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Abstract—Research into localization has produced a wealth of 

algorithms and techniques to estimate the location of wireless 

network nodes, however the majority of these schemes do not 

explicitly account for non-line of sight conditions. Disregarding 

this common situation reduces their accuracy and their potential 

for exploitation in real world applications. This is a particular 

problem for personnel tracking where the user’s body itself will 

inherently cause time-varying blocking according to their 

movements. Using empirical data, this paper demonstrates that, 

by accounting for non-line of sight conditions and using received 

signal strength based Monte Carlo localization, meter scale 

accuracy can be achieved for a wrist-worn personnel tracking tag 

in a 120 m2 indoor office environment. 

Keywords-body centric; localization; channel; off-body; 

propagation; NLOS; RSSI; Monte Carlo; tracking 

I.  INTRODUCTION 

One of the most desirable features for any personnel 

tracking system is the ability to localize to meter scale accuracy 

using tags that are low-cost, long life and unobtrusive. The 

ability to locate persons to this degree of accuracy, i.e., a root 

mean square error of less than 2 m, has important commercial 

and social applications. For example, in healthcare applications 

high resolution capability allows the accurate monitoring of 

nursing or medical staff and patient interactions, i.e., bathing, 

mealtimes, distribution of medication and improved 

traceability in terms of disease and infection control. While 

commercial deployments of personnel tracking systems feature 

a range of technologies such as ultra-wideband, Wi-Fi and 

proprietary radio, these systems struggle to achieve verifiable 

meter scale accuracy in the presence of the user with sufficient 

energy efficiency, battery longevity and wearability.  

One approach to personnel localization is to utilize ultra-
low cost active RFID. While some active RFID systems are 
used to establish per-room connectivity-based localization, 
received signal strength indication (RSSI) information may be 
used to improve accuracy through trilateration. However, radio 
wave interactions with the user’s body, which are uncontrolled 
and largely unpredictable, tend to degrade localization 
accuracy and add significant complexity. In particular, the 
blocking of the line of sight (LOS) between a tag and a receiver 
can cause significant range over-estimates [1]. Therefore, 

consideration of the non-LOS (NLOS) conditions presented by 
the unique environment of the human body may lead to 
improved accuracy in personnel localization. 

The effect of a user’s orientation upon RSSI has been noted 

in the literature [2] and although NLOS detection algorithms 

exist [3, 4] they have been largely disregarded in the design of 

localization systems resulting in location estimates that are 

skewed from their true positions [l]. It is known that to 

accurately represent LOS and NLOS conditions in the same 

environment the channel model requires different parameters 

for these two conditions. Alternatively, it has also been 

suggested that to compensate for NLOS conditions one may 

use statistical methods [5]. One such method is Monte Carlo 

Localization (MCL) [6] and since its introduction into wireless 

sensor networks it has seen various improvements that take 

advantage of ancillary information such as confidence 

measures [7] or inferred orientation data [8]. However, these 

schemes only use the connectivity information between nodes, 

unlike the work in [9] which also uses the range information 

provided by the signal strength. While signal strength 

measurement is not as accurate as time difference of arrival or 

time of arrival [10] it requires no extra hardware to implement 

and instead relies upon the standard RSSI values reported by 

most packet-based radio transceivers. This means that unlike 

other wrist mounted schemes [11] this localization method may 

be implemented using commercial off the shelf hardware. 

In this work empirical data was obtained from a wrist 

mounted node that uses a MCL scheme to obtain a position 

estimate within an open plan office environment. The 

algorithm implementation is outlined in the next section which 

covers both the channel model and RSSI based formulation of 

MCL. Section III contains a description of the hardware and 

software developed for this set of experiments while also 

outlining the environment and scenarios performed. This is 

followed in Section IV by a description of the various channel 

models, leading on to a presentation of the results in Section V. 

Concluding remarks and the direction of future research are 

discussed in the final section. 
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II. ALGORITHM OVERVIEW 

A. Channel model 

The most common channel model found in signal-strength 
localization literature, and the one used in RSSI-based Monte 
Carlo Localization (RMCL) [9], is based on the log-distance 
path loss model. Here the received power at a distance d is 
given as 

                       
 

  
      

where P0 is the received signal strength in dBm at a 
reference distance d0, and np is the path loss exponent. In (1), 
Xn is the noise component of the received signal (in dB) and is 

modeled as a Gaussian distribution with variance n
2
 and mean 

of zero.  

B. RSSI-based Monte Carlo Localization  

The principal idea behind RMCL is to represent the 
posterior distribution of the node’s location by a set of samples. 

Each sample point,   
       , has an associated weight   

 . 
Where k is the time step, i=1,2,… Ns, and Ns is the total number 
of samples.  

At each time step a random sample of possible locations are 
drawn from the sample space according to           . This is 
the transition distribution which describes how the new 
location estimates are distributed in relation to the previous set. 
For the experiments in this paper the transition distribution is 
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where dmax is the maximum distance between sequential 

location predictions and        
      

   is the Euclidean 

distance between   
  and     

 . For each sample, its weight can 
be calculated as follows,  

   
   

  
  

   
    

   

   

where   
   is the non-normalised weight. Setting the 

transition prior as the importance density allows recursive 
calculation of the non-normalized weight using  

   
        

         
    

where mk is the set of measurements made at time step k. 
Following the assumption that RSSI is normally distributed the 
probability of a given signal strength being received a given 
distance is 

         
 

    
     

              
   

  

   
   

where P is the power received and dij is the distance 
between node i and j. With the set of samples and their 
associated weights the posterior distribution is approximated as 

               
        

  

  

   

  

where      is the Dirac delta function. To avoid the 
degeneracy problem, where all but one sample will have a 
negligible weight value, an estimate of the effective sample 
size is calculated using the following formula. 

       
 

    
  

   
   

   

If       is below the threshold value of Ns/10 then systematic 
resampling is applied and each sample weight is reset to 1/Ns.  

When the algorithm is started,       is initialized as a 
random collection of samples selected uniformly throughout 
the sample area, with all the weights set to 1/Ns. With this as 
the starting point, RMCL predicts possible new locations and 
calculates their weights at every time step. Each time step is 
also accompanied by a check of the effective sample size with 
re-sampling taking place if it is found to be too small. At each 
time step the location is estimated as the weighted mean of all 
the sample points, as is shown in (8) 

        
  

  
     

  

III. EXPERIMENTAL SETUP 

A. System Overview 

The localization system was based on activCampus, a 
commercial, ultra-low power, secure, active RFID system 
supplied by ACT Wireless Ltd. The selected arrangement 
consisted of a wrist-worn tag acting as the mobile node. Four 
activReader RFID reader units operating at 868 MHz took the 
place of anchor nodes. These readers were placed at the four 
corners of an open plan 120 m

2
 modern office area within the 

ECIT Institute, see Figure 1.  

In this work, the wrist worn tag was an eZ430-Chronos 
from Texas Instruments that was programmed with custom 
firmware that allowed control of the interrogation rate for each 
experiment. The proprietary active RFID reader units utilized a 
meander line printed monopole antenna and allowed all 
interrogations from the RFID tags to be forwarded using an on-
site Wi-Fi network for processing at a remote server. This 
allowed the data analysis to be conducted off-line, in post 
processing. Overall, the system was configured to allow 
synchronous recording of RSSI at multiple readers during each 
interrogation. 

The tag’s interrogation rate was set to 6.67 Hz, allowing 
RSSI to be sampled every 150 ms. The proprietary protocol 
used in the measurement system included a packet sequence 
number which allowed the identification of any missing RSSI 
data during initial post-processing. Missing values were then 
synthesized via linear interpolation with the surrounding data. 
To reduce the effect of small scale fading, the RSSI data was 
smoothed using a moving average window of 18 samples long 
(2.7 s).  

B. Environment and Scenario Overview 

A number of experiments were conducted using the system 
described above where a user with the wrist-worn RFID tag 
navigated a number of different paths within the testing 
environment. A single tag was used for all scenarios and it was 
always worn on the subject’s left wrist. The same subject 
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(weight 83 kg, height 182 cm) was used for all tests. 
Additionally during these measurements great care was taken 
to ensure the immediate area was unoccupied as it was 
anticipated that other pedestrians would act as slow moving 
scatterers and shadowing objects [12]. 

The building was of recent construction, consisting mainly 
of metal studded dry wall with a metal tiled floor covered with 
polypropylene-fiber, rubber backed carpet tiles, and a metal 
ceiling with mineral fiber tiles and recessed louvered 
luminaries suspended 2.7 m above floor level. This office 
measured 10×12 m and contained a number of desks 
constructed from medium density fiberboard, PCs and, low-
level soft partitions, which have a maximum height of 1.3 m. 
To minimize multipath generated from the partitions, the 
readers were placed 2.2 m above the floor. 

Figure 1.  Office floor plan showing reader positions and path waypoints. 

For each of the three scenarios carried out in this 
environment the user travelled at a constant target speed of 
0.6 m/s from the starting location to a different point within the 
office and then walked back to the starting location. The 
starting and end locations are marked by the points p1 to p6 in 
Figure 1. The tag’s location on the left wrist creates a situation 
in each scenario in which the tag is NLOS to two of the readers 
and LOS to the remaining readers. Combining time and known 
location information of the tag allowed manual differentiation 
of the channel into LOS and NLOS.  

IV. CHANNEL MODELING 

In these experiments four different arrangements of channel 
models were tested. First was a simple model that was 
generated from all of the recorded RSSI sample data. The 
second split the data into LOS and NLOS models, based on the 
manual differentiation mentioned above. The third saw the data 
split into four models, one for each of the readers. The final 
arrangement had eight models which are made up of separate 
LOS and NLOS channel models for each reader.  

Only the data gathered in the first two runs of each scenario 
was used to create the channel models. The data from the third 
run was reserved for testing the models and accuracy of the 
localization algorithm. This ensures that the results obtained 
were not specific to the data from which the channel was 
estimated. For each of the channel scenarios under 
consideration the model parameters are estimated using 

MATLAB by calculating the curve following (1) that best 
fitted the data in a least squares sense.  

TABLE I.  SINGLE CHANNEL MODEL (ALL DATA) 

Channel Parameters 

P0 (dB) np  (dB) 

–61.4 1.363 5.488 

 

TABLE II.  LOS AND NLOS CHANNEL MODELS 

Channel 
Channel Parameters 

P0 (dB) np  (dB) 

LOS –59.1 1.526 5.54 

NLOS –63.6 1.209 5.27 

TABLE III.  SEPARATED CHANNEL MODELS FOR EACH READER 

Reader 
Channel Parameters 

P0 (dB) np  (dB) 

1 –61.6 1.393 5.65 

2 –62.7 1.359 5.24 

3 –58.1 1.633 5.15 

4 –58.9 1.551 5.51 

TABLE IV.  CHANNEL MODELS SEPARATED BY READER AND LOS 

Reader Channel 
Channel Parameters 

P0 (dB) np  (dB) 

1 
LOS –58.5 1.643 5.58 

NLOS –64.7 1.143 5.37 

2 
LOS –60.8 1.490 5.56 

NLOS –64.4 1.243 4.76 

3 
LOS –55.3 1.829 5.20 

NLOS –61.4 1.404 4.83 

4 
LOS –58.6 1.498 5.40 

NLOS –58.5 1.610 5.59 

 

V. RESULTS 

The location error was calculated as the Euclidean distance 
between the tag’s estimated location using RMCL and the tag’s 
true location. To provide an overall accuracy figure, the root 
mean square (RMS) of the error was used since it is better at 
representing large but infrequent localization errors. Note that 
much of the localization literature quotes the more favorable 
50

th
 percentile (median) or even mean error.  

The RSSI resolution of the readers was 0.5 dB which gives 
an estimated range variance of approximately 1.3 m at 15.6 m, 
the length of the longest diagonal in the office, and a variance 
of approximately 0.6 m at 7.8 m, the distance from each reader 
to the centre of the room. 
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At each time step RMCL was given the manually 
determined current LOS condition between the tag and the 
individual reader and used this information to select the 
appropriate channel model. The selection of the channel model 
was restricted depending on how many channel models were 
being tested. Additionally, since RMCL is statistically based, 
the calculated location estimate will vary over different 
iterations of the same data. To account for this the results 
shown in Table V are the average error of 100 trial runs.  

TABLE V.  OVERVIEW OF RMCL RMS ERROR 

Scenario 
Number of Models 

User Path 

Average 

Speed 

(m/s) 1 2 4 8 

1 1.27 1.20 0.68 1.18 p6, p1, p6 0.68 

2 3.09 2.98 0.69 2.63 p5, p2, p5 0.69 

3 2.40 1.98 0.64 1.29 p4, p3, p4 0.64 

4 2.80 2.33 0.75 1.92 p3, p1, p3 0.75 

5 2.06 1.77 0.70 1.40 
p6, p1, p2, 

p5, p2, p1, p6 
0.70 

6 2.37 2.08 0.74 1.56 
p6, p1, p3, 

p4, p3, p1, p6 
0.74 

All 2.36 2.07 1.87 1.65 N/A N/A 

 
It can be seen that, in general, as more models were added 

to account for the various LOS and NLOS situations the more 
accurate the location estimate became. Viewing these errors on 
a cumulative distribution function (CDF) graph, see Fig. 2, 
shows that every refinement on the channel model increases 
the location accuracy of the system, despite any deviation from 
this trend by the result of an individual scenario. An example 
of this deviation can be seen in Scenario 1 (Table V). 

 

Figure 2.  The cumulative destribution function of RMS error in all scenarios 

using all channel model arrangements. 

Inspection of the results from the individual scenarios 
reveals that the greatest improvement in accuracy is in Scenario 
3 which has an improvement of over 46% (Table V). The cause 
of the improvement can be seen by examining a typical 
estimated path for the two of the channel model arrangements. 
Inspection of Fig. 3 shows that with only one channel model a 
major deviation from the true path has been calculated as the 
user travels from p4 to p3 (path up). In that situation the tag was 
in NLOS relative to its two closest readers 2 and 3, as the LOS 

paths were obstructed by the user’s body. The effect of this was 
to cause path deviation as these two readers, which should have 
the most accurate range measurement, overestimate their 
distance from the tag. This overestimation was greatly reduced 
by using differentiated (NLOS-LOS), reader specific channel 
models, as appropriate for this scenario (Fig. 4). Viewing these 
errors on a CDF, see Fig. 5, shows that 50% of all the errors are 
below 1 m in the 8 model case. However, when the number of 
channel models is reduced the localization scheme becomes 
less accurate and the median error increases to 2.17 m. 

The accuracy improvements gained by having specific LOS 
and NLOS channel models are not restricted to the simple 
linear paths displayed in the first four scenarios. They can also 
be seen in more complex paths such as those shown in the last 
two scenarios. Using only one channel model in Scenario 6 a 
significant deviation from the true path can be seen as the user 
walked in an anticlockwise direction around the office from p4 
to p6 (Fig. 6). In a similar situation to that observed in the linear 
scenarios the LOS paths to the closest readers were obstructed 
by the user’s body causing path deviation which was accounted 
for by using a more accurate channel model (Fig. 7). For the 8 
model arrangement the median error was 1.34 m and when 
using a single channel model the median error was 2.13 m. 

 

Figure 3.  A typical estimated path calculated using 1 model in scenario 3. 

 
Figure 4.  A typical estimated path calculated using 8 models in scenario 3. 
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Figure 5.   Cumulative distribution function of the RMS errors in Scenario 3 
using all four model arrangements. 

 

Figure 6.  A typical estimated path using 1 model in Scenario 6. The user 

travels clockwise (CW) from p6 to p4 then anticlockwise (ACW) from p4 to p6. 

 

Figure 7.  A typical estimated path using 8 models in Scenario 6. The user 
travels clockwise (CW) from p6 to p4 then anticlockwise (ACW) from p4 to p6. 

VI. CONCLUSION 

This paper has shown that RMCL, a statistically based 
localization method, may be used without special alteration to 
provide an acceptable localization error of less than 2.5 m 
overall for the scenarios considered in this study. In addition it 
was shown that by employing channel models that properly 
account for the difference in the signal strength characteristics 
between LOS and NLOS, RMCL may be made even more 
accurate, with a RMS error as low as 1.18 m. 

While the greatest improvement in location accuracy can be 
achieved by using a combination of LOS and NLOS models 
that are unique to every link, the associated overheads may 
prove undesirable in resource constrained systems. Moreover, 
additional anchor nodes would further increase the time needed 
to calculate the necessary localization models. Despite this, 
even two channel models have been shown to improve the 
accuracy of localization, illustrating how extra effort during 
system installation can lead to improved accuracy. The 
demonstrated ability of separate LOS and NLOS channel 
models to increase the accuracy of localization algorithms 
suggests that NLOS detection algorithms warrant further 
investigation. The presented work involved manual 
differentiation of the LOS conditions but an algorithm for 
determining the appropriate channel would be needed in order 
to expand the scope and utility of this work. In keeping with 
the RSSI ranging method used in this paper, future work will 
focus upon signal strength characterization as its primary 
channel differentiation mechanism.  
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