noise) is observed.

APPENDIX A

DERIVATION OF THE POSTERIORI PHASE PROBABILITIES

From (6), the free distribution of θ(n) is as follows

q
(i)
θ (θ(n)) = CP (θ(n))

× exp






∑

s(n)∈C

q(i−1)
s (s(n)) lnP (y(n)|s(n), θ(n))

︸ ︷︷ ︸
I1






.

Simplifying the exponent I1, we have

I1 =
∑

s(n)∈C

q(i−1)
s (s(n)) ln

Nr∏

k=1

P (yk(n)|s(n), θ(n)), ,

=
∑

s(n)∈C

q(i−1)
s (s(n))

Nr∑

k=1

lnP (yk(n)|s(n), θ(n)),

=
−1

2σ2
w

Nr∑

k=1

∑

s(n)∈C

q(i−1)
s (s(n))

×

∣∣∣∣∣yk(n) −
Nt∑

l=1

s(n)ejθlk(n)hlk

∣∣∣∣∣

2

. (A-1)

Using the simplification for I1 from (A-2), the posteriori phase

pdf is as follows

q
(i)
θ (θ(n)) = CP (θ(n))

× exp






Nr∑

k=1

−

∣∣∣∣yk(n) −
Nt∑
l=1

sl(n)ejθlk(n)

∣∣∣∣
2

2σ2
w






= CP (θ(n))P (y(n)|θ(n), s(n)), (A-4)

= CP (y(n), θ(n)|s(n)). (A-5)

The constant C is pdf normalizing factor such that q
(i)
θ (θ(n))

integrates to unity. Its value can be determined as

C = P (y(n)|s(n)).



I2 =
−1

2σ2
w

Nr∑

k=1

E
q
(i)
θ

(θ(n))

(
yk(n) −

Nt∑

l=1

hlksl(n)ejθlk(n)

) 

yk(n)∗ −

(
Nt∑

l=1

hlksl(n)ejθlk(n)

)∗


 ,

=

Nr∑

k=1

−1

2σ2
w

{
yk(n)yk(n)∗ +

Nt∑

l=1

(
|hlksl(n)|2

(
(1 + E

q
(i)
θ

(θ(n))
(θlk(n) − θ̂lk(n − 1))2)

)

+

Nt∑

m=1
m 6=l

hlkh∗
mksl(n)sm(n)∗

(
ej(θ̂lk(n−1)−θ̂mk(n−1))(1 + E

q
(i)
θ

(θ(n))
(θlk(n) − θ̂lk(n − 1))(θmk(n) − θ̂mk(n − 1)))

)

−yk(n)∗
Nt∑

l=1

hlksl(n)ejθ̂lk(n−1) − yk(n)

Nt∑

l=1

h∗
lksl(n)∗e−jθ̂lk(n−1)

}
, (B-2)

=

Nr∑

k=1

−

∣∣∣∣yk(n) −
Nt∑
l=1

hlksl(n)ejθ̂lk(n−1)

∣∣∣∣
2

2σ2
w

−
Nt∑

l=1

|hlksl(n)|2 Mlk,lk(n)

2σ2
w

−
Nt∑

l=1

Nt∑

m=1
m 6=l

hlkh∗
mksl(n)sm(n)∗Mlk,mk(n)ej(∆̂lm)

2σ2
w

,

where, ∆̂lm , θ̂lk(n − 1) − θ̂mk(n − 1). (B-3)

Plugging the value of C in (A-4), the free distribution of θ(n)
can be obtained as

q
(i)
θ (θ(n)) = P (θ(n)|y(n), s(n)), where, (A-6)
∑

sk∈S
s(n)∈C

q(i−1)
s

(s(n))sl(n) = s
(i−1)
l (n). (A-7)

APPENDIX B

DERIVATION OF THE POSTERIORI SYMBOL PROBABILITIES

From (6), the free distribution of s(n) is as follows

q(i)
s

(s(n)) = C1P (s(n))

× exp






∫

θ

q
(i)
θ

(θ(n)) lnP (y(n)|s(n), θ(n))dθ(n)

︸ ︷︷ ︸
I2






,

The exponent I2 can be simplified as follows

I2 =

∫

θ

q
(i)
θ

(θ(n)) ln

Nr∏

k=1

P (yk(n)|s(n), θ(n))dθ(n),

=

∫

θ

q
(i)
θ

(θ(n))

Nr∑

k=1

lnP (yk(n)|s(n), θ(n))dθ(n),

=
−1

2σ2
w

Nr∑

k=1

∫

θ

q
(i)
θ

(θ(n))

×

∣∣∣∣∣yk(n) −
Nt∑

l=1

hlksl(n)ejθlk(n)

∣∣∣∣∣

2

dθ(n), (B-1)

Hence we obtain the result in (8a).
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