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Energy Cooperation in Cellular Networks with

Renewable Powered Base Stations

Yeow-Khiang Chi&, Sumei Suhand Rui Zhan§

Abstract

In this paper, we propose a model for energy cooperationdmtveellular base stations (BSs) with individual
hybrid power supplies (including both the conventionatigtnd renewable energy sources), limited energy storages,
and connected by resistive power lines for energy sharingethe renewable energy profile and energy demand
profile at all BSs are deterministic or known ahead of timeshvaw that the optimal energy cooperation policy for the
BSs can be found by solving a linear program. We show the lisridfenergy cooperation in this regime. When the
renewable energy and demand profiles are stochastic andaundgally known at the BSs, we propose an online energy
cooperation algorithm and show the optimality propertiesh@s algorithm under certain conditions. Furthermore,
the energy-saving performances of the developed offlinecatide algorithms are compared by simulations, and the
effect of the availability of energy state information (E8h the performance gains of the BSs’ energy cooperation
is investigated. Finally, we propose a hybrid algorithmttban incorporate offline information about the energy

profiles, but operates in an online manner.

Index Terms

Energy cooperation, energy harvesting, hybrid power symelllular networks, stochastic optimization.

. INTRODUCTION

In recent years, motivated by environmental concerns aedygrcost saving considerations, telecommunication
service providers have started considering the deploymErgnewable energy sources, such as solar panels and
wind turbines, to supplement conventional power in powgriase stations (BSs). In some places where the
conventional power grid is still under-developed, the dgplent of renewable energy sources is more attractive
due to the significantly higher costs, as compared to a dpedlaity, in powering BSs using conventional power

Paper presented in part at IEEE Wireless CommunicationdNeteiorking Conference 2013, Shanghai, China

* Institute for Infocomm Research, Singapore. Email: chi@y&r.a-star.edu.sg

T Institute for Infocomm Research, Singapore. Email: sunsé2n@star.edu.sg

1 Institute for Infocomm Research, Singapore and Nationaliétsity of Singapore. Email: elezhang@nus.edu.sg


http://arxiv.org/abs/1301.4786v2

sources. Examples where such a scenario occurs includeefiieychent of BSs with renewable energy sources by
Ericsson in Africal[1] and Huawei in Bangladesh [2].

Although renewable energy sources are attractive for tlwealeasons, they also suffer from significantly higher
variability as compared to conventional energy sourcesaAssult, even in BSs that deploy renewable energy
sources, conventional energy sources, such as dieselagerseor the power grid, is still required to compensate
for the variability of the renewable energy sources. Onetiral method of mitigating the variability of renewable
energy sources is through energy storage means such aseliglaod batteries. Energy storage, however, is
very costly to deploy and therefore, the amount of storagélable at BSs will usually be quite limited. A key
consideration in deploying BSs with renewable energy smsii€ minimization of the amount of conventional energy
consumed, because it is only then cost-effective to deogwable energy sources and storage. A survey of issues
involved in deploying renewable energy sources in BSs isrgin [3]. Related work on deploying renewable energy
sources in smart grids, not necessarily constrained to artoritations systems setup can be found.in [4], [5] and
the references therein.

Other than work in smart grid, a closely related area of nete in the area of energy harvesting for wireless
communications, where several authors have proposed #@edfienergy cooperation between different nodes in
a communications network; see eld. [6], and [7]. More brpatlle area of “green communications” has attracted
significant attention from the communications communitya@oent years. For an overview of the many significant
research activities in this area, interested readers nfay te, e.g., [8], [9], [10], [11], [12] and the references
therein for various issues in energy efficiency and managémecommunication systems.

In this paper, we consider mitigating the variability of emvable energy sources through geographical diversity.
We consider the case when two or more BSs are connected byr fioe® so as to allow for transfer of energy
between each other. A transfer of energy between two BSw &lo one that has excess of energy to compensate
the other that has a deficit due to either higher demand of $keswconnected to the BS, or lower generation of
renewable energy. We analyze the reduction in conventienatgy needed to power the BSs if they are allowed
to transfer energy, even when there is storage inefficiencyrasistive power loss. We consider the availability
of different information about the renewable energy sosirmed demand for our setting, and propose algorithms
that take advantage of the energy cooperation between BEtharinformation available to minimize their energy
consumption from conventional sources.

Another motivation for considering energy transfer comesnf the possibility of using the power line as a
backhaul link to enable coordinated multipoint transnass{CoMP) for cellular BSs[[13]. This results in an
attractive dual use of the power line for both energy coap@raand communication cooperation.

The rest of this paper is organized as follow. In Secfidn Ig give formal definitions and description of
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Fig. 1. System setup

our proposed energy cooperation model. In Sedfion I, welystthe optimal offline energy cooperation policy
for the case ofdeterministicrenewable energy and demand profiles in which the futurewable energy and
demand are known in advance. This setup, which has also lwesdered in energy harvesting based wireless
communications[[14],[[15], models the scenario where weehgwod approximations of the renewable energy
and demand profiles for the duration of interest and arengilio ignore small prediction errors. In Section 1V,
we consider the general case arbitrary renewable energy and demand profiles, and propose an omlergye
cooperation policy for this case. We analyze the optimadityperties of this online policy under certain conditions,
and compare its performance with the lower bound obtainedhbyoffline policy via simulation. In Sectidn]V,
we propose an online hybrid algorithm that incorporates es@ffline information about the energy profile, and
compare the performance of this hybrid algorithm to theranklgorithm. Finally, in Section VI, we conclude the

paper and discuss some possible extensions for future work.

II. SYSTEM MODEL

In this paper, our focus will be on the case of two base statinpamely BS 1 and BS 2, with individual renewable
energy generators, conventional energy sources, enenggstdevices and connected with a power line. Our model,
as depicted in Fid.]1, can be easily generalized to multipleré than two) BSs, but we consider only the case of
two BSs in this paper for simplicity.

We consider a finite-horizon time-slotted system with shateix¢, 1 <t < N, and N denoting the total number

of slots under investigation. In the following, we define #dements of our energy cooperation model with two



BSs, i.e. BS 1 and BS 2. We will usec {1,2} to denote an element at the corresponding base station.

A. Model Elements

Renewable energy generated at BS 7 and time ¢: RE;(t) > 0.

Demand at BS i and time ¢: DE;(t) > 0.

Net energy generated at BS i and time ¢: F;(t) = RE;(t)— DE;(t). This quantity can be positive, representing
a surplus, or negative, representing a deficit.

Energy stored in BS: at timet: s;(t) > 0. To model limited storage constraint, we further assypi® < Spax-

Energy charged/discharged to/from storage at BS 7 and time ¢: ¢;(t) > 0 /d;(t) > 0,d;(t) < s;(t). Intuitively,
for given BSi and timet, there is at most one af;(t) andd,(t) that is strictly positive, i.ec;(t) - d;(t) = 0.

Energy transfer from BS 1 (or 2) to BS 2 (or 1): x12(¢) > 0 (or z2; > 0). For a given time, there is at most
one ofz15(t) andz; (¢) that is strictly positive, i.ex12(t) - 21 (t) = 0.

Energy drawn from conventional energy source at BS i and time ¢: w;(t) > 0.

B. System Dynamics

We require the following equations fatorage dynamics to be satisfieds;(t + 1) = s;(t) + ac;(t) — d;(t).
Here,0 < a < 1 represents storage inefficiency, i.e. the energy lost inagea As discussed earlier, we also
require0 < s;(t) < Smax for all ¢. The combined storage dynamics and constraint leads tooth&traint:—s;(¢) <
aci(t) — di(t) < Smax — si(t). We also assume that (1) = so(1) = 0. That is, there is no energy in storage at
the initial tim@. Furthermore, the following two inequalities need to bas$ed at BS 1 and BS 2, respectively,

in order to maintain theienergy neutralization at each time:

E1 (t) + w1 (t) —C1 (t) + Oédl (t) — x12(t) + ,81‘21 (t) Z 0, (1)

Eg(t) + w2 (t) — CQ(t) + Oédg(t) — l’gl(t) + B9 (t) > 0. (2)

Here, o again represents storage inefficiency and captures in #se,dhe inefficiency in drawing energy from
storage, while) < 8 < 1 representsesistive lossin transferring energy from one BS to anothél. (1) captures
the constraint that any demand at timmat BS 1 has to be satisfied, by perhaps a combination of digeHesm
storage, transfer from BS 2, and conventional energy, @wable energy. Similarly, {2) captures the energy balance
requirement for BS 2.

1This assumption is made for simplicity of exposition and bangeneralized to arbitrary storage values.



C. Control Policy and Objective Function

In general,E; (t) and E»(t) can be modeled by a jointly distributed continuous stodbasbcess with a joint
distribution F. Using vector notation, for any scalayg(t), y2(t), . .., yn(t), we lety(t) = [y1(t), y2(t), ...,y (H)]F.
Hence, we lets(t) = [s1(t), s2(t)]” represent the state of our system at titn&imilarly, our control variablesat
time ¢ are the tuplegw(t), c(t),d(t), z12(t), z21(t)), Wherew(t) = [wi(t),w2(t)]T, c(t) = [c1(t), ca(t)]T, d(t) =
[d1(t),d2(t)]T. In general, these control variables at timare functions of the past histor{{ E(k)), 1 < k < t},
with E(k) = [E1(k), Eo(k)]”, and the joint distributionF”. A control policy r is then a sequence of these control
variableg. That is,m = {(w(t), c(t),d(t), z12(t), z21(t)),1 <t < N}.

Next, the objective of our setup is to minimize the expectegtage conventional energy consumed. That is, we

seek a control policyr* that minimizes

LN
E (N ; (w1 (t) + wz(ﬂ)) ;

where the expectation is taken with respect to the jointitigion 7', and under the control policy*.
Remark 2.1:Another valid cost criteria is to leN — oo and minimize the long-run expected average conven-
tional energy cost. That is, we wish to minimize

. 1 o
limsup E (N Z (wi(t) + wg(t))> .

N—oo =1
This criterion has the advantage of being insensitive tosthgting state, but intuition about our model can be more
easily obtained wheV is finite. In this paper, we will restrict our attention to fmiV for simplicity.
The optimal control policy for our model, as currently forlamed, is open. In the rest of this paper, we will

consider a number of special cases in which we can obtain ssefel insight on this problem.

[1l. OFFLINE ALGORITHM WITH DETERMINISTIC ENERGY PROFILE

The first restriction that we make to this model is to consaleleterministic energy profile, with the net energy
profile E;(t) and E2(t) being known to both BSs for ail In this case, our model reduces to the following linear
program.

Theorem 1:When the net energy profileB; (¢) and E»(t) are deterministic and known to BS 1 and BS 2 for

all ¢, the optimal control policys™, is found by solving the following linear program.
N
mgn Z(wl (t) + wa(t))
t=1

2The use of the symbok to represent a control policy is standard in the controldgic programming literature. With an abuse of
notation, we will also be using the symbmolto represent the number 3.14159... in our numerical sinousgt It will be clear from context

whether we are using the symbwlfor a control policy or the number.



subject to (forl <t < N)

s(t+1) = s(t) + ac(t) — d(t), 3)
Ei(t) + wi(t) — ar(t) + adi(t) — 12(t) + Brai(t) = 0, 4)
Ea(t) + wa(t) — ca(t) + ada(t) — 21(t) + Br12(t) > 0, (5)
0,017 < s(t) < [Smax, Smax] "+ (6)
d(t) < s(t), (7)
s(1) = 0,c(t),d(t) > 0,212(t), 221 (t) > 0. (8)

Proof: The reduction to the linear program follows from the assuompthat the energy profiles are known
for all ¢. In this case, the objective function simply reduces to thm ©f the conventional energy required at
each timet. Note that in the above problem, we do not explicitly put tlstraintsc;(t)d;(t) = 0, i = 1,2,
andz12(t)z91(t) = 0 for any givent. However, it can be shown that the optimal solution of thisbtem always
satisfies these constraints, and thus there is no loss ahali in removing such constraints. [ |

It is easy to see that there can be several solutions achigkizn same objective value in the linear program
formulation in Theoremll1. In addition to minimizing the egedrawn from the grid, a secondary objective could
be to maximize the sum of the energy stored in the BSs’ steragdmeN + 1, so that the stored energy could be
used in future time blocks to reduce the energy drawn frongtige In this case, we can add another optimization
step to maximize the energy stored in the base stations atXim- 1, subject to the constraint that the minimum

amount of energy is drawn from the main grid. This is shownrhia following algorithm.

Algorithm 1 Offline storage maximization with minimum conventional gyyeconsumption
1: Input: Ey(t) and Ex(t) for 1 <t < N

2: Solve Linear program in Theorelm 1 and outpdt the optimal value of the linear program.

3: Solve the following linear program

max s1(N +1) + so(N +1)

subject to (forl <t < N)
N

> (wi(t) + wa(t)) < WA,

t=1

Equations[(B) to[(8)

4: Output: 7*, the optimal policy that minimizes energy consumption arakimizes storage at tim&/ + 1
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Fig. 2. Conventional energy consumed versus storage ftarelift 6

The assumption of deterministic energy profile models thgecahen the demands and renewable energy
generation can be well approximated for< ¢ < N; i.e., the case when the error in predicting the demand
and renewable energy generated is small. Furthermoresadtallows us to gain insight into situations where it is
beneficial for BSs to cooperate with each other. Intuitivelyergy cooperation is helpful whenever the net energy
generated at the two BSs are sufficiently uncorrelated orcantelated, as will be shown next.

To demonstrate the benefits of energy cooperation for two B&smodel £ (t) and Ex(t) with the following

energy profiles.

Ei(t) = Asin(wt), €)

Es(t) = Asin(wt + 0). (10)

Here, the correlation between the net energy profiles at BE8&i12 is measured by the phase shifT his approach
of modeling correlation has been used in related contegh as in work on communications with energy harvesting
devices|[7].

Energy saving versus storage for differefit We now show some simulation results on the energy saving
versus storage for different values 6f We set the following valuesv = 27/24, A = 3, 0 < t < 239,
0 € {n/4,7/2,3n/4,7}, B = 0.8 anda = 0.9. The results are plotted in Fig] 2. We compare the average
unnormalized cosEfi%(wl(t) + wy(t))/2 against that of a single BS having the energy profile_in (9ttptl in
green in the figure).

As we can see from the figure, BSs’ energy cooperation helgemeral as the average cost per BS for the two

cooperating BSs is lower than that of a single BS. Asaries fromr /4 to 7, the cost per BS decreases as the

energy profiles of the two BSs become more anti-correlated.
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As storage increases, it is also clear that the cost deceaisee more of the excess energy generated can
be stored for later use, when there is a deficit. This storagesfit, however, decreases withincreasing tor.
Increasing) to = signifies an increase in geographical diversity, resulimthe ability to compensate for deficit at
one BS with excess from the other BS. Whee- 7, there is little benefit from increasing storage.

Energy savings versusfor fixed storageTo show the effect of more clearly, we now keep the storage fixed
at Spax = 1 and varyé from 0 to 27. The rest of the parameters are kept fixed. In Eig. 3, we pltpércentage
cost savings, relative to the energy cost of a single BS whighenergy profile of{9), against different valuesfof
As we can see from the figure, the saved cost increasésvages from0 to , at which point the energy profile
of BS 2 is anti-correlated with BS 1. This allows effectivargmensation through energy transfer between the two
BSs. Asf varies fromr to 27, the energy profile becomes highly correlated again, lieguih fewer opportunities

to perform energy transfer between the two BSs.

IV. ONLINE ALGORITHM WITH STOCHASTIC ENERGY PROFILE

We now consider the more practical case when the net enetagpytlaBSs are stochastic and not known ahead of
time. We propose an online energy cooperation algorithnedas a greedy heuristic for minimizing conventional
energy usage in Section TVFA. We then analyze some progedfighis algorithm in Section IV-B. In particular,
we state some optimality properties under specific energfilgs. Finally, in Sectiof IV-C, we provide simulation
results on the performance comparison between the onlgaitim versus the optimal offline algorithm proposed
in Section1I.

To describe the algorithm, we first assume> 0 and 5 > 0 to avoid the complications of dealing with the case

of no storage ¢ = 0) or no cooperation between BSS £ 0).



A. Greedy Online Algorithm

Our greedy algorithm follows from considering a single stag of the linear programs given in the previous
section with arbitrary storage states. That is, with= 1, but with the additional condition that the initial storage
states need not be equal to zero. We now present our algoaithfollow.

Greedy Algorithm step 1: Greedy minimization of energy drdwm the main grid. Assume that the initial
storage values are; for BS 1 ands, for BS 2. Then, we solve the following linear program (for atidnal

simplicity, we suppress the dependence on time)

min (w; + wa)

subject to

0,07 < [s1,82]" + ac — d < [Smax: Smax]” » (11)
Ey +wy — ¢ + ady — x19 + B > 0, 12)
Es +wy — co + ady — x91 + Br12 > 0, (13)
d < [s1,s9]", (14)
c>0,d>0,x19 > 0,291 > 0. (15)

Greedy Algorithm step 2: Storage maximizatiobet V; be the optimal value of the linear program in step 1.
Then, we solve the following linear program.
max [sy, s9]7 +ac—d
subject to
wy +wg < V7,

Equations[(11) to[(15)

In the case of a single snapshot, instead of solving two tipeagrams individually, we can combine the linear
programs, as stated in the next proposition.
Proposition 1: Let 1 be the vector of all ones. For anywith 0 < v < «f, the greedy algorithm is obtained

by solving the following linear program.

min (w1 + wy) — fle([sl, 32]T +ac—d)
subject to

Equations[(11) to[(15)
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We defer the proof of this Proposition to Appendik A.
The greedy algorithm requires solving a small linear progror the case of two BSs, however, it can be further

simplified to the following equivalent algorithm in Proptisn [2 by considering the actions the BSs would take at

each timet.

Proposition 2: The greedy online linear program is equivalent to the foifmyvalgorithm, which should be
understood to be implemented for each time ¢ < N, and we again suppress the dependendefonconvenience.
Unless otherwise stated, we set allwfc, d, 212 andzo; equal to zeros in the algorithm. For each timef

Case 1 £y >0 andE; > 0. Fori € {1,2}, we first carry out the following

¢; = min{(Spax — 8i)/a, E; },
S; < 8; + ac;.
If both s1 = s9 = Shax OF 51,52 < Smax, this case terminates. Otherwise,sif < Spnax and s = Spax, BS 1
transfers energy to BS 2 for storage. That is, we set
T2 = B — ¢y,
dy = min{Bz12, (Smax — s2)/a},
89+ 89 + ach,

C2 <—02+c'2.

Similarly, if s1 < Spax @andss = Shax, the roles of BSs 1 and 2 in the above are reversed.

Case 2AE; > 0, E; < 0 and 3 > 2. In this case, BS 1 first transfers the net energy to BS 2 to eosate

for the deficit. Hence, let
x12 = min{ £y, |E2|/B},
Ej = Ey + Bxa.

Now, if Ef, =0, we carry out the algorithm in Case 1 with net energy profilgs= E; — z12 and E},. If E, <0,

we compensate for the remaining deficit via storage at BS 2 ¥We set

ds = min{|E}|/c, s2},

Eg = Eé + Otdg.
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If EY =0, this case is completed. Otherwise, we compensate froragetcat BS 1. That is, we set

di = min{|Ey|/(ap),s1},
T12 < T12 + ady,

By = Y + apd;.

Finally, if there is still a deficit remainingH}’ < 0), we compensate through conventional energy consumption
and setwy = |EY'|.

Case 2B E; > 0, F» < 0 and 8 < o2. In this case, BS 1 tries to maximize its own storage levehgishe
excess energy, subject to minimizing energy required topepreate for the deficit at BS 2. The optimal policy is
determined under the following two sub-scenarios.

e |Ey| > BE; + asq: The optimal policy is the same as Case 2B.

e |E»| < BE1 + asz: The optimal policy is given as follows. Lét ) be the indicator function.

|E2|ga82,E1 . SmaX_SI,O},

T12 = mMax {

a1 = E1 — x12,

|Eq| — Bx12 ’ 0} ’

a

dy = max {
S _
c2 = 14,—0 min {%Sz,ﬁwm - !Ezf} )
81 < 81 + acy,
S9 < S9 + acy — ds.
Case 3E, <0, F; >0andB > o?. This case is symmetric to Case 2, with the roles of BSs 1 arev@sed.
We therefore omit the description of the algorithm here.
Case 4 E; < 0 and E; < 0. In this case, each BS compensates using individual stdnagebefore helping the
other. That is, for € {1,2}, we let
di = min{si, |EZ|/a}7
Ej = E; + ad;,
S < S; — dl
If either £ > 0 or E, > 0, the algorithm reduces to the first three cases with net gnenafiles beingE; and
EL. If both Ef < 0 and EY, < 0, we compensate with conventional energy generation and;set|E’|.
Proof of this Proposition is deferred to Appendik B. For tlese of no storagex(= 0), the greedy algorithm is

modified in the obvious manner by not sending any energy tag&or drawing energy from storage. It is easy

to show that this modified greedy algorithm is optimal foriaésy energy profiles.
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For the case of no cooperatiof & 0), the greedy algorithm is again modified in the obvious marmmyenot
requiring transfers between two BSs. Optimality of the dgyealgorithm for this case will be discussed in the next

subsection.

B. Optimality Properties

Although the greedy algorithm is a conceptually simple dhéas several optimality properties that we now
analyze. To keep the discussion clear and provide intutiionthis policy, several proofs of the results are deferred
to the Appendices. We will not suppress the dependence ianthis subsection as we will consider the energy
profiles over time.

Proposition 3:If 5 =0 or 5 = 1, the greedy algorithm is optimal for arbitrary energy pesil

Proof: When 5 = 1, the system reduces to a single BS wiilit) = F;(t) + Ex(t) and0 < s(t) < 2Snax-
The optimality of the greedy algorithm can then be inferreahf [5, Theorem 1].

For the case of5 = 0, no cooperation between the two BSs is possible. Optimalitthe modified greedy
algorithm for this case follows again from the fact that theegly algorithm is optimal for individual BS§][5,
Theorem 1]. |

We now proceed to analyze the greedy algorithm for the nambary cases dd < g < 1. It will be useful to
define the following quantities. Define the unnormalizedt-to-gofunction under policyr at timet and states(t)

as

N
Jr(s(k)) = E (Z 1Twn<t>> : (16)
t=k

We also denote the optimal cost-to-go function under théraptpolicy 7* as J,-(s(t)). For our settingJ. (s(t))

has a number of useful properties, which we now state. Thdtsethat follow in the rest of this section hold for
any stochastic net energy profiles. Therefore, in our praeéswill suppress the dependence of the control policy
on the joint distribution ofF; (t) and Ex(t).

Proposition 4: Supposes’(k) > s(k) component-wise. Then,
To- (s(k)) < Jr- ('(K)) + 027 (s'(k) — s(k)). (17)

The proof is given in Appendik]C It is obvious that a systenttistg with higher stored energy states has a lower
optimum cost. Proposition] 4 quantifies the maximum add#iaost incurred by a system starting from a lower
storage state. As an example, Proposifibn 4 formalizes lvéos fact that energy drawn from the main grid is

never used to increase storage levels.



13

Corollary 1: For an optimal policy, energy is never drawn from the gridriorease the storage levels. That is,

for any A1, Ag, Ay > 0 such thatAy = Ay + As, we have

. ([s1(k)+aA1 )MWNW* ({m(k) D
Sg(k) + al\y sz(k)

which implies that the optimal energy to be drawky, should be zero.

Proof of this corollary is immediate from Propositibh 4.
The bound given in Propositidd 4 can be strengthened in wanmays if more information about the energy

profiles are known. We state the following claim that will bged in the sequel.
Claim 1: If E(t) > 0fort >k and A < (Smax — s1(k))/a,

e ([ s1(k) D < J. ([ s1(k) + 4 ) + aBA.
Sg(k‘) Sg(k‘)

The proof of this claim follows similar arguments to that iroposition[4 and uses the assumption thatt) > 0

for all ¢ > k. As the proof is quite similar to that in Propositibh 4, we lvaimit the proof here. Instead, we give
the intuition for this claim. Sincd?; (¢) > 0, the additional stored energy can only be used to compefmasny
deficit at BS 2. The total additional energy that can be seBS® isaSA. Instead of using storage at BS 1, we
can compensate using conventional energy, incurring aiiiama cost of at mosty5A.

The same proof strategy whereby a system at a differentgaagtates mimicsthe optimal policy of the same
system at storage stateécan be also used to prove the following two intuitively olmsgropositions. Due to space
limitation, proofs of Propositions|5 and 6 are omitted irsthaper.

Proposition 5: Case 1: It is optimal to store excess energy at each of BS 1 8n2l st if there is still storage
available, rather than to transfer the energy between tlenstbrage. More concretely, suppade> 0 units of

energy is available at BS 1 at timte= k£ with s1(k) + aA < Spax andss(k) + afA < Shax, then

J*<{sl(k’)—|—aA )<J*<[ s1(k) ])
so(k) B s2(k) + aBA

Case 2: Suppose that there is a deficit-ak (A > 0) at BS 1 such thaf\ < min{ws;(k), aSs2(k)}, which has

to be compensated by either storage at BS 1 or storage at BBeB, T is optimal to compensate using storage
at BS 1 rather than storage at BS 2. That is,

(1 )= (L))
sa(k) - sa(k) — A/(af)

Proof of this Proposition is deferred to Appendik D

Proposition 6: If 8 > «, then energy transfer is always optimal. That is, if at time k, E1(k) > 0 > Es(k),

we can assume without loss of generality that sending min{|E2(k)|/5, E1(k)} units of energy from BS 1
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to BS 2 at timet = k to compensate for the deficit dfx(k) is part of an optimal policy. More formally, let

Jre(s(k), By (k), E2(k)) be the optimal cost to go functiBnThen,
e (5(k), By (k) — A, By() + A) < Joe(s(k), By (K), Ea(k)).

Proof of this Proposition is deferred to Appendix E.

Remarks on Propositioi$ 5 ahti&s with Propositiori 4, the above two propositions show falfynsome intuitive
aspects of energy cooperation that we would expect in sugfstem, and also certain optimality aspects of the
greedy algorithm. Propositidd 5 shows the intuitively aus fact that it is better to store energy locally rather than
to store the energy at storage of the other BS. Propositi@mrdlizes the notion that i > «, then it is more cost
efficient to transfer energy to help the other BS rather tlwastore energy for future use, since the proportional
loss in energy storagd ( «) is higher than that in energy transmissidn+5). Observe that the conditiofi > «
is a special case of Case 2A of our greedy algorithm, in whioérgy transfer is always carried out first, rather
than compensating using local storage.

Next, using Propositions| 4 {d 6, we arrive at the optimalifyttee greedy algorithm for some special cases of
the energy profiles.

Proposition 7: If Ey(t) >0 forall 1 <t < N andg > «, then the greedy policy is optimal. By symmetry, the
same result holds if, insteadi;(t) > 0 forall 1 <t < N andg > a.

Proof of this Proposition is given in AppendiX F. The intaiti behind Propositionl 7 is that 1 (¢) > 0 for all ¢,
then energy should be transferred to BS 2 to compensate yop@ssible deficit. The condition of > « ensures
that it is always more efficient to transfer energy to BS 2 ia tlurrent time step than to store it for possible use
in later time steps.

The condition tha? > « can be relaxed, if more assumptions can be made about thgyeprefile F(t).

Proposition 8: If E;(t) > 0 and E,(t) < 0 for all 1 <t < N, then themodifiedgreedy policy, in which the
policy in Case 2A of Proposition] 2 is implemented at each timis an optimal policy. Similar to Propositidd 7,
by symmetry, the same result holdsBh(t) > 0 and E;(t) < 0.

Proof of this Proposition is given in Appendixl G. Propositl8 essentially shows that energy transfer is always
optimal if one BS is always in surplus while the other BS isa&in deficit. The intuition behind this Proposition
is the following observation. Wheg < «, it can be more efficient in general to compensate for any itléftom
local storage at BS 2 than to transfer energy from BS 1, sitarage at BS 2 can be recharged more efficiently in
future time steps withs < «. However, whenEs(t) is always non-positive, any charging of storage at BS 2 has
to come from BS 1, which incurs a proportional losslof a8 > 1 — «, resulting in any discharging or charging

being less efficient than energy transfer.

3We suppress the dependencendfon past histories here.
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C. Numerical Results

We now compare the greedy online algorithm to the optimalnaffalgorithm proposed in Sectién]lll. Due to
the lack of future information on the energy profiles, theeglealgorithm clearly cannot do as well as the offline
algorithm, except under conditions discussed in SedfioBlIWe compare the performance differences between
the two algorithms when the conditions in Section IV-B are satisfied. We adopt the same simulation setting as
in Section1Il.

Fig.[4 shows the performance gap between the greedy onigwithim and the optimal offline algorithm that
has access to the entire energy profile. Somewhat surgdyisihg greedy online algorithm suffers only a small
loss (maximum of 2.3%) compared to the offline algorithm unithe sinusoidal energy profiles assumed[ih (9)
and [10). Note that the vertical axis shows the loss of thedy®nline algorithm, which is the percentage increase
in energy consumption with respect to the optimal offlineoatpm over theentiretime horizon of N. Furthermore,
when the energy profiles at the two BSs are anti-correlafled (r), or highly positively correlatedd(small or
close to2r), the percentage loss due to using an online algorithm isifaigntly lower, and the greedy online
algorithm is almost as efficient as the offline algorithm. Tfdine algorithm, however, seems to be able to make
more intelligence use of storage, resulting in generalgghéi energy saving when the the maximum amount of
storage is increased. This suggests that greedy chargesoidhidje strategy may not be optimal in general, as can

be expected.

V. HYBRID MODEL AND ALGORITHM

In the previous two sections, we consider two cases for gnesgperation that can be thought of as being in

two different extremes. In the first case, we assume that nieegg profile is known entirely for the duration of
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interest and have shown that the optimal policy can be fohnalgh solving two linear programs. In the second
scenario, we assume that we do not have any statisticaiiation about the energy profile in future time steps.
By specializing the linear programs in the first case to alsitighe step, we proposed a greedy online algorithm
and analyzed the optimality properties of the greedy allgoriunder certain conditions.

Other than these two extremes, a more realistic scenario beayo assume that some, but not complete
information, is known about the future energy profiles at B&#s. For example, it may be reasonable to assume
that the energy profiles consist of a deterministic wavefamnwhich small amount of random noise is added
at each time step to model the prediction errors. In such aasite we can combine the proposed offline and
online algorithms to arrive at Aybrid algorithm to leverage on the available information aboet énergy profile.
Essentially, we can use the offline algorithm to determire gblicy for the deterministic portion of the energy
profile and then use the greedy algorithm to compensate fpd#dierences induced by the random noise.

Most of the definitions in our model remain unchanged. Thg ehbnge in our model is the information known

at the BSs with regards to the energy profilegt) and E»(t). More concretely, we assume that

Ei(t) = E14(t) + E1r(t),

Es(t) = Eaa(t) + Ea(t),

with E14(t) and E4(t) known to the BSs for alt and at timef = k, the BSs know# (¢) and Ex(t) for 1 <t < k.
The proposed algorithm is presented in Algorithim 2.

This algorithm may be thought of as a superposition of thaneff(Algorithm[1) and online (Propositidd 2)
algorithms. We first solve the offline algorithm usidg;(t) and Ey,(t) for all t. We then compensate for the
part of the energy profile that we do not know;((¢) and E,4(t)) using the online algorithm. It should be noted
that the storage available for the online algorithm has tadjested based on the amount of storage used in the
offline algorithm, and this is done by defining a variable maxmn stored energysiy max(t) and Sag mqz(t), at
each timet for each of the storages. This partitioning of storage fdlinaf and online algorithms ensure that we
can separate the offline and online energy minimization lprob and then combine them back again to obtain the
hybrid algorithm.

We use the following energy profiles for our numerical siniola
Ei(t) = 5sin(wt) + 0.125E1,(t),
Es(t) = 5sin(wt + 0) + 0.125E,,.(t),
Smax = 3.5.

The simulation period andw used remain the same as in previous simulatidhs(t) and E»,.(t) are independent,

identically distributed Gaussian random variables wittozmean and unit variance, denoted Ny0, 1) for all ¢.



17

Algorithm 2 Hybrid Algorithm for energy minimization
1 Input: E14(t), Fag(t) for 1 <t < N, Ey(t) andEy(t) for 1 <t < k

2: Solve linear program proposed in Algoritimh 1 wiy4(t), E24(t), 1 <t < N as inputs

3: Output: 4, the optimal offline policy that minimizes energy consuraptand maximizes storage at timé

4. From g4, we obtain the storage stateg;(t) andsqq(t) for 1 <t < N

5. for t=1— N do

6: S1g,maz(t) = Smax — 514(1)

7: S2g,maz(t) = Smax — s24(t)

8 Eiy(t) = Ei(t) —wia(t) + c1a(t) — adia(t) — Brara(t) + x12,4(t)

9 Eyy(t) = Ea(t) — waa(t) + c2d(t) — adad(t) — Brig,a(t) + xa1.a(t)

10: end for

11: for t =1 — N do

12: Solve online energy minimization problem using Proposil® with E,,(t) and Ey,(t) as inputs and
S1g,maz (t) @and Sag maz(t) in place of Spax @s maximum storage states for BS 1 and 2, respectively.

13: Outputm,(t), the online greedy policy at time

14: Output: Hybrid policy for timet, =(t), which is given by, fori € {1,2},
w;(t) = wia(t) + wig(t),
ci(t) = cia(t) + cig(t),
di(t) = dia(t) + dig(t),
T12(t) = @12,4(t) + T12,4(1),
T21(t) = 21,4(t) + 221,4(1),
8i(t) = sia(t) + sig(t).

15: end for

Figure[5 plots the percentage loss of two algorithms witlpees to the optimal offline algorithm that has full
knowledge of E4(t) and Ex(t) for all ¢, versusd. The two algorithms are the greedy online algorithm and the
hybrid algorithm.

As shown in Fig[h, the hybrid algorithm can outperform theegly online algorithm for moderate valueséof
This is to be expected, since the hybrid algorithm makes @iskeoknowledge offy;(t) and Eq;(t). When thef
is close to0 or 7, the performance of the greedy online algorithm suffetkelibss compared to the optimal offline

algorithm, and the saving from knowing future valuesHf;(t) and Eo4(t) diminishes. This results in the greedy
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online algorithm being able to outperform the hybrid altfori.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed a model for energy coopardt@ween two cellular BSs with hybrid
conventional and renewable energy sources, limited stsraand a connecting power line. We consider two extreme
cases. In the first case, we assume that the energy profileoisnkantirely for the duration of interest and have
shown that the optimal policy can be found through solvingnadr program. In the second scenario, we assume
that we do not have any statistical information about thegnprofile in future time steps. In this case, we have
proposed a greedy online algorithm and analyzed the optimaioperties of the greedy algorithm under some
conditions. Numerical simulations comparing the offlinel amline algorithms were also carried out. In addition
to these two extremes, another scenario is to assume that, $omnot complete information, is known about the
future energy profiles at the BSs. When the energy profilesisbof a deterministic waveform in which small
amount of random noise is added at each time step to modetdiaéction errors, we proposed a hybrid algorithm
that leveraged on the available information about the gnergfile, and can be operated online. We compared
the performance of the hybrid algorithm to the greedy onéfgorithm via simulations. The hybrid algorithm can
outperform the online algorithm in some regimes by leverggin the available (offline) information about the
energy profiles.

Our model, while conceptually simple, can be extended iresd\different directions. We presented the model
for two BSs in this paper, but we can readily extend the moddl agorithms presented in this paper to multiple
BSs. Another interesting extension would be to includeipgidnformation into the model. A grid operator could

charge different prices for conventional energy at diffiérémes of the day, and it is not difficult to extend our
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model to capture this pricing information. The algorithinewever, would need to change to incorporate the pricing

information.

APPENDIXA

PROOF OFPROPOSITIONI]

Proof: We will prove this proposition by contradiction. Let;, w3, s} = s1 +ac] —dj ands; = sa+acs —d;
be the optimal values found by the original greedy algorithet v/, w), s; ands), be the optimal values found
through solving the linear program in Propositioh 1. Iét= w} + w) > Vi (sinceV; is the minimal energy
possible). IfV; = V5, then it is clear that} + s3 = s} + s5,. Hence, we need only to consider the case when
V4 > V4. We have the following two cases.

Case L:wi > w} andwj > wj. In this case, observe that the excess enéfgy V; can at most be used to
increase the storage levels ¢ s3) by (Vo — V1) /a3, through removing the need for the storage of one base statio
to discharge to compensate for a deficit at the other baserstitence,s| + s, < (s} + s3) + (Vo2 — V1) /a8 and

(wh +wh) —y(sy + s5) = (w] + wj) — y(s] +s5) + (Vo = VA)(1 = alﬁ)

> (wi +wy) —(s7 + 83).

The last line follows fromy < o and(V; — Vi) > 0. Sincewj, w3, s7 ands3 are feasible for the linear program
in the Proposition, this inequality contradicts the asstimmpthatw), wj, s} ands/, are optimal.
Case 2:wi > w} andwj < wj, with wh, —w; > wj —w) sinceV, > V. In this case, we first note the following

observations.

e Before any energy transfer, there is a deficitwgf — w} at BS 1. Otherwise, we can redue€ without
incurring any deficit and maintain the sam¢, which contradicts the fact thaf = wj + w3 is the minimum
energy required from the main grid.

e Energy drawn from the main grid at BS 2 is never used to congierfer the deficit at BS 1. This is because
one can achieve a smaller, +ws by simply drawing the required energy from BS 1 and not inberttansfer
cost of (1 — 3) that occurs when energy is drawn from BS 2 and transferredStd. B

e The energy required to compensate for the defigit- w)] can only come from the storage of BS 2. If storage
of BS 1 is used to compensate for part of the deficit, then itmaghat we can achievew; < wj by using
storage while maintaining the sameg (from the previous observation, none of the excess enefgy w3
is used to compensate for the deficit at BS 1). This contradiiet fact thatv] + w3 is the minimum energy
required from the main grid.

e Hence, the storage level at BS 2 must fall fay; — w})/a3 from s3.
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e On the other hand, using the same arguments as in case 1,abgsesnergy at BS 2 can at most lead to an
increase of(w), — w})/ap for the storage level at BS 1.
We therefore have the same inequality as cas@u]l+ w)) — v(s} + s5) > (wi + wh) — v(s] + s3). The rest

of the proof follows the same arguments as case 1. [ |

APPENDIX B
PROOF OFPROPOSITIONZ

Proof: Case 1 E; > 0 and E5 > 0. In this case, clearlyy = 0 and both BSs try to store as much of the net

energy as possible. That is, foe {1, 2}, we first carry out the following

¢; = min{(Smax — 8;)/a, Ei },

§i < 85 + ac.

If both s1 = s5 = Smax OF 81,82 < Smax, this case terminates. Otherwise,sif < Smax and s; = Smax, BS 1

transfers energy to BS 2 for storage. That is, we set
r12 = Bl — ¢,

0/2 = min{ﬂxm, (Smax - 32)/04},
82 < 82 + Oéclz,

C2 <—02—|—c/2.

Similarly, if if s; < Smax @andsa(t) = Smax, the roles of BSs 1 and 2 in the above are reversed.

Case 2 F; > 0 and E, < 0. This is the more complicated case that needs to be splitftntosub-cases.
Case 2.1 |FEy| > BE; + ass. In this case, all the energy is transferred to overcome #feeid Here, we set
.1'/12 = Fy anddy = so. SetEé = Fy + 51"12 + ads. Next, setd; = min{sl, |E§|/Oxﬁ} andzio = ad; + E;. Set

we = Fo + Bx12 + ads.

Case 2.2 SE; < |Es| < BE; + ass. In this caseqws = 0 since all the deficit can be compensated for by
energy transfer and storage. The deficit is compensatedyfarrixture of energy transfer and storage charge and
discharge that maximizes the storage levels. We first notkisncase the following simple claim.

Claim 2: If Bz19 < |E2| andws = 0, then no charging occurs at BS 2; i®.= 0.

Proof: Suppose for the sake of contradiction thatinits of the transferred energy«;2) is used to charge
the storage at BS 2 instead of being used to cancel out thatd@hen, sincefzio < |E;| andws = 0, BS 2

must compensate for an additiorialnits of deficit by discharging/« units of energy from storage. The storage
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level therefore drops by/«. On the other hand, th& units of energy can only increase the storage levels.hy
The net change in storage level is therefaxe— 6/« < 0, which is sub-optimal compared to the case where the
0 units of energy is simply used for canceling the deficit. |

Let A > 0 be the amount of energy sent to storage at BS 1. We have tlosviod constraints on\.

AS-E117

Smax_sl
A< —

‘EQ‘ - ,B(El — A) S aso.
The last constraint comes from the fact that we need to ®arsfough energy to ensure that = 0. The change

in sum storage levels is then given bA — (| Es| — BEL + BA)/a = (BE1 — |E2|)/a + (o — B/a)A. Hence, if

B>a? A=0,andif 3 < a? A takes its maximum possible value. Hence, the policy is gagriollow.

o If B> a2
x12 = Fi,
dz = (|E2| - BEY)/a,
51 < 81,
S9 < S9 — do.
o If 3<a?

c1 = min{E1, (Smax — s1)/a, E1 — (|Ea| — asa)/ 5},
r12 = By — c,

dy = max{0, (|Ez| — fz12)/a},

S§1 < S1 + «cq,

S9 < So —dg.

Case 2.3 3(E1 — (Smax — $1)/a) < |F3| < BE;. In this casew, is again equal to zero. We next note the
following observation.
e Let Sz12 < |E9|, then no charging of the storage at BS 2 occurs. This obsenvéllows directly from
claim[2.
e If Bx15 > |E5|, then charging of storage at BS 2 occurs and the chargén$(Sy,.x — s2)/«, Sz12 — |E2|}.
This observation follows similar arguments to cldim 2. Ialeays more efficient to use the transferred energy

to cancel out the deficit than to charge the storage.
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Next, note that the following hold true.

acy < Smax — 81, (18)
|Ea| — Br12 < asg. (19)
The first inequality follows from the storage constraint & B. The second follows from the fact that the deficit
must be canceled out completely by a combination of energysfer and storage discharge. Now, we assume

without loss of generality that; = E; — x12. That is, any excess energy is transferred to BS 2. This gisebe

inequality
r12 > E1 — (Smax — 51) /. (20)
The net change in storage levélg, is given by

1 .
As = By = 212) = —(|B2| = B212)Lgr,,< Byl + Lzis>| ) Min{(Smax — s2)/, Br12 — | En},

where1, is the indicator function and, satisfies[(20) and_(19). Consider now the case wliterea?.

If Bx12 < |Es|, Ag is an increasing function af;, and the maximum increase in storage level(&; — |E>|/5).

On the other hand, ifx12 > | Es|, then we have: 1, > max{|Es|/5, E1 —(Smax—$1)/a} andAg is a decreasing
function of z12. Hence, the maximum increase in storage level(i8, — |E2|/5) if E1 — (Smax — 1)/« < |E2|/B
and Spax — s1 + amin{(Smax — s2)/a, B(E1 — (Smax — 51)/a) — |E2|} otherwise.

In summary, in this case, we always transfer energy to cosgierfor all the deficit first before charging storage

1 followed by storage 2. Hence, if > o2, the optimal policy is given by
r12 = |Ea|/B,
¢1 = min{(Smax — 1)/, E1 — z12},
81 < 81 + acy,
¢o = min{(Smax — $2)/, B(E1 — x12 — 1)},
T12 < T12 + €2/,
So 4— S + «cCo.

If 3 < a? thenAg is a always a decreasing function ©f;. Hence, one sets;, as small as possible, subject

to (20) and[(IB). That is, we sets = max{(|Ez| — as2)/B, E1 — (Smax — s1)/a}. In summary, for this case, the
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optimal policy is given by

x12 = max{(|Ey| — as2)/B, E1 — (Smax — $1)/, 0},
¢1 = min{(Smax — 51)/, (E1 — x12)},
dy = max{(|E2| — Bx12)/a, 0},
2 = 1g,—o min{(Bz12 — |E2), (Smax — s2)/a},
S ¢ S9 + acy — do,
81 < 81 + «cy.
Case 2.4|Es| < B(E1 — (Smax — s1)/). This case is straightforward. The excess energy is enaughdress
the deficit at BS 2 as well as charge the storage at BS 4,4@. From claim[2, we also see that the transferred

energy from BS 1 is always used first to compensate for theiteétore charging the storage at BS 2. The optimal

policy is then given as follow.

Cc1 = (Smax - 81)/0[,
T12 = B — ¢,

Cy = min{(ﬂxlz — ‘E2‘); (Smax - 32)/a}7
S9 < S9 + «ea,

S1 < 81+ acy.

Finally, from combining all four sub-cases, f > a?, the optimal policy can be reduced to the form stated in
Case 2A of Propositionl 2. Whe# < o2, the optimal policy reduces to Case 2B of Proposifibn 2.

Next, for Case 3 of Propositidd &, < 0, F» > 0 and 3 > o?. This case is symmetric to Case 2, with the
roles of BSs 1 and 2 reversed. We therefore omit theproof &ederefer readers to proof for Case 2 above.

Case 4 E; < 0 and E;y < 0. In this case, each BS compensates using individual stdnagebefore helping the
other, sincen > a3. Hence, it is less efficient to use the storage of the otherdB&®mpensate for deficit if there

is still storage in the current BS. Therefore, foe {1,2}, we let
d; = min{s;, |E;|/a},
EZ, = EZ‘ + adi,

Si (—Si—di.

If either £ > 0 or E}, > 0, the algorithm reduces to the first three cases with net gnenafiles beingFE; and

EY. If both Ef < 0 and E), < 0, we compensate with conventional energy generation and,set|E|. ]
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APPENDIXC

PROOF OFPROPOSITIONZ

Proof: The proof follows from the observation that a system with) < s’(¢) component-wise can mimic the
optimal policy of a system at staté(¢) using conventional energy.

Let 7*(s’(k)) denote an optimal policy when the state issdk), and (w*(¢), ¢*(t),d*(t), z3,(t), z5, (t)) denote
the control variables induced by the energy profile and cgitipolicy for ¢t > k. We also use*(t) to denote the
evolution of the state under the optimal policy, startingnirs’(k).

Let 7(s(k)) denote a control policy when the state iss@k), and (w(t),c(t),d(t),z12(t), z21(t)) denote the
control variables induced by the energy profile and optinwdicp for ¢t > k. We uses(t) to denote the evolution
of the state under the policy, starting frortk). Now, we setr = 7* except whenl}(t) > s;(¢) for anyi € {1, 2}.

In this case, we set

di(t) = si(t), (21)

wi(t) = wi (t) + a(d; (t) — si(t)). (22)
Observe now that as the optimal poligy satisfies the energy constraints at each time also satisfies the energy
constraints through compensating for any additional disgph under the optimal policy using conventional energy
(the terma(d;(t) — s;(t)) in (22)). For the storage constraints, observe that thehdiging constraints are taken
care of by [(21) and(22). As for the charging constraintsgolss that since(k) < s’(k) component-wise, and the
discharging policy in[(21) and_(22) still results uft) < s*(¢) for all ¢ > k, the optimal charging policyc{(t))
can be accommodated under Furthermore, we have fare 1,2

si(t+1) —si(t+1) < s7(t) = 8i(t) — Loz (1)2s.(0) (5 (£) — s(2)),

wherel, denotes the indicator function. Sineg(N) — s;(N) > 0, we have

N
> i (st ([ (1) — s:() < si(k) — si(k). (23)
t=k

We also have from[(22)

N N
S wilt) = Y (Wi () + aly s, (i () — si(t)). (24)
t=k t=k

(23) and [(24) implies that
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Hence,

APPENDIXD

PROOF OFPROPOSITIONS

Proof: Both cases 1 and 2 of Propositioh 7 use the same lines of arguif@avoid repetition, we only give
the proof for Case 1. Consider a system at stte) = [s; (k), s2(k)+aBA,]T. Let7*(s'(k)) be the optimal policy
corresponding to this state. Consider now a system at €tate = [s1(k) +ad, s2(k)]T. Letw(s"(k)) = 7 (s'(k))
except in the following cases:

1) Deficit at BS 2:d3(t) > s5(t). In this case, the deficit is given hy(d3(t) — s5(t)). We will compensate
for this deficit by transferring energy from storage 1 (at BSd.BS 2. The total amount that needs to be
transfer out of storage 1 is(d;(t) — s4(t))/(aB) = (d5(t) — s5(t))/5.

2) Overcharging at BS Licj (t) > Smax — s7(t). In this case, we sé} (t) = (Smax — 5] (t))/a to charge storage
1 and transfemin{c;(t) — ¢1(¢), (sh(t) — s5(t))/(aB)} to charge storage 2.

In the first case, the total amount of energy that can be ®gafisfm BS 1 to compensate for any deficit at BS 2 is
a?BA, whereas the maximum amount of deficit that we incur is at méstA. Observe also that in neither cases
do we need to use additional energy from the grid to comperfsatany deficits.

In the second case, observe that the total amount of excesgyettansferable from BS 1 isfA/a = SA.
This amount of energy leads to an increase in storage levels&. Since the gap betweed}(t) and s5(¢) is at
mostaSA, this energy transfer policy can be used to compensate éogdp in storage level at storage 2.

More formally, we have the following claim

Claim 3: For evolution of states”(¢) under policyr and evolution ofs’(¢t) under=*, and the same energy

profiles, we have for > k,

s1(t) > s1(t), (25)
s5(t) > s5(t), (26)
s5(t) — s5(t) < B(s7(t) — 81(t)) (27)

Proof: This set of inequalities are clearly true for= k. We now show by induction that they are also true
for all ¢ > k. Assume that the set of inequalities are true at ttmé/e now consider the two scenarios listed that

result in a change in the difference of storage lew§ls) — s/ (¢) andsh(t) — s5(t).
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If d5(t) > s5(t): The difference is first compensated by storage at BS 1,treguh a drop in storage level for
BS 1. Note that since,(t) > d;(t), we have that,(t) — s5(t) > d3(t) — s5(t). By the induction hypothesis, we
therefore haves; (t) — s} (t) > (d5(t) — s5(t))/5. Hence, we can compensate for the deficit by discharging from

BS 11. The drop in storage levels at BS 1 is then given by

sT(t+1) = s1(t+1) = s{(t) = 51 (£) — 3

For BS 2, we have that
syt +1) — syt +1) = s5(t) — s5(t) — (d3(t) — s5(1)). (29)
Inequalities [(2B) and (29) imply that
so(t+1) —sh(t+1) < B(s{(t+1) = si(t+1)).

Next, consider the case when charging occurs at BS 2 (andsebatiging occurs). By the induction hypothesis,
sh(t) > s4(t). Hencesh(t) — sh(t) = sh(t+1) — sh(t+ 1) unless excess charge is transfered over from BS 1. That
is, unlessaci(t) > Smax — s7(t). In that case, we have

syt +1) — s3(t +1) = max{0, s5(t) — s3(t) — aB(ci(t) — &r(t))}-

Hence, we have,(t + 1) > s5(¢t + 1) and from the induction hypothesis,

syt +1) — s5(t + 1) < max{0, B(s{(t) — s1(t)) — aB(ci(t) — &1(1))}
= B(s1(t) — s1(t)) — aB(ci(t) — &(t))
= B(sY(t+1) = s1(t +1)).
|

From (27), itis clear thaf; (s”(k)) < J.-(s'(k)) since any additional deficit that occurs at BS 2 can be congteds
for through discharge from storage of BS 1 (see foothote 4nhdd, we have

I ( J(s" (k))
) + aA
=J,
so(k
< Jo (8 (K))
= J s1(k) ,
sa(k) + aBA
which completes the proof of this Proposition. [ |

“The deficit is at BS 2x(d3(t) — s5(t)). We compensate by dischargilids (1) — s5(t))/ at storage at BS 1, resulting in a net energy

of a(ds(t) — sy (t)) after storage and energy transfer loss.
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APPENDIXE

PROOF OFPROPOSITIONG

Proof: We note that at time¢ = N, transferringmin{ E; (NV), |E2(N)|/8} units of energy from BS 1 to BS
2 first is optimal. Hence, it remains to show that, fox N, the cost to go function for a policy that transfers
min{ E; (t),|F2(t)|/S} to compensate foFs(t) is optimal. We first note that for the energy sent to BS 2, it is
optimal to use all transferred energy to compensate for &fieitl 5 (k) first, rather than sending the energy to
storage. This follows from Proposition 4. L&, be the energy at BS 2 that comes from BS 1, andNet < A,
be the part of the energy that is sent to storage at BS 2 insitheing used to compensate for the deficit. If
Agy > 0, then charging of storage 2 occurs and we can assume witbesitdf generality that no discharging
occurs. Hence, the defidif); (k)| must be compensated for by the remaining transfer engérgy, Ao, and energy
drawn from the main gridw3; (k). From Corollany 1, we can assume tha(k) is not used to charge the storage

at BS 2. Hence, we have}(k) = max{|E2| — Ag + Ag2,0}. If Ay — Age > |Ea(k)|, then it means that we

function is lower bounded by

compensate for the deficit first before charging the storg&, — Ag, < |E2(k)|, then the optimal cost to go
s1(k [ s1(k+1
] — wi(k) + |Ea| — Ao+ Ago + Jpe 1k +1)
82(k) Sg(k‘) + aAgs
s1(k+1
1( ) - a2A527
s2(k)

where the second inequality follows from Propositidn 4.c8ifl — o?)A, > 0, the optimalAgs is given by

> wi (k) + |Ez| — Ao + Agy + Jr- (

Agy = max{Ay — |Ea(k)],0} for Ay — Agy < |Ex(t)|, which corresponds to using all of the transferred energy
to cancel out the deficit first before charging the storage&t2B

Next, since all of the transferred energdys, is used to compensate for the deficit firstAb > |Es(k)|, then
the Proposition is proven. Iy = SE;(k), the Proposition is also proven since all of the excess gnarddS 1
is transferred to BS 2. Hence, it remains to consider the wdsge Ay < min{SFE;(k),|E2(k)|}. Here, a part of
Eq(k), E1(k) — Ay/p, is sent to storage at BS 1 instead of being transferred to BS@mpensate fof,(¢).
We can assume without loss of generality that there is nohdiging of storage 1 since charging occurs. Let
A = min{BE;(k),|E2(k)|} — As. The deficit of A at BS 2 has to be compensated for by other means, either

through conventional power generation or through energyvdrfrom storage at BS 2. We consider the two cases

) |

separately

Case 1: Energy drawn from storage 2. Then, in this case, we it

. ({sl(k) ]) . ({ s1(k) + aA
so(k) | ] s2(k) — BA/a
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The proof follows similar arguments for Propositibh 5 (sepp@ndix[D). Consider a system at staték) =
[s1(k) + aA, so(k) — BA/a]T. Let 7*(s'(k)) be the optimal policy corresponding to this state. Consit®r a
system at state(k) = [s1(k), s2(k)]7. Let m(s(k)) = 7* except in the following cases:

1) Overcharging at BS 2ic;(t) > Smax — s2(t). In this case, we s&h(t) = (Smax — s2(t))/a to charge storage
2 and transfemin{c;(t) — é2(t), (s1(t) — s1(t))/(aB)} to charge storage 1.

2) Deficit at BS 2:dj(t) > si(t). In this case, the deficit is given hy(dj(t) — si(t)). We will compensate
for this deficit by transferring energy from storage 2 (at BS®BS 1. The total amount that needs to be
transfer out of storage 1 is(d; (t) — s1(t))/(aB) = (di(t) — s1(t))/p.

Similar to Claim[3, for evolution of state(¢) under policyw and evolution ofs’(t) under=*, and the same

energy profiles, we have far> k,

s1(t) > s1(t), (30)
$2(t) = s5(t), (31)
s1(t) — s1(t) < B(sa(t) — s5(1)). (32)

As the proof for these inequalities follow the same argumest those found in Claifd 3 in AppendiX D, we omit
the proof here. We note only that the conditidn> « is required for the inequalities to hold a& k. At ¢ = k,
B(sa2(t) — s4(t)) = B2A/a, while s (t) — s1(t) = aA. Hence, if3 > a, f2A/a > aA.

When inequalities[(30) td (82) are satisfied, the policgtarting at state(k) does not incur more energy cost

than the optimal policyr* for states’(k). Hence, we have

)= (1)

g,]ﬂ* (|: Sl(k)-l-OéA

o
~/
—
v V)
[\V] —
—~ o~
N N

sa(k) — BA/«

Case 2: Increase in conventional energy. In this case, we gt additional loss ofA. Then, we have
s1(k s1(k) + aA
o ® Y (] ® a
s2(k) s2(k)
s1(k
< —BA + oA + J, 1(k) ,
s2(k)

where the last line follows from Propositioh 4. Sindée> o > o?, we haveA < 0, which implies that the optimal

which implies that the optimal = 0.

A =0. [ |
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APPENDIX F

PROOF OFPROPOSITION]

Proof: At time ¢t = N, it is clear that the greedy policy minimizes the amount crgg drawn from the grid.
It remains to show fot < IV that the greedy policyr,, minimizes the cost-to-go function. That i$, = J-
We will do so using a backward induction argument. Assume #tgimet = k, we follow the greedy policy
and then revert back to the optimal policy at tirhe+ 1. We show that this one-step greedy approach is also an
optimal policy. Since the greedy policy is optimal at time- N, induction ont then shows that the greedy policy

is optimal for allt. Let 7,, denote the one step greedy policy. Then,

s2(k) sg,2(k +1)
where wy(t) represents the energy drawn from the main grid under thedgrpelicy att = &, andsg(k + 1)
represents the storage states at time 1 after applying the greedy policy at time Note that the greedy policy
is designed to minimize the conventional energy drawn frbm dgrid at timek. Hence, even under the optimal
policy, 7*, we havelng(t) < 1Tw*(t). At each timet = k, there are two cases to consider.

Case 1:E»(k) > 0. In this casel”w,(k) = 0 and each BS charges its own storage first before charging the
storage of the other BS. In this case, it is straightforwardee from Case 1 of Propositibh 5 and Corollary 1 that
Trpy = e

Case 2.1 E,(k) < 0 and Ey (k) > |Ea2(k)|/5. In this case, from Propositidd 6 and the conditior- «, energy
transfer from BS 1 to BS 2 is an optimal strategy. Sidggt) > |E2(t)|/3, we can reduce the problem back to
the first case withZ] (t) = E1(t) — |E2(t)|/8 and E4(t) = 0, where the greedy strategy is optimal.

Case 2.2:Fy(k) < 0 and Ey (k) < |E2(k)|/B. From Propositiori 6, energy transfer at tirhes still optimal.

Hence, we have
Iy (8(K), B1(K), Ez(k)) = Jr,,(s(F), 0, Ea (k) + Ev(k)/a),
Jr(s(k), E1(k), Ea(F)) = Jx-(s(k), 0, Ea (k) + Er(k)/cx).
It remains to show thafl; (s(k),0, Ez(k) 4+ Ei(k)/o) < Jr-(s(k),0, E2(k) + E1(k)/a). Let 7' be any other
policy. Sincer,, minimizes the conventional energy required at tima (v’ (k) — w,(k)). Note from Corollary’1L

that conventional energy is not used to charge storages 1 $m2e the deficit occurs at BS 2, we can assume

without loss of generality that] (k) = wy(k) = 0 and A = wj(k) — wy2(k). Let Ay and A, be the change in

) |

storage levels, with respect to the greedy policy, due topthiey 7'. We have

, ({a(k)]% ) ([sg,mml)wl
’ Z Wy T
sa2(k) sg2(k+1) + Ay
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Now, A, > 0 sincem,, first uses storage 2 to compensate for any deficit before storgge 1 and conventional
energy. Further, from Corollafy 1, the conventional enasgyot used to charge the storages. Therefore, any change
in storage levels is due to the additional conventional g@nek, being used to compensate for the deficit instead

of storage discharges. Henee)s + a5A; = A. Now, if A; < 0, we have

T ([ s1(k) ]) > wh(k) + Jx- ( )
s2(k)

(a) sg1(k+ 1)+ A1+ BA
> wh(k) + Jx- 1 )T AL+ Fh
Sg,Q(k?—l—l)

Sg7l(k + 1) + Al
8972(1€ + 1) + AQ

|

2 (k) — wga (k) + wy (k) + Jo- ( { ok 1) ] ) ol - ap

Sg.2(k +1)
= wy2(k) + Jr- ([ So1(k+1)

8972(l€ + 1)

()
T sa(k)

(a) follows from Case 2 of Propositidd ); < 0 and Ay + A1 = A/a > 0. (b) follows from Propositiori 4.

)+A@m+mmg

Now, for the case wherk\; > 0, we have
s1(k sg1(k+1)+ A
I 1(k) S (k) 4 o g.1( )+ Ay
so(k) Sg,g(k +1)+ Ay

(a) [ sq1(k+1
> wh(k) — wy2(k) +wyo(k) + Jr- o1 )
i sg2(k +1)+ Ao

)aAl

(b) sg1(k+1 ]
> A+ UJg,2(k) + J7r* 971( ) - OéAl — OéﬁAg
kE+1)

()
T sa(k)

(a) follows from Propositiori ¥4(b) follows from claim[1.

1
)+A@m+mmg
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APPENDIX G

PROOF OFPROPOSITIONS

Proof: We first note that the modified greedy policy is optimal at titne N. It now remains to show by
backward induction that the policy is optimal for allAs with Propositior 7, letr,, denote the one step modified
greedy policy in which the Case 2A of Proposition 7 is impletee at timet = £ and then the optimal policy is
implemented fort > k& + 1. We now show that any other policy,, will incur a cost that is at least as large as the
cost incurred byr,,.

Observe that for a policy’ to be different fromr,, at timet = k, the energy transferred to BS 2,2(k), must
be less thamnin{|E»(k)|/8, E1(k)}. That is, a fraction of the excess energy is put into storageead of being
sent to BS 2. Sincej2(k) < min{|Es2(k)|/5, E1(k)}, the deficitA = |Ey (k)| — Bzi2(k) must be compensated
for by other means, through discharging of storage at BS 2camdentional energy. Lef\;» be the additional
discharge at storage 2 anx, be the additional conventional energy (with respect to thelifred greedy policy)
used to compensate for the deficit. L&t; = E;(k) — z12(k) be the additional energy sent to storage 1 (with
respect to the modified greedy policy anth.; < Spax — 54,1(k+ 1)), such thatA,; + oAz = A and A, = A.

Case 1: We first consider the case whexgy < s4o(k + 1).

s1(k sg1(k+ 1)+ aA,
- 1(k) > wyo(k) + Ag + Jrr ga(k+1) !
s2(k) sg2(k+1) — Agy
(a) Sgl k"‘ )‘|‘OZA01
> ng
sg2(k+1) —Aga — Ag/a |

[ s (k4 1)+ oA,
:wg7 k) + Jr- ( gl( ) ! )

| sg2(k+1) —A/a

[ s 1(k+1) + aA,
:wg7 k) + Jr- ( gl( ) !

L Sg, 2(]{7‘1' ) 5A01/Oé
0 (
Z wg7 + T
$g,1(k)
)

sg1(k+1)
sg2(k +1)
(l o)
= Jn,
Sg,2(k

(a) follows from Proposition ¥. Inb), we use the following claim.

Claim 4: With the assumptions as given in Propositidn 8, for ény- 1 < ¢t < N and A > 0 such that
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A < min{(Spax — s1(t))/a, asa(t)/5}, we have

.. ([ s1(k+1) ]) “ ({ s1(k+1)+aA )
so(k+1) s2(k+1) — BA/a

Proof of claim Let 7* be the optimal policy for the system starting at statg(k + 1), s5(k + 1)], where

si(k+1) =s1(k+1)+aA andsi(k+ 1) = sg2(k + 1) — BA/a. Let 7’ be a policy for the system starting at
state[s) (k + 1), s5(k +1)] = [s1(k + 1), s2(k + 1)], , such thatr’ = 7* except when
o ach(t) > Smax — sh(t): Setdy(t) = (Smax — s5(t))/a. Note that since we assume thai(¢) < 0 for all ¢,
and from Corollanf1L, conventional energy is not used to ghatorages, any charging of storage at BS 2
must come from the excess energy at BS 1. Hence, we'sét) = z3,(t) — (c5(t) — c,(¢))/B. Finally, we

setc) (t) = min{cj(t) + (c5(t) — c5(t))/B; (Smax — 51(t)) /a}.

e adi(t) > s)(t): In this case, note that sindg, (¢) > 0, any discharge from storage at BS 1 is only used at
BS 2. We setd; (1) = s} (1), #5(t) = 2%, (t) — a(df(t) — dj () andd)(t) = d3(t) + B(d; (1) — d (t)).
o i(t) = (Smax — 51(t))/a: Setcy(t) = (Smax — s7(t))/
Using the assumption® () > 0 and Ex(t) < 0, it is not difficult to see that the following inequality rewling

the states hold for alt > k + 1.
sy(t) — s5(t) > B(s7(t) — s1(t))

if s3(¢)

v

(t) and

S

if §{(t) > si(t). These inequalities imply that no additional conventiogr@rgy is required when we use poligy
for a system starting at stafe| (k + 1), s,(k + 1)], as compared to a system under policyand starting at state

[si(k+1),s5(k + 1)]. Hence,

)

which completes the proof of Claifd 4.
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Case 2: We now consider the case wharex > s, 2(k+1). This case can actually be treated as an extension of

the previous case (Case 1). L&f, + A/, = A, andA’+ A” = A such thatA" = asgo(k +1) and AL, = A'.

Sl(k‘) S ,1(143 + 1) + alg
J7r’ > UJg,Z(kT) + AZ + J7r* I
Sg(k‘) Sg’g(k? + 1) — Adg
(a) sg1(k+1) + alAl; + alAl;

> wyo(k) + A" + Jp-
sga(k+1) — A

sg1(k+ 1)+ aAl; + aAl)
sg2(k+1) — BAL Ja

= wg72(k) + A"+ .

®) sg1(k+1) 4+ aAl
> wy (k) + A" + Jpe g1(k+1) !
8972(1{7 -+ 1)
© o1 (k41
> wg 2 (k) + A" + T sr(b 1) o’ BAY
| 8972(k‘ + 1)
Sg,1 k+1
=wgy2(k) + B(1 — a2)A/C/1 + T 1 )
8972(l€ + 1)
sg.1(k)
- 5g,2(k)

(a) follows from Propositiod 4(b) follows from claim[4 and finally(c) follows from claim[1.

Combining the two cases then completes the proof of this d&itipn. [ |
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