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Energy Cooperation in Cellular Networks with

Renewable Powered Base Stations
Yeow-Khiang Chia∗, Sumei Sun† and Rui Zhang‡

Abstract

In this paper, we propose a model for energy cooperation between cellular base stations (BSs) with individual

hybrid power supplies (including both the conventional grid and renewable energy sources), limited energy storages,

and connected by resistive power lines for energy sharing. When the renewable energy profile and energy demand

profile at all BSs are deterministic or known ahead of time, weshow that the optimal energy cooperation policy for the

BSs can be found by solving a linear program. We show the benefits of energy cooperation in this regime. When the

renewable energy and demand profiles are stochastic and onlycausally known at the BSs, we propose an online energy

cooperation algorithm and show the optimality properties of this algorithm under certain conditions. Furthermore,

the energy-saving performances of the developed offline andonline algorithms are compared by simulations, and the

effect of the availability of energy state information (ESI) on the performance gains of the BSs’ energy cooperation

is investigated. Finally, we propose a hybrid algorithm that can incorporate offline information about the energy

profiles, but operates in an online manner.

Index Terms

Energy cooperation, energy harvesting, hybrid power supply, cellular networks, stochastic optimization.

I. INTRODUCTION

In recent years, motivated by environmental concerns and energy cost saving considerations, telecommunication

service providers have started considering the deploymentof renewable energy sources, such as solar panels and

wind turbines, to supplement conventional power in powering base stations (BSs). In some places where the

conventional power grid is still under-developed, the deployment of renewable energy sources is more attractive

due to the significantly higher costs, as compared to a developed city, in powering BSs using conventional power
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sources. Examples where such a scenario occurs include the deployment of BSs with renewable energy sources by

Ericsson in Africa [1] and Huawei in Bangladesh [2].

Although renewable energy sources are attractive for the above reasons, they also suffer from significantly higher

variability as compared to conventional energy sources. Asa result, even in BSs that deploy renewable energy

sources, conventional energy sources, such as diesel generators or the power grid, is still required to compensate

for the variability of the renewable energy sources. One practical method of mitigating the variability of renewable

energy sources is through energy storage means such as fuel cells and batteries. Energy storage, however, is

very costly to deploy and therefore, the amount of storage available at BSs will usually be quite limited. A key

consideration in deploying BSs with renewable energy sources is minimization of the amount of conventional energy

consumed, because it is only then cost-effective to deploy renewable energy sources and storage. A survey of issues

involved in deploying renewable energy sources in BSs is given in [3]. Related work on deploying renewable energy

sources in smart grids, not necessarily constrained to a communications systems setup can be found in [4], [5] and

the references therein.

Other than work in smart grid, a closely related area of research is in the area of energy harvesting for wireless

communications, where several authors have proposed the idea of energy cooperation between different nodes in

a communications network; see e.g. [6], and [7]. More broadly, the area of “green communications” has attracted

significant attention from the communications community inrecent years. For an overview of the many significant

research activities in this area, interested readers may refer to, e.g., [8], [9], [10], [11], [12] and the references

therein for various issues in energy efficiency and management in communication systems.

In this paper, we consider mitigating the variability of renewable energy sources through geographical diversity.

We consider the case when two or more BSs are connected by power lines so as to allow for transfer of energy

between each other. A transfer of energy between two BSs allow for one that has excess of energy to compensate

the other that has a deficit due to either higher demand of the users connected to the BS, or lower generation of

renewable energy. We analyze the reduction in conventionalenergy needed to power the BSs if they are allowed

to transfer energy, even when there is storage inefficiency and resistive power loss. We consider the availability

of different information about the renewable energy sources and demand for our setting, and propose algorithms

that take advantage of the energy cooperation between BSs and the information available to minimize their energy

consumption from conventional sources.

Another motivation for considering energy transfer comes from the possibility of using the power line as a

backhaul link to enable coordinated multipoint transmission (CoMP) for cellular BSs [13]. This results in an

attractive dual use of the power line for both energy cooperation and communication cooperation.

The rest of this paper is organized as follow. In Section II, we give formal definitions and description of
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Fig. 1. System setup

our proposed energy cooperation model. In Section III, we study the optimal offline energy cooperation policy

for the case ofdeterministicrenewable energy and demand profiles in which the future renewable energy and

demand are known in advance. This setup, which has also been considered in energy harvesting based wireless

communications [14], [15], models the scenario where we have good approximations of the renewable energy

and demand profiles for the duration of interest and are willing to ignore small prediction errors. In Section IV,

we consider the general case ofarbitrary renewable energy and demand profiles, and propose an online energy

cooperation policy for this case. We analyze the optimalityproperties of this online policy under certain conditions,

and compare its performance with the lower bound obtained bythe offline policy via simulation. In Section V,

we propose an online hybrid algorithm that incorporates some offline information about the energy profile, and

compare the performance of this hybrid algorithm to the online algorithm. Finally, in Section VI, we conclude the

paper and discuss some possible extensions for future work.

II. SYSTEM MODEL

In this paper, our focus will be on the case of two base stations, namely BS 1 and BS 2, with individual renewable

energy generators, conventional energy sources, energy storage devices and connected with a power line. Our model,

as depicted in Fig. 1, can be easily generalized to multiple (more than two) BSs, but we consider only the case of

two BSs in this paper for simplicity.

We consider a finite-horizon time-slotted system with slot indext, 1 ≤ t ≤ N , andN denoting the total number

of slots under investigation. In the following, we define theelements of our energy cooperation model with two
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BSs, i.e. BS 1 and BS 2. We will usei ∈ {1, 2} to denote an element at the corresponding base station.

A. Model Elements

Renewable energy generated at BS i and time t: REi(t) ≥ 0.

Demand at BS i and time t: DEi(t) ≥ 0.

Net energy generated at BS i and time t: Ei(t) = REi(t)−DEi(t). This quantity can be positive, representing

a surplus, or negative, representing a deficit.

Energy stored in BS i at time t: si(t) ≥ 0. To model limited storage constraint, we further assumesi(t) ≤ Smax.

Energy charged/discharged to/from storage at BS i and time t: ci(t) ≥ 0 /di(t) ≥ 0, di(t) ≤ si(t). Intuitively,

for given BSi and timet, there is at most one ofci(t) anddi(t) that is strictly positive, i.e.ci(t) · di(t) = 0.

Energy transfer from BS 1 (or 2) to BS 2 (or 1): x12(t) ≥ 0 (or x21 ≥ 0). For a given timet, there is at most

one ofx12(t) andx21(t) that is strictly positive, i.e.x12(t) · x21(t) = 0.

Energy drawn from conventional energy source at BS i and time t: wi(t) ≥ 0.

B. System Dynamics

We require the following equations forstorage dynamics to be satisfied:si(t + 1) = si(t) + αci(t) − di(t).

Here, 0 ≤ α ≤ 1 represents storage inefficiency, i.e. the energy lost in storage. As discussed earlier, we also

require0 ≤ si(t) ≤ Smax for all t. The combined storage dynamics and constraint leads to the constraint:−si(t) ≤

αci(t) − di(t) ≤ Smax − si(t). We also assume thats1(1) = s2(1) = 0. That is, there is no energy in storage at

the initial time1. Furthermore, the following two inequalities need to be satisfied at BS 1 and BS 2, respectively,

in order to maintain theirenergy neutralization at each timet:

E1(t) +w1(t)− c1(t) + αd1(t)− x12(t) + βx21(t) ≥ 0, (1)

E2(t) +w2(t)− c2(t) + αd2(t)− x21(t) + βx12(t) ≥ 0. (2)

Here,α again represents storage inefficiency and captures in this case, the inefficiency in drawing energy from

storage, while0 ≤ β ≤ 1 representsresistive lossin transferring energy from one BS to another. (1) captures

the constraint that any demand at timet at BS 1 has to be satisfied, by perhaps a combination of discharge from

storage, transfer from BS 2, and conventional energy, or renewable energy. Similarly, (2) captures the energy balance

requirement for BS 2.

1This assumption is made for simplicity of exposition and canbe generalized to arbitrary storage values.
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C. Control Policy and Objective Function

In general,E1(t) andE2(t) can be modeled by a jointly distributed continuous stochastic process with a joint

distributionF . Using vector notation, for any scalarsy1(t), y2(t), . . . , yn(t), we lety(t) = [y1(t), y2(t), . . . , yn(t)]
T .

Hence, we lets(t) = [s1(t), s2(t)]
T represent the state of our system at timet. Similarly, ourcontrol variablesat

time t are the tuples(w(t), c(t), d(t), x12(t), x21(t)), wherew(t) = [w1(t), w2(t)]
T , c(t) = [c1(t), c2(t)]

T , d(t) =

[d1(t), d2(t)]
T . In general, these control variables at timet are functions of the past history,{(E(k)), 1 ≤ k ≤ t},

with E(k) = [E1(k), E2(k)]
T , and the joint distributionF . A control policyπ is then a sequence of these control

variables2. That is,π = {(w(t), c(t), d(t), x12(t), x21(t)), 1 ≤ t ≤ N}.

Next, the objective of our setup is to minimize the expected average conventional energy consumed. That is, we

seek a control policyπ∗ that minimizes

E

(

1

N

N
∑

t=1

(w1(t) + w2(t))

)

,

where the expectation is taken with respect to the joint distribution F , and under the control policyπ∗.

Remark 2.1:Another valid cost criteria is to letN →∞ and minimize the long-run expected average conven-

tional energy cost. That is, we wish to minimize

lim sup
N→∞

E

(

1

N

N
∑

t=1

(w1(t) + w2(t))

)

.

This criterion has the advantage of being insensitive to thestarting state, but intuition about our model can be more

easily obtained whenN is finite. In this paper, we will restrict our attention to finite N for simplicity.

The optimal control policy for our model, as currently formulated, is open. In the rest of this paper, we will

consider a number of special cases in which we can obtain someuseful insight on this problem.

III. O FFLINE ALGORITHM WITH DETERMINISTIC ENERGY PROFILE

The first restriction that we make to this model is to considera deterministic energy profile, with the net energy

profile E1(t) andE2(t) being known to both BSs for allt. In this case, our model reduces to the following linear

program.

Theorem 1:When the net energy profilesE1(t) andE2(t) are deterministic and known to BS 1 and BS 2 for

all t, the optimal control policy,π∗, is found by solving the following linear program.

min
π

N
∑

t=1

(w1(t) + w2(t))

2The use of the symbolπ to represent a control policy is standard in the control/dynamic programming literature. With an abuse of

notation, we will also be using the symbolπ to represent the number 3.14159... in our numerical simulations. It will be clear from context

whether we are using the symbolπ for a control policy or the number.
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subject to (for1 ≤ t ≤ N )

s(t+ 1) = s(t) + αc(t) − d(t), (3)

E1(t) +w1(t)− c1(t) + αd1(t)− x12(t) + βx21(t) ≥ 0, (4)

E2(t) +w2(t)− c2(t) + αd2(t)− x21(t) + βx12(t) ≥ 0, (5)

[0, 0]T ≤ s(t) ≤ [Smax, Smax]
T , (6)

d(t) ≤ s(t), (7)

s(1) = 0, c(t), d(t) ≥ 0, x12(t), x21(t) ≥ 0. (8)

Proof: The reduction to the linear program follows from the assumption that the energy profiles are known

for all t. In this case, the objective function simply reduces to the sum of the conventional energy required at

each timet. Note that in the above problem, we do not explicitly put the constraintsci(t)di(t) = 0, i = 1, 2,

andx12(t)x21(t) = 0 for any givent. However, it can be shown that the optimal solution of this problem always

satisfies these constraints, and thus there is no loss of optimality in removing such constraints.

It is easy to see that there can be several solutions achieving the same objective value in the linear program

formulation in Theorem 1. In addition to minimizing the energy drawn from the grid, a secondary objective could

be to maximize the sum of the energy stored in the BSs’ storages at timeN +1, so that the stored energy could be

used in future time blocks to reduce the energy drawn from thegrid. In this case, we can add another optimization

step to maximize the energy stored in the base stations at time N + 1, subject to the constraint that the minimum

amount of energy is drawn from the main grid. This is shown in the following algorithm.

Algorithm 1 Offline storage maximization with minimum conventional energy consumption
1: Input: E1(t) andE2(t) for 1 ≤ t ≤ N

2: Solve Linear program in Theorem 1 and outputV1, the optimal value of the linear program.

3: Solve the following linear program

max
π

s1(N + 1) + s2(N + 1)

subject to (for1 ≤ t ≤ N )

N
∑

t=1

(w1(t) + w2(t)) ≤ V1,

Equations (3) to (8)

4: Output:π∗, the optimal policy that minimizes energy consumption and maximizes storage at timeN + 1
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Fig. 2. Conventional energy consumed versus storage for differentθ

The assumption of deterministic energy profile models the case when the demands and renewable energy

generation can be well approximated for1 ≤ t ≤ N ; i.e., the case when the error in predicting the demand

and renewable energy generated is small. Furthermore, it also allows us to gain insight into situations where it is

beneficial for BSs to cooperate with each other. Intuitively, energy cooperation is helpful whenever the net energy

generated at the two BSs are sufficiently uncorrelated or anti-correlated, as will be shown next.

To demonstrate the benefits of energy cooperation for two BSs, we modelE1(t) andE2(t) with the following

energy profiles.

E1(t) = A sin(ωt), (9)

E2(t) = A sin(ωt+ θ). (10)

Here, the correlation between the net energy profiles at BSs 1and 2 is measured by the phase shiftθ. This approach

of modeling correlation has been used in related context, such as in work on communications with energy harvesting

devices [7].

Energy saving versus storage for differentθ: We now show some simulation results on the energy saving

versus storage for different values ofθ. We set the following values:ω = 2π/24, A = 3, 0 ≤ t ≤ 239,

θ ∈ {π/4, π/2, 3π/4, π}, β = 0.8 and α = 0.9. The results are plotted in Fig. 2. We compare the average

unnormalized cost
∑239

t=0(w1(t) + w2(t))/2 against that of a single BS having the energy profile in (9) (plotted in

green in the figure).

As we can see from the figure, BSs’ energy cooperation helps ingeneral as the average cost per BS for the two

cooperating BSs is lower than that of a single BS. Asθ varies fromπ/4 to π, the cost per BS decreases as the

energy profiles of the two BSs become more anti-correlated.
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Fig. 3. Percentage energy saving versusθ for Smax = 1

As storage increases, it is also clear that the cost decreases, since more of the excess energy generated can

be stored for later use, when there is a deficit. This storage benefit, however, decreases withθ increasing toπ.

Increasingθ to π signifies an increase in geographical diversity, resultingin the ability to compensate for deficit at

one BS with excess from the other BS. Whenθ = π, there is little benefit from increasing storage.

Energy savings versusθ for fixed storage: To show the effect ofθ more clearly, we now keep the storage fixed

at Smax = 1 and varyθ from 0 to 2π. The rest of the parameters are kept fixed. In Fig. 3, we plot the percentage

cost savings, relative to the energy cost of a single BS with the energy profile of (9), against different values ofθ.

As we can see from the figure, the saved cost increases asθ varies from0 to π, at which point the energy profile

of BS 2 is anti-correlated with BS 1. This allows effective compensation through energy transfer between the two

BSs. Asθ varies fromπ to 2π, the energy profile becomes highly correlated again, resulting in fewer opportunities

to perform energy transfer between the two BSs.

IV. ONLINE ALGORITHM WITH STOCHASTIC ENERGY PROFILE

We now consider the more practical case when the net energy atboth BSs are stochastic and not known ahead of

time. We propose an online energy cooperation algorithm based on a greedy heuristic for minimizing conventional

energy usage in Section IV-A. We then analyze some properties of this algorithm in Section IV-B. In particular,

we state some optimality properties under specific energy profiles. Finally, in Section IV-C, we provide simulation

results on the performance comparison between the online algorithm versus the optimal offline algorithm proposed

in Section III.

To describe the algorithm, we first assumeα > 0 andβ > 0 to avoid the complications of dealing with the case

of no storage (α = 0) or no cooperation between BSs (β = 0).
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A. Greedy Online Algorithm

Our greedy algorithm follows from considering a single snapshot of the linear programs given in the previous

section with arbitrary storage states. That is, withN = 1, but with the additional condition that the initial storage

states need not be equal to zero. We now present our algorithmas follow.

Greedy Algorithm step 1: Greedy minimization of energy drawn from the main grid. Assume that the initial

storage values ares1 for BS 1 ands2 for BS 2. Then, we solve the following linear program (for notational

simplicity, we suppress the dependence on time)

min (w1 + w2)

subject to

[0, 0]T ≤ [s1, s2]
T + αc− d ≤ [Smax, Smax]

T , (11)

E1 +w1 − c1 + αd1 − x12 + βx21 ≥ 0, (12)

E2 +w2 − c2 + αd2 − x21 + βx12 ≥ 0, (13)

d ≤ [s1, s2]
T , (14)

c ≥ 0, d ≥ 0, x12 ≥ 0, x21 ≥ 0. (15)

Greedy Algorithm step 2: Storage maximization.Let V1 be the optimal value of the linear program in step 1.

Then, we solve the following linear program.

max [s1, s2]
T + αc− d

subject to

w1 + w2 ≤ V1,

Equations (11) to (15).

In the case of a single snapshot, instead of solving two linear programs individually, we can combine the linear

programs, as stated in the next proposition.

Proposition 1: Let 1 be the vector of all ones. For anyγ with 0 < γ < αβ, the greedy algorithm is obtained

by solving the following linear program.

min (w1 + w2)− γ1T ([s1, s2]
T + αc− d)

subject to

Equations (11) to (15).
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We defer the proof of this Proposition to Appendix A.

The greedy algorithm requires solving a small linear program. For the case of two BSs, however, it can be further

simplified to the following equivalent algorithm in Proposition 2 by considering the actions the BSs would take at

each timet.

Proposition 2: The greedy online linear program is equivalent to the following algorithm, which should be

understood to be implemented for each time1 ≤ t ≤ N , and we again suppress the dependence ont for convenience.

Unless otherwise stated, we set all ofw, c, d, x12 andx21 equal to zeros in the algorithm. For each timet, if

Case 1: E1 ≥ 0 andE2 ≥ 0. For i ∈ {1, 2}, we first carry out the following

ci = min{(Smax − si)/α,Ei},

si ← si + αci.

If both s1 = s2 = Smax or s1, s2 < Smax, this case terminates. Otherwise, ifs2 < Smax and s1 = Smax, BS 1

transfers energy to BS 2 for storage. That is, we set

x12 = E1 − c1,

c′2 = min{βx12, (Smax − s2)/α},

s2 ← s2 + αc′2,

c2 ← c2 + c′2.

Similarly, if s1 < Smax ands2 = Smax, the roles of BSs 1 and 2 in the above are reversed.

Case 2A: E1 ≥ 0, E2 < 0 andβ ≥ α2. In this case, BS 1 first transfers the net energy to BS 2 to compensate

for the deficit. Hence, let

x12 = min{E1, |E2|/β},

E′
2 = E2 + βx12.

Now, if E′
2 = 0, we carry out the algorithm in Case 1 with net energy profilesE′

1 = E1 − x12 andE′
2. If E′

2 < 0,

we compensate for the remaining deficit via storage at BS 2 first. We set

d2 = min{|E′
2|/α, s2},

E′′
2 = E′

2 + αd2.
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If E′′
2 = 0, this case is completed. Otherwise, we compensate from storage at BS 1. That is, we set

d1 = min{|E′′
2 |/(αβ), s1},

x12 ← x12 + αd1,

E′′′
2 = E′′

2 + αβd1.

Finally, if there is still a deficit remaining (E′′′
2 < 0), we compensate through conventional energy consumption

and setw2 = |E
′′′
2 |.

Case 2B: E1 ≥ 0, E2 < 0 and β < α2. In this case, BS 1 tries to maximize its own storage level using the

excess energy, subject to minimizing energy required to compensate for the deficit at BS 2. The optimal policy is

determined under the following two sub-scenarios.

• |E2| ≥ βE1 + αs2: The optimal policy is the same as Case 2B.

• |E2| < βE1 + αs2: The optimal policy is given as follows. Let1(.) be the indicator function.

x12 = max

{

|E2| − αs2
β

,E1 −
Smax − s1

α
, 0

}

,

c1 = E1 − x12,

d2 = max

{

|E2| − βx12
α

, 0

}

,

c2 = 1d2=0 min

{

Smax − s2
α

, βx12 − |E2|

}

,

s1 ← s1 + αc1,

s2 ← s2 + αc2 − d2.

Case 3: E1 < 0, E2 ≥ 0 andβ ≥ α2. This case is symmetric to Case 2, with the roles of BSs 1 and 2 reversed.

We therefore omit the description of the algorithm here.

Case 4: E1 < 0 andE2 < 0. In this case, each BS compensates using individual storagefirst, before helping the

other. That is, fori ∈ {1, 2}, we let

di = min{si, |Ei|/α},

E′
i = Ei + αdi,

si ← si − di.

If either E′
1 ≥ 0 or E′

2 ≥ 0, the algorithm reduces to the first three cases with net energy profiles beingE′
1 and

E′
2. If both E′

1 < 0 andE′
2 < 0, we compensate with conventional energy generation and setwi = |E

′
i|.

Proof of this Proposition is deferred to Appendix B. For the case of no storage (α = 0), the greedy algorithm is

modified in the obvious manner by not sending any energy to storage or drawing energy from storage. It is easy

to show that this modified greedy algorithm is optimal for arbitrary energy profiles.



12

For the case of no cooperation (β = 0), the greedy algorithm is again modified in the obvious manner by not

requiring transfers between two BSs. Optimality of the greedy algorithm for this case will be discussed in the next

subsection.

B. Optimality Properties

Although the greedy algorithm is a conceptually simple one,it has several optimality properties that we now

analyze. To keep the discussion clear and provide intuitionon this policy, several proofs of the results are deferred

to the Appendices. We will not suppress the dependence ont in this subsection as we will consider the energy

profiles over time.

Proposition 3: If β = 0 or β = 1, the greedy algorithm is optimal for arbitrary energy profiles.

Proof: Whenβ = 1, the system reduces to a single BS withE(t) = E1(t) + E2(t) and 0 ≤ s(t) ≤ 2Smax.

The optimality of the greedy algorithm can then be inferred from [5, Theorem 1].

For the case ofβ = 0, no cooperation between the two BSs is possible. Optimalityof the modified greedy

algorithm for this case follows again from the fact that the greedy algorithm is optimal for individual BSs [5,

Theorem 1].

We now proceed to analyze the greedy algorithm for the non-boundary cases of0 < β < 1. It will be useful to

define the following quantities. Define the unnormalizedcost-to-gofunction under policyπ at timet and states(t)

as

Jπ(s(k)) = E

(

N
∑

t=k

1
Twπ(t)

)

. (16)

We also denote the optimal cost-to-go function under the optimal policy π∗ asJπ∗(s(t)). For our setting,Jπ(s(t))

has a number of useful properties, which we now state. The results that follow in the rest of this section hold for

any stochastic net energy profiles. Therefore, in our proofs, we will suppress the dependence of the control policy

on the joint distribution ofE1(t) andE2(t).

Proposition 4: Supposes′(k) ≥ s(k) component-wise. Then,

Jπ∗(s(k)) ≤ Jπ∗(s′(k)) + α1T (s′(k)− s(k)). (17)

The proof is given in Appendix C It is obvious that a system starting with higher stored energy states has a lower

optimum cost. Proposition 4 quantifies the maximum additional cost incurred by a system starting from a lower

storage state. As an example, Proposition 4 formalizes the obvious fact that energy drawn from the main grid is

never used to increase storage levels.
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Corollary 1: For an optimal policy, energy is never drawn from the grid to increase the storage levels. That is,

for any∆1,∆2,∆W ≥ 0 such that∆W = ∆1 +∆2, we have

Jπ∗









s1(k) + α∆1

s2(k) + α∆2







+∆W ≥ Jπ∗









s1(k)

s2(k)







 ,

which implies that the optimal energy to be drawn,∆W , should be zero.

Proof of this corollary is immediate from Proposition 4.

The bound given in Proposition 4 can be strengthened in various ways if more information about the energy

profiles are known. We state the following claim that will be used in the sequel.

Claim 1: If E(t) ≥ 0 for t ≥ k and∆ ≤ (Smax − s1(k))/α,

Jπ∗









s1(k)

s2(k)







 ≤ Jπ∗









s1(k) + ∆

s2(k)







+ αβ∆.

The proof of this claim follows similar arguments to that in Proposition 4 and uses the assumption thatE1(t) ≥ 0

for all t ≥ k. As the proof is quite similar to that in Proposition 4, we will omit the proof here. Instead, we give

the intuition for this claim. SinceE1(t) ≥ 0, the additional stored energy can only be used to compensatefor any

deficit at BS 2. The total additional energy that can be sent toBS 2 isαβ∆. Instead of using storage at BS 1, we

can compensate using conventional energy, incurring an additional cost of at mostαβ∆.

The same proof strategy whereby a system at a different storage states mimics the optimal policy of the same

system at storage states′ can be also used to prove the following two intuitively obvious propositions. Due to space

limitation, proofs of Propositions 5 and 6 are omitted in this paper.

Proposition 5: Case 1: It is optimal to store excess energy at each of BS 1 and BS 2 first if there is still storage

available, rather than to transfer the energy between them for storage. More concretely, suppose∆ > 0 units of

energy is available at BS 1 at timet = k with s1(k) + α∆ ≤ Smax ands2(k) + αβ∆ ≤ Smax, then

Jπ∗









s1(k) + α∆

s2(k)







 ≤ Jπ∗









s1(k)

s2(k) + αβ∆







 .

Case 2: Suppose that there is a deficit of−∆ (∆ ≥ 0) at BS 1 such that∆ ≤ min{αs1(k), αβs2(k)}, which has

to be compensated by either storage at BS 1 or storage at BS 2. Then, it is optimal to compensate using storage

at BS 1 rather than storage at BS 2. That is,

Jπ∗









s1(k)−∆/α

s2(k)







 ≤ Jπ∗









s1(k)

s2(k)−∆/(αβ)







 .

Proof of this Proposition is deferred to Appendix D

Proposition 6: If β > α, then energy transfer is always optimal. That is, if at timet = k, E1(k) > 0 > E2(k),

we can assume without loss of generality that sending∆ = min{|E2(k)|/β,E1(k)} units of energy from BS 1
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to BS 2 at timet = k to compensate for the deficit ofE2(k) is part of an optimal policy. More formally, let

Jπ∗(s(k), E1(k), E2(k)) be the optimal cost to go function3. Then,

Jπ∗(s(k), E1(k)−∆, E2(k) + ∆) ≤ Jπ∗(s(k), E1(k), E2(k)).

Proof of this Proposition is deferred to Appendix E.

Remarks on Propositions 5 and 6: As with Proposition 4, the above two propositions show formally some intuitive

aspects of energy cooperation that we would expect in such a system, and also certain optimality aspects of the

greedy algorithm. Proposition 5 shows the intuitively obvious fact that it is better to store energy locally rather than

to store the energy at storage of the other BS. Proposition 6 formalizes the notion that ifβ > α, then it is more cost

efficient to transfer energy to help the other BS rather than to store energy for future use, since the proportional

loss in energy storage (1−α) is higher than that in energy transmission (1− β). Observe that the conditionβ > α

is a special case of Case 2A of our greedy algorithm, in which energy transfer is always carried out first, rather

than compensating using local storage.

Next, using Propositions 4 to 6, we arrive at the optimality of the greedy algorithm for some special cases of

the energy profiles.

Proposition 7: If E1(t) ≥ 0 for all 1 ≤ t ≤ N andβ > α, then the greedy policy is optimal. By symmetry, the

same result holds if, instead,E2(t) ≥ 0 for all 1 ≤ t ≤ N andβ > α.

Proof of this Proposition is given in Appendix F. The intuition behind Proposition 7 is that ifE1(t) ≥ 0 for all t,

then energy should be transferred to BS 2 to compensate for any possible deficit. The condition ofβ > α ensures

that it is always more efficient to transfer energy to BS 2 in the current time step than to store it for possible use

in later time steps.

The condition thatβ > α can be relaxed, if more assumptions can be made about the energy profileE2(t).

Proposition 8: If E1(t) ≥ 0 andE2(t) ≤ 0 for all 1 ≤ t ≤ N , then themodifiedgreedy policy, in which the

policy in Case 2A of Proposition 2 is implemented at each timet, is an optimal policy. Similar to Proposition 7,

by symmetry, the same result holds ifE2(t) ≥ 0 andE1(t) ≤ 0.

Proof of this Proposition is given in Appendix G. Proposition 8 essentially shows that energy transfer is always

optimal if one BS is always in surplus while the other BS is always in deficit. The intuition behind this Proposition

is the following observation. Whenβ ≤ α, it can be more efficient in general to compensate for any deficit from

local storage at BS 2 than to transfer energy from BS 1, since storage at BS 2 can be recharged more efficiently in

future time steps withβ ≤ α. However, whenE2(t) is always non-positive, any charging of storage at BS 2 has

to come from BS 1, which incurs a proportional loss of1− αβ ≥ 1− α, resulting in any discharging or charging

being less efficient than energy transfer.

3We suppress the dependence ofπ∗ on past histories here.
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Fig. 4. Percentage energy loss of greedy online algorithm w.r.t. offline algorithm versusθ

C. Numerical Results

We now compare the greedy online algorithm to the optimal offline algorithm proposed in Section III. Due to

the lack of future information on the energy profiles, the greedy algorithm clearly cannot do as well as the offline

algorithm, except under conditions discussed in Section IV-B. We compare the performance differences between

the two algorithms when the conditions in Section IV-B are not satisfied. We adopt the same simulation setting as

in Section III.

Fig. 4 shows the performance gap between the greedy online algorithm and the optimal offline algorithm that

has access to the entire energy profile. Somewhat surprisingly, the greedy online algorithm suffers only a small

loss (maximum of 2.3%) compared to the offline algorithm under the sinusoidal energy profiles assumed in (9)

and (10). Note that the vertical axis shows the loss of the greedy online algorithm, which is the percentage increase

in energy consumption with respect to the optimal offline algorithm over theentire time horizon ofN . Furthermore,

when the energy profiles at the two BSs are anti-correlated (θ = π), or highly positively correlated (θ small or

close to2π), the percentage loss due to using an online algorithm is significantly lower, and the greedy online

algorithm is almost as efficient as the offline algorithm. Theoffline algorithm, however, seems to be able to make

more intelligence use of storage, resulting in generally higher energy saving when the the maximum amount of

storage is increased. This suggests that greedy charge and discharge strategy may not be optimal in general, as can

be expected.

V. HYBRID MODEL AND ALGORITHM

In the previous two sections, we consider two cases for energy cooperation that can be thought of as being in

two different extremes. In the first case, we assume that the energy profile is known entirely for the duration of
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interest and have shown that the optimal policy can be found through solving two linear programs. In the second

scenario, we assume that we do not have any statistical information about the energy profile in future time steps.

By specializing the linear programs in the first case to a single time step, we proposed a greedy online algorithm

and analyzed the optimality properties of the greedy algorithm under certain conditions.

Other than these two extremes, a more realistic scenario maybe to assume that some, but not complete

information, is known about the future energy profiles at theBSs. For example, it may be reasonable to assume

that the energy profiles consist of a deterministic waveformin which small amount of random noise is added

at each time step to model the prediction errors. In such a scenario, we can combine the proposed offline and

online algorithms to arrive at ahybrid algorithm to leverage on the available information about the energy profile.

Essentially, we can use the offline algorithm to determine the policy for the deterministic portion of the energy

profile and then use the greedy algorithm to compensate for any differences induced by the random noise.

Most of the definitions in our model remain unchanged. The only change in our model is the information known

at the BSs with regards to the energy profilesE1(t) andE2(t). More concretely, we assume that

E1(t) = E1d(t) + E1r(t),

E2(t) = E2d(t) + E2r(t),

with E1d(t) andE2d(t) known to the BSs for allt and at timet = k, the BSs knowE1(t) andE2(t) for 1 ≤ t ≤ k.

The proposed algorithm is presented in Algorithm 2.

This algorithm may be thought of as a superposition of the offline (Algorithm 1) and online (Proposition 2)

algorithms. We first solve the offline algorithm usingE1d(t) and E2d(t) for all t. We then compensate for the

part of the energy profile that we do not know (E1g(t) andE2g(t)) using the online algorithm. It should be noted

that the storage available for the online algorithm has to beadjusted based on the amount of storage used in the

offline algorithm, and this is done by defining a variable maximum stored energy,S1g,max(t) andS2g,max(t), at

each timet for each of the storages. This partitioning of storage for offline and online algorithms ensure that we

can separate the offline and online energy minimization problems and then combine them back again to obtain the

hybrid algorithm.

We use the following energy profiles for our numerical simulation.

E1(t) = 5sin(wt) + 0.125E1r(t),

E2(t) = 5sin(wt+ θ) + 0.125E2r(t),

Smax = 3.5.

The simulation periodt andw used remain the same as in previous simulations.E1r(t) andE2r(t) are independent,

identically distributed Gaussian random variables with zero mean and unit variance, denoted byN(0, 1) for all t.
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Algorithm 2 Hybrid Algorithm for energy minimization
1: Input: E1d(t), E2d(t) for 1 ≤ t ≤ N , E1(t) andE2(t) for 1 ≤ t ≤ k

2: Solve linear program proposed in Algorithm 1 withE1d(t), E2d(t), 1 ≤ t ≤ N as inputs

3: Output:πd, the optimal offline policy that minimizes energy consumption and maximizes storage at timeN

4: From πd, we obtain the storage statess1d(t) ands2d(t) for 1 ≤ t ≤ N

5: for t = 1→ N do

6: S1g,max(t) = Smax − s1d(t)

7: S2g,max(t) = Smax − s2d(t)

8: E1g(t) = E1(t)− w1d(t) + c1d(t)− αd1d(t)− βx21,d(t) + x12,d(t)

9: E2g(t) = E2(t)− w2d(t) + c2d(t)− αd2d(t)− βx12,d(t) + x21,d(t)

10: end for

11: for t = 1→ N do

12: Solve online energy minimization problem using Proposition 2 with E1g(t) and E2g(t) as inputs and

S1g,max(t) andS2g,max(t) in place ofSmax as maximum storage states for BS 1 and 2, respectively.

13: Outputπg(t), the online greedy policy at timet

14: Output: Hybrid policy for timet, π(t), which is given by, fori ∈ {1, 2},

wi(t) = wid(t) + wig(t),

ci(t) = cid(t) + cig(t),

di(t) = did(t) + dig(t),

x12(t) = x12,d(t) + x12,g(t),

x21(t) = x21,d(t) + x21,g(t),

si(t) = sid(t) + sig(t).

15: end for

Figure 5 plots the percentage loss of two algorithms with respect to the optimal offline algorithm that has full

knowledge ofE1(t) and E2(t) for all t, versusθ. The two algorithms are the greedy online algorithm and the

hybrid algorithm.

As shown in Fig. 5, the hybrid algorithm can outperform the greedy online algorithm for moderate values ofθ.

This is to be expected, since the hybrid algorithm makes use of the knowledge ofE1d(t) andE2d(t). When theθ

is close to0 or π, the performance of the greedy online algorithm suffers little loss compared to the optimal offline

algorithm, and the saving from knowing future values ofE1d(t) andE2d(t) diminishes. This results in the greedy
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online algorithm being able to outperform the hybrid algorithm.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed a model for energy cooperation between two cellular BSs with hybrid

conventional and renewable energy sources, limited storages, and a connecting power line. We consider two extreme

cases. In the first case, we assume that the energy profile is known entirely for the duration of interest and have

shown that the optimal policy can be found through solving a linear program. In the second scenario, we assume

that we do not have any statistical information about the energy profile in future time steps. In this case, we have

proposed a greedy online algorithm and analyzed the optimality properties of the greedy algorithm under some

conditions. Numerical simulations comparing the offline and online algorithms were also carried out. In addition

to these two extremes, another scenario is to assume that some, but not complete information, is known about the

future energy profiles at the BSs. When the energy profiles consist of a deterministic waveform in which small

amount of random noise is added at each time step to model the prediction errors, we proposed a hybrid algorithm

that leveraged on the available information about the energy profile, and can be operated online. We compared

the performance of the hybrid algorithm to the greedy onlinealgorithm via simulations. The hybrid algorithm can

outperform the online algorithm in some regimes by leveraging on the available (offline) information about the

energy profiles.

Our model, while conceptually simple, can be extended in several different directions. We presented the model

for two BSs in this paper, but we can readily extend the model and algorithms presented in this paper to multiple

BSs. Another interesting extension would be to include pricing information into the model. A grid operator could

charge different prices for conventional energy at different times of the day, and it is not difficult to extend our
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model to capture this pricing information. The algorithms,however, would need to change to incorporate the pricing

information.

APPENDIX A

PROOF OFPROPOSITION1

Proof: We will prove this proposition by contradiction. Letw∗
1, w∗

2, s∗1 = s1+αc∗1−d∗1 ands∗2 = s2+αc∗2−d∗2

be the optimal values found by the original greedy algorithm. Let w′
1, w

′
2, s

′
1 ands′2 be the optimal values found

through solving the linear program in Proposition 1. LetV2 = w′
1 + w′

2 ≥ V1 (sinceV1 is the minimal energy

possible). IfV1 = V2, then it is clear thats∗1 + s∗2 = s′1 + s′2. Hence, we need only to consider the case when

V2 > V1. We have the following two cases.

Case 1:w∗
1 ≥ w′

1 andw∗
2 ≥ w′

2. In this case, observe that the excess energyV2 − V1 can at most be used to

increase the storage levels (s∗1+s∗2) by (V2−V1)/αβ, through removing the need for the storage of one base station

to discharge to compensate for a deficit at the other base station. Hence,s′1 + s′2 ≤ (s∗1 + s∗2) + (V2 − V1)/αβ and

(w′
1 + w′

2)− γ(s′1 + s′2) ≥ (w∗
1 + w∗

2)− γ(s∗1 + s∗2) + (V2 − V1)(1−
γ

αβ
)

> (w∗
1 + w∗

2)− γ(s∗1 + s∗2).

The last line follows fromγ < αβ and(V2 − V1) > 0. Sincew∗
1, w∗

2, s∗1 ands∗2 are feasible for the linear program

in the Proposition, this inequality contradicts the assumption thatw′
1, w

′
2, s

′
1 ands′2 are optimal.

Case 2:w∗
1 > w′

1 andw∗
2 < w′

2, with w′
2−w∗

2 > w∗
1−w′

1 sinceV2 > V1. In this case, we first note the following

observations.

• Before any energy transfer, there is a deficit ofw∗
1 − w′

1 at BS 1. Otherwise, we can reducew∗
1 without

incurring any deficit and maintain the samew∗
2, which contradicts the fact thatV1 = w∗

1 +w∗
2 is the minimum

energy required from the main grid.

• Energy drawn from the main grid at BS 2 is never used to compensate for the deficit at BS 1. This is because

one can achieve a smallerw1+w2 by simply drawing the required energy from BS 1 and not incur the transfer

cost of (1− β) that occurs when energy is drawn from BS 2 and transferred to BS 1.

• The energy required to compensate for the deficitw∗
1−w′

1 can only come from the storage of BS 2. If storage

of BS 1 is used to compensate for part of the deficit, then it means that we can achieve aw1 < w∗
1 by using

storage while maintaining the samew∗
2 (from the previous observation, none of the excess energyw′

2 − w∗
2

is used to compensate for the deficit at BS 1). This contradicts the fact thatw∗
1 +w∗

2 is the minimum energy

required from the main grid.

• Hence, the storage level at BS 2 must fall by(w∗
1 − w′

1)/αβ from s∗2.
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• On the other hand, using the same arguments as in case 1, the excess energy at BS 2 can at most lead to an

increase of(w′
2 − w∗

2)/αβ for the storage level at BS 1.

We therefore have the same inequality as case 1:(w′
1 + w′

2) − γ(s′1 + s′2) > (w∗
1 + w∗

2) − γ(s∗1 + s∗2). The rest

of the proof follows the same arguments as case 1.

APPENDIX B

PROOF OFPROPOSITION2

Proof: Case 1: E1 ≥ 0 andE2 ≥ 0. In this case, clearly,w = 0 and both BSs try to store as much of the net

energy as possible. That is, fori ∈ {1, 2}, we first carry out the following

ci = min{(Smax − si)/α,Ei},

si ← si + αci.

If both s1 = s2 = Smax or s1, s2 < Smax, this case terminates. Otherwise, ifs2 < Smax and s1 = Smax, BS 1

transfers energy to BS 2 for storage. That is, we set

x12 = E1 − c1,

c′2 = min{βx12, (Smax − s2)/α},

s2 ← s2 + αc′2,

c2 ← c2 + c′2.

Similarly, if if s1 < Smax ands2(t) = Smax, the roles of BSs 1 and 2 in the above are reversed.

Case 2: E1 ≥ 0 andE2 < 0. This is the more complicated case that needs to be split intofour sub-cases.

Case 2.1: |E2| ≥ βE1 + αs2. In this case, all the energy is transferred to overcome the deficit. Here, we set

x′12 = E1 andd2 = s2. SetE′
2 = E2 + βx′12 + αd2. Next, setd1 = min{s1, |E

′
2|/αβ} andx12 = αd1 + E1. Set

w2 = E2 + βx12 + αd2.

Case 2.2: βE1 ≤ |E2| < βE1 + αs2. In this case,w2 = 0 since all the deficit can be compensated for by

energy transfer and storage. The deficit is compensated for by a mixture of energy transfer and storage charge and

discharge that maximizes the storage levels. We first note inthis case the following simple claim.

Claim 2: If βx12 ≤ |E2| andw2 = 0, then no charging occurs at BS 2; i.e.c2 = 0.

Proof: Suppose for the sake of contradiction thatδ units of the transferred energy (βx12) is used to charge

the storage at BS 2 instead of being used to cancel out the deficit. Then, sinceβx12 ≤ |E2| andw2 = 0, BS 2

must compensate for an additionalδ units of deficit by dischargingδ/α units of energy from storage. The storage
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level therefore drops byδ/α. On the other hand, theδ units of energy can only increase the storage levels byαδ.

The net change in storage level is thereforeαδ − δ/α ≤ 0, which is sub-optimal compared to the case where the

δ units of energy is simply used for canceling the deficit.

Let ∆ ≥ 0 be the amount of energy sent to storage at BS 1. We have the following constraints on∆.

∆ ≤ E1,

∆ ≤
Smax − s1

α
,

|E2| − β(E1 −∆) ≤ αs2.

The last constraint comes from the fact that we need to transfer enough energy to ensure thatw2 = 0. The change

in sum storage levels is then given byα∆ − (|E2| − βE1 + β∆)/α = (βE1 − |E2|)/α + (α− β/α)∆. Hence, if

β ≥ α2, ∆ = 0, and if β < α2, ∆ takes its maximum possible value. Hence, the policy is givenas follow.

• If β ≥ α2:

x12 = E1,

d2 = (|E2| − βE1)/α,

s1 ← s1,

s2 ← s2 − d2.

• If β < α2:

c1 = min{E1, (Smax − s1)/α,E1 − (|E2| − αs2)/β},

x12 = E1 − c1,

d2 = max{0, (|E2| − βx12)/α},

s1 ← s1 + αc1,

s2 ← s2 − d2.

Case 2.3: β(E1 − (Smax − s1)/α) ≤ |E2| < βE1. In this case,w2 is again equal to zero. We next note the

following observation.

• Let βx12 ≤ |E2|, then no charging of the storage at BS 2 occurs. This observation follows directly from

claim 2.

• If βx12 > |E2|, then charging of storage at BS 2 occurs and the charge ismin{(Smax − s2)/α, βx12 − |E2|}.

This observation follows similar arguments to claim 2. It isalways more efficient to use the transferred energy

to cancel out the deficit than to charge the storage.
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Next, note that the following hold true.

αc1 ≤ Smax − s1, (18)

|E2| − βx12 ≤ αs2. (19)

The first inequality follows from the storage constraint at BS 1. The second follows from the fact that the deficit

must be canceled out completely by a combination of energy transfer and storage discharge. Now, we assume

without loss of generality thatc1 = E1 − x12. That is, any excess energy is transferred to BS 2. This givesus the

inequality

x12 ≥ E1 − (Smax − s1)/α. (20)

The net change in storage level,∆S, is given by

∆S = α(E1 − x12)−
1

α
(|E2| − βx12)1βx12≤|E2| + 1βx12>|E2|αmin{(Smax − s2)/α, βx12 − |E2|},

where1(.) is the indicator function andx12 satisfies (20) and (19). Consider now the case whereβ ≥ α2.

If βx12 ≤ |E2|, ∆S is an increasing function ofx12 and the maximum increase in storage level isα(E1−|E2|/β).

On the other hand, ifβx12 ≥ |E2|, then we havex12 ≥ max{|E2|/β,E1−(Smax−s1)/α} and∆S is a decreasing

function ofx12. Hence, the maximum increase in storage level isα(E1−|E2|/β) if E1− (Smax− s1)/α ≤ |E2|/β

andSmax − s1 + αmin{(Smax − s2)/α, β(E1 − (Smax − s1)/α) − |E2|} otherwise.

In summary, in this case, we always transfer energy to compensate for all the deficit first before charging storage

1 followed by storage 2. Hence, ifβ ≥ α2, the optimal policy is given by

x12 = |E2|/β,

c1 = min{(Smax − s1)/α,E1 − x12},

s1 ← s1 + αc1,

c2 = min{(Smax − s2)/α, β(E1 − x12 − c1)},

x12 ← x12 + c2/β,

s2 ← s2 + αc2.

If β < α2, then∆S is a always a decreasing function ofx12. Hence, one setsx12 as small as possible, subject

to (20) and (19). That is, we setx12 = max{(|E2| −αs2)/β,E1 − (Smax − s1)/α}. In summary, for this case, the



23

optimal policy is given by

x12 = max{(|E2| − αs2)/β,E1 − (Smax − s1)/α, 0},

c1 = min{(Smax − s1)/α, (E1 − x12)},

d2 = max{(|E2| − βx12)/α, 0},

c2 = 1d2=0 min{(βx12 − |E2|), (Smax − s2)/α},

s2 ← s2 + αc2 − d2,

s1 ← s1 + αc1.

Case 2.4: |E2| < β(E1 − (Smax − s1)/α). This case is straightforward. The excess energy is enough to address

the deficit at BS 2 as well as charge the storage at BS 1 toSmax. From claim 2, we also see that the transferred

energy from BS 1 is always used first to compensate for the deficit before charging the storage at BS 2. The optimal

policy is then given as follow.

c1 = (Smax − s1)/α,

x12 = E1 − c1,

c2 = min{(βx12 − |E2|), (Smax − s2)/α},

s2 ← s2 + αc2,

s1 ← s1 + αc1.

Finally, from combining all four sub-cases, ifβ ≥ α2, the optimal policy can be reduced to the form stated in

Case 2A of Proposition 2. Whenβ < α2, the optimal policy reduces to Case 2B of Proposition 2.

Next, for Case 3 of Proposition 2:E1 < 0, E2 ≥ 0 andβ ≥ α2. This case is symmetric to Case 2, with the

roles of BSs 1 and 2 reversed. We therefore omit theproof hereand refer readers to proof for Case 2 above.

Case 4: E1 < 0 andE2 < 0. In this case, each BS compensates using individual storagefirst, before helping the

other, sinceα ≥ αβ. Hence, it is less efficient to use the storage of the other BS to compensate for deficit if there

is still storage in the current BS. Therefore, fori ∈ {1, 2}, we let

di = min{si, |Ei|/α},

E′
i = Ei + αdi,

si ← si − di.

If either E′
1 ≥ 0 or E′

2 ≥ 0, the algorithm reduces to the first three cases with net energy profiles beingE′
1 and

E′
2. If both E′

1 < 0 andE′
2 < 0, we compensate with conventional energy generation and setwi = |E

′
i|.
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APPENDIX C

PROOF OFPROPOSITION4

Proof: The proof follows from the observation that a system withs(t) ≤ s′(t) component-wise can mimic the

optimal policy of a system at states′(t) using conventional energy.

Let π∗(s′(k)) denote an optimal policy when the state is ats′(k), and(w∗(t), c∗(t), d∗(t), x∗12(t), x
∗
21(t)) denote

the control variables induced by the energy profile and optimal policy for t ≥ k. We also uses∗(t) to denote the

evolution of the state under the optimal policy, starting from s′(k).

Let π(s(k)) denote a control policy when the state is ats(k), and (w(t), c(t), d(t), x12(t), x21(t)) denote the

control variables induced by the energy profile and optimal policy for t ≥ k. We uses(t) to denote the evolution

of the state under the policy, starting froms(k). Now, we setπ = π∗ except whend∗i (t) > si(t) for any i ∈ {1, 2}.

In this case, we set

di(t) = si(t), (21)

wi(t) = w∗
i (t) + α(d∗i (t)− si(t)). (22)

Observe now that as the optimal policyπ∗ satisfies the energy constraints at each timet, π also satisfies the energy

constraints through compensating for any additional discharge under the optimal policy using conventional energy

(the termα(d∗i (t) − si(t)) in (22)). For the storage constraints, observe that the discharging constraints are taken

care of by (21) and (22). As for the charging constraints, observe that sinces(k) ≤ s′(k) component-wise, and the

discharging policy in (21) and (22) still results ins(t) ≤ s∗(t) for all t ≥ k, the optimal charging policy (c∗(t))

can be accommodated underπ. Furthermore, we have fori ∈ 1, 2

s∗i (t+ 1)− si(t+ 1) ≤ s∗i (t)− si(t)− 1d∗

i (t)≥si(t)(d
∗
i (t)− si(t)),

where1{.} denotes the indicator function. Sinces∗i (N)− si(N) ≥ 0, we have

N
∑

t=k

1d∗

i (t)≥si(t)(d
∗
i (t)− si(t)) ≤ s′i(k)− si(k). (23)

We also have from (22)
N
∑

t=k

wi(t) =

N
∑

t=k

(w∗
i (t) + α1d∗

i (t)≥si(t)(d
∗
i (t)− si(t))). (24)

(23) and (24) implies that

Jπ(s(k)) − Jπ∗(s′(k))

= α

N
∑

t=k





1d∗

1
(t)≥s1(t)

1d∗

2
(t)≥s2(t)





T

(d∗(t)− s(t))

≤ α

2
∑

i=1

(s′i(k)− si(k)).
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Hence,

Jπ∗(s(t)) ≤ Jπ(s(t))

≤ Jπ∗(s′(k)) + α

2
∑

i=1

(s′i(k)− si(k)).

APPENDIX D

PROOF OFPROPOSITION5

Proof: Both cases 1 and 2 of Proposition 7 use the same lines of argument. To avoid repetition, we only give

the proof for Case 1. Consider a system at states′(k) = [s1(k), s2(k)+αβ∆, ]T . Let π∗(s′(k)) be the optimal policy

corresponding to this state. Consider now a system at states′′(k) = [s1(k)+α∆, s2(k)]
T . Let π(s′′(k)) = π∗(s′(k))

except in the following cases:

1) Deficit at BS 2:d∗2(t) > s′′2(t). In this case, the deficit is given byα(d∗2(t) − s′′2(t)). We will compensate

for this deficit by transferring energy from storage 1 (at BS 1) to BS 2. The total amount that needs to be

transfer out of storage 1 isα(d∗2(t)− s′′2(t))/(αβ) = (d∗2(t)− s′′2(t))/β.

2) Overcharging at BS 1:αc∗1(t) > Smax−s′′1(t). In this case, we set̂c1(t) = (Smax−s′′1(t))/α to charge storage

1 and transfermin{c∗1(t)− ĉ1(t), (s
′
2(t)− s′′2(t))/(αβ)} to charge storage 2.

In the first case, the total amount of energy that can be transfer from BS 1 to compensate for any deficit at BS 2 is

α2β∆, whereas the maximum amount of deficit that we incur is at mostα2β∆. Observe also that in neither cases

do we need to use additional energy from the grid to compensate for any deficits.

In the second case, observe that the total amount of excess energy transferable from BS 1 isαβ∆/α = β∆.

This amount of energy leads to an increase in storage level ofαβ∆. Since the gap betweens′2(t) ands′′2(t) is at

mostαβ∆, this energy transfer policy can be used to compensate for the gap in storage level at storage 2.

More formally, we have the following claim

Claim 3: For evolution of states′′(t) under policyπ and evolution ofs′(t) underπ∗, and the same energy

profiles, we have fort ≥ k,

s′′1(t) ≥ s′1(t), (25)

s′2(t) ≥ s′′2(t), (26)

s′2(t)− s′′2(t) ≤ β(s′′1(t)− s′1(t)) (27)

Proof: This set of inequalities are clearly true fort = k. We now show by induction that they are also true

for all t ≥ k. Assume that the set of inequalities are true at timet. We now consider the two scenarios listed that

result in a change in the difference of storage levelss′′1(t)− s′1(t) ands′2(t)− s′′2(t).
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If d∗2(t) > s′′2(t): The difference is first compensated by storage at BS 1, resulting in a drop in storage level for

BS 1. Note that sinces′2(t) ≥ d∗2(t), we have thats′2(t)− s′′2(t) ≥ d∗2(t)− s′′2(t). By the induction hypothesis, we

therefore haves1(t) − s′1(t) ≥ (d∗2(t) − s′′2(t))/β. Hence, we can compensate for the deficit by discharging from

BS 14. The drop in storage levels at BS 1 is then given by

s′′1(t+ 1)− s′1(t+ 1) = s′′1(t)− s′1(t)−
(d∗2(t)− s2(t))

β
. (28)

For BS 2, we have that

s′2(t+ 1)− s′′2(t+ 1) = s′2(t)− s′′2(t)− (d∗2(t)− s′′2(t)). (29)

Inequalities (28) and (29) imply that

s′2(t+ 1)− s′′2(t+ 1) ≤ β(s′′1(t+ 1)− s′1(t+ 1)).

Next, consider the case when charging occurs at BS 2 (and no discharging occurs). By the induction hypothesis,

s′2(t) ≥ s′′2(t). Hence,s′2(t)− s′′2(t) = s′2(t+1)− s′′2(t+1) unless excess charge is transfered over from BS 1. That

is, unlessαc∗1(t) > Smax − s′′1(t). In that case, we have

s′2(t+ 1)− s′′2(t+ 1) = max{0, s′2(t)− s′′2(t)− αβ(c∗1(t)− ĉ1(t))}.

Hence, we haves′2(t+ 1) ≥ s′′2(t+ 1) and from the induction hypothesis,

s′2(t+ 1)− s′′2(t+ 1) ≤ max{0, β(s′′1(t)− s′1(t))− αβ(c∗1(t)− ĉ1(t))}

= β(s′′1(t)− s′1(t))− αβ(c∗1(t)− ĉ1(t))

= β(s′′1(t+ 1)− s′1(t+ 1)).

From (27), it is clear thatJπ(s′′(k)) ≤ Jπ∗(s′(k)) since any additional deficit that occurs at BS 2 can be compensated

for through discharge from storage of BS 1 (see footnote 4). Hence, we have

Jπ∗(s′′(k)) ≤ Jπ(s
′′(k))

= Jπ









s1(k) + α∆

s2(k)









≤ Jπ∗(s′(k))

= Jπ∗









s1(k)

s2(k) + αβ∆







 ,

which completes the proof of this Proposition.

4The deficit is at BS 2α(d∗2(t)− s′′2 (t)). We compensate by discharging(d∗2(t)− s′′2 (t))/β at storage at BS 1, resulting in a net energy

of α(d∗2(t)− s′′2 (t)) after storage and energy transfer loss.
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APPENDIX E

PROOF OFPROPOSITION6

Proof: We note that at timet = N , transferringmin{E1(N), |E2(N)|/β} units of energy from BS 1 to BS

2 first is optimal. Hence, it remains to show that, fort < N , the cost to go function for a policy that transfers

min{E1(t), |E2(t)|/β} to compensate forE2(t) is optimal. We first note that for the energy sent to BS 2, it is

optimal to use all transferred energy to compensate for the deficit E2(k) first, rather than sending the energy to

storage. This follows from Proposition 4. Let∆2 be the energy at BS 2 that comes from BS 1, and let∆S2 ≤ ∆2

be the part of the energy that is sent to storage at BS 2 insteadof being used to compensate for the deficit. If

∆S2 > 0, then charging of storage 2 occurs and we can assume without loss of generality that no discharging

occurs. Hence, the deficit|E2(k)| must be compensated for by the remaining transfer energy,∆2−∆S2, and energy

drawn from the main grid,w∗
2(k). From Corollary 1, we can assume thatw∗

2(k) is not used to charge the storage

at BS 2. Hence, we havew∗
2(k) = max{|E2| − ∆2 + ∆S2, 0}. If ∆2 − ∆S2 ≥ |E2(k)|, then it means that we

compensate for the deficit first before charging the storage.If ∆2 −∆S2 < |E2(k)|, then the optimal cost to go

function is lower bounded by

Jπ∗









s1(k)

s2(k)







 = w∗
1(k) + |E2| −∆2 +∆S2 + Jπ∗









s1(k + 1)

s2(k) + α∆S2









≥ w∗
1(k) + |E2| −∆2 +∆S2 + Jπ∗









s1(k + 1)

s2(k)







− α2∆S2,

where the second inequality follows from Proposition 4. Since (1 − α2)∆2 ≥ 0, the optimal∆S2 is given by

∆S2 = max{∆2 − |E2(k)|, 0} for ∆2 −∆S2 ≤ |E2(t)|, which corresponds to using all of the transferred energy

to cancel out the deficit first before charging the storage at BS 2.

Next, since all of the transferred energy∆2, is used to compensate for the deficit first, if∆2 ≥ |E2(k)|, then

the Proposition is proven. If∆2 = βE1(k), the Proposition is also proven since all of the excess energy at BS 1

is transferred to BS 2. Hence, it remains to consider the casewhere∆2 < min{βE1(k), |E2(k)|}. Here, a part of

E1(k), E1(k) −∆2/β, is sent to storage at BS 1 instead of being transferred to BS 2to compensate forE2(t).

We can assume without loss of generality that there is no discharging of storage 1 since charging occurs. Let

∆ = min{βE1(k), |E2(k)|} − ∆2. The deficit ofβ∆ at BS 2 has to be compensated for by other means, either

through conventional power generation or through energy drawn from storage at BS 2. We consider the two cases

separately

Case 1: Energy drawn from storage 2. Then, in this case, we show that

Jπ∗









s1(k)

s2(k)







 ≤ Jπ∗









s1(k) + α∆

s2(k)− β∆/α







 .
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The proof follows similar arguments for Proposition 5 (see Appendix D). Consider a system at states′(k) =

[s1(k) + α∆, s2(k) − β∆/α]T . Let π∗(s′(k)) be the optimal policy corresponding to this state. Considernow a

system at states(k) = [s1(k), s2(k)]
T . Let π(s(k)) = π∗ except in the following cases:

1) Overcharging at BS 2:αc∗2(t) > Smax−s2(t). In this case, we set̂c2(t) = (Smax−s2(t))/α to charge storage

2 and transfermin{c∗2(t)− ĉ2(t), (s
′
1(t)− s1(t))/(αβ)} to charge storage 1.

2) Deficit at BS 2:d∗1(t) > s1(t). In this case, the deficit is given byα(d∗1(t) − s1(t)). We will compensate

for this deficit by transferring energy from storage 2 (at BS 2) to BS 1. The total amount that needs to be

transfer out of storage 1 isα(d∗1(t)− s1(t))/(αβ) = (d∗1(t)− s1(t))/β.

Similar to Claim 3, for evolution of states(t) under policyπ and evolution ofs′(t) underπ∗, and the same

energy profiles, we have fort ≥ k,

s′1(t) ≥ s1(t), (30)

s2(t) ≥ s′2(t), (31)

s′1(t)− s1(t) ≤ β(s2(t)− s′2(t)). (32)

As the proof for these inequalities follow the same arguments as those found in Claim 3 in Appendix D, we omit

the proof here. We note only that the conditionβ > α is required for the inequalities to hold att = k. At t = k,

β(s2(t)− s′2(t)) = β2∆/α, while s′1(t)− s1(t) = α∆. Hence, ifβ > α, β2∆/α > α∆.

When inequalities (30) to (32) are satisfied, the policyπ starting at states(k) does not incur more energy cost

than the optimal policyπ∗ for states′(k). Hence, we have

Jπ∗









s1(k)

s2(k)







 ≤ Jπ









s1(k)

s2(k)









≤ Jπ∗









s1(k) + α∆

s2(k)− β∆/α







 ,

which implies that the optimal∆ = 0.

Case 2: Increase in conventional energy. In this case, we incur an additional loss ofβ∆. Then, we have

Jπ∗









s1(k)

s2(k)







 ≤ Jπ∗









s1(k) + α∆

s2(k)







− β∆

≤ −β∆+ α2∆+ Jπ∗









s1(k)

s2(k)







 ,

where the last line follows from Proposition 4. Sinceβ > α ≥ α2, we have∆ ≤ 0, which implies that the optimal

∆ = 0.
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APPENDIX F

PROOF OFPROPOSITION7

Proof: At time t = N , it is clear that the greedy policy minimizes the amount of energy drawn from the grid.

It remains to show fort < N that the greedy policy,πg, minimizes the cost-to-go function. That is,Jπg
= Jπ∗ .

We will do so using a backward induction argument. Assume that at time t = k, we follow the greedy policy

and then revert back to the optimal policy at timek + 1. We show that this one-step greedy approach is also an

optimal policy. Since the greedy policy is optimal at timet = N , induction ont then shows that the greedy policy

is optimal for all t. Let πog denote the one step greedy policy. Then,

Jπog









s1(k)

s2(k)







 = 1
Twg(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1)







 ,

wherewg(t) represents the energy drawn from the main grid under the greedy policy at t = k, and sg(k + 1)

represents the storage states at timek + 1 after applying the greedy policy at timek. Note that the greedy policy

is designed to minimize the conventional energy drawn from the grid at timek. Hence, even under the optimal

policy, π∗, we have1Twg(t) ≤ 1
Tw∗(t). At each timet = k, there are two cases to consider.

Case 1:E2(k) ≥ 0. In this case,1Twg(k) = 0 and each BS charges its own storage first before charging the

storage of the other BS. In this case, it is straightforward to see from Case 1 of Proposition 5 and Corollary 1 that

Jπog
= Jπ∗ .

Case 2.1:E2(k) < 0 andE1(k) ≥ |E2(k)|/β. In this case, from Proposition 6 and the conditionβ > α, energy

transfer from BS 1 to BS 2 is an optimal strategy. SinceE1(t) ≥ |E2(t)|/β, we can reduce the problem back to

the first case withE′
1(t) = E1(t)− |E2(t)|/β andE′

2(t) = 0, where the greedy strategy is optimal.

Case 2.2:E2(k) < 0 andE1(k) < |E2(k)|/β. From Proposition 6, energy transfer at timek is still optimal.

Hence, we have

Jπog
(s(k), E1(k), E2(k)) = Jπog

(s(k), 0, E2(k) + E1(k)/α),

Jπ∗(s(k), E1(k), E2(k)) = Jπ∗(s(k), 0, E2(k) + E1(k)/α).

It remains to show thatJπog
(s(k), 0, E2(k) + E1(k)/α) ≤ Jπ∗(s(k), 0, E2(k) + E1(k)/α). Let π′ be any other

policy. Sinceπog minimizes the conventional energy required at timek, 1T (w′(k)−wg(k)). Note from Corollary 1

that conventional energy is not used to charge storages 1 or 2. Since the deficit occurs at BS 2, we can assume

without loss of generality thatw′
1(k) = wg(k) = 0 and∆ = w′

2(k) − wg,2(k). Let ∆1 and∆2 be the change in

storage levels, with respect to the greedy policy, due to thepolicy π′. We have

Jπ′









s1(k)

s2(k)







 ≥ w′
2(k) + Jπ∗









sg,1(k + 1) + ∆1

sg,2(k + 1) + ∆2







 .
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Now, ∆2 ≥ 0 sinceπog first uses storage 2 to compensate for any deficit before usingstorage 1 and conventional

energy. Further, from Corollary 1, the conventional energyis not used to charge the storages. Therefore, any change

in storage levels is due to the additional conventional energy, ∆, being used to compensate for the deficit instead

of storage discharges. Hence,α∆2 + αβ∆1 = ∆. Now, if ∆1 < 0, we have

Jπ′









s1(k)

s2(k)







 ≥ w′
2(k) + Jπ∗









sg,1(k + 1) + ∆1

sg,2(k + 1) + ∆2









(a)

≥ w′
2(k) + Jπ∗









sg,1(k + 1) + ∆1 + β∆2

sg,2(k + 1)









(b)

≥ w′
2(k)− wg,2(k) + wg,2(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1)







− α∆1 − αβ∆2

= wg,2(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1)







+∆− (α∆1 + αβ∆2)

= Jπog









s1(k)

s2(k)







 .

(a) follows from Case 2 of Proposition 5,∆1 ≤ 0 and∆2 + β∆1 = ∆/α ≥ 0. (b) follows from Proposition 4.

Now, for the case when∆1 ≥ 0, we have

Jπ′









s1(k)

s2(k)







 ≥ w′
2(k) + Jπ∗









sg,1(k + 1) + ∆1

sg,2(k + 1) + ∆2









(a)

≥ w′
2(k)− wg,2(k) + wg,2(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1) + ∆2







− α∆1

(b)

≥ ∆+ wg,2(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1)







− α∆1 − αβ∆2

= wg,2(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1)







+∆− (α∆1 + αβ∆2)

= Jπog









s1(k)

s2(k)







 .

(a) follows from Proposition 4.(b) follows from claim 1.
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APPENDIX G

PROOF OFPROPOSITION8

Proof: We first note that the modified greedy policy is optimal at timet = N . It now remains to show by

backward induction that the policy is optimal for allt. As with Proposition 7, letπog denote the one step modified

greedy policy in which the Case 2A of Proposition 7 is implemented at timet = k and then the optimal policy is

implemented fort ≥ k+1. We now show that any other policy,π′, will incur a cost that is at least as large as the

cost incurred byπog.

Observe that for a policyπ′ to be different fromπog at time t = k, the energy transferred to BS 2,x12(k), must

be less thanmin{|E2(k)|/β,E1(k)}. That is, a fraction of the excess energy is put into storage instead of being

sent to BS 2. Sincex12(k) < min{|E2(k)|/β,E1(k)}, the deficit∆ = |E2(k)| − βx12(k) must be compensated

for by other means, through discharging of storage at BS 2 andconventional energy. Let∆d2 be the additional

discharge at storage 2 and∆2 be the additional conventional energy (with respect to the modified greedy policy)

used to compensate for the deficit. Let∆c1 = E1(k) − x12(k) be the additional energy sent to storage 1 (with

respect to the modified greedy policy andα∆c1 ≤ Smax− sg,1(k+1)), such that∆2 +α∆d2 = ∆ andβ∆c1 = ∆.

Case 1: We first consider the case where∆/α ≤ sg,2(k + 1).

Jπ′









s1(k)

s2(k)







 ≥ wg,2(k) + ∆2 + Jπ∗









sg,1(k + 1) + α∆c1

sg,2(k + 1)−∆d2









(a)

≥ wg,2(k) + Jπ∗









sg,1(k + 1) + α∆c1

sg,2(k + 1)−∆d2 −∆2/α









= wg,2(k) + Jπ∗









sg,1(k + 1) + α∆c1

sg,2(k + 1)−∆/α









= wg,2(k) + Jπ∗









sg,1(k + 1) + α∆c1

sg,2(k + 1)− β∆c1/α









(b)

≥ wg,2(k) + Jπ∗









sg,1(k + 1)

sg,2(k + 1)









= Jπog









sg,1(k)

sg,2(k)







 .

(a) follows from Proposition 4. In(b), we use the following claim.

Claim 4: With the assumptions as given in Proposition 8, for anyk + 1 ≤ t ≤ N and ∆ ≥ 0 such that
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∆ ≤ min{(Smax − s1(t))/α, αs2(t)/β}, we have

Jπ∗









s1(k + 1)

s2(k + 1)







 ≤ Jπ∗









s1(k + 1) + α∆

s2(k + 1)− β∆/α







 .

Proof of claim: Let π∗ be the optimal policy for the system starting at state[s∗1(k + 1), s∗2(k + 1)], where

s∗1(k + 1) = s1(k + 1) + α∆ and s∗2(k + 1) = sg,2(k + 1) − β∆/α. Let π′ be a policy for the system starting at

state[s′1(k + 1), s′2(k + 1)] = [s1(k + 1), s2(k + 1)], , such thatπ′ = π∗ except when

• αc∗2(t) ≥ Smax − s′2(t): Set c′2(t) = (Smax − s′2(t))/α. Note that since we assume thatE2(t) ≤ 0 for all t,

and from Corollary 1, conventional energy is not used to charge storages, any charging of storage at BS 2

must come from the excess energy at BS 1. Hence, we setx′12(t) = x∗12(t) − (c∗2(t) − c′2(t))/β. Finally, we

setc′1(t) = min{c∗1(t) + (c∗2(t)− c′2(t))/β, (Smax − s′1(t))/α}.

• αd∗1(t) ≥ s′1(t): In this case, note that sinceE1(t) ≥ 0, any discharge from storage at BS 1 is only used at

BS 2. We setd′1(t) = s′1(t), x
′
12(t) = x∗12(t)− α(d∗1(t)− d′1(t)) andd′2(t) = d∗2(t) + β(d∗1(t)− d′1(t)).

• c∗1(t) ≥ (Smax − s′′1(t))/α: Setc′1(t) = (Smax − s′′1(t))/α.

Using the assumptionsE1(t) ≥ 0 andE2(t) ≤ 0, it is not difficult to see that the following inequality regarding

the states hold for allt ≥ k + 1.

s′2(t)− s∗2(t) ≥ β(s∗1(t)− s′1(t))

if s∗1(t) ≥ s′1(t) and

s′2(t) ≥ s∗2(t)

if s′1(t) ≥ s∗1(t). These inequalities imply that no additional conventionalenergy is required when we use policyπ′

for a system starting at state[s′1(k + 1), s′2(k + 1)], as compared to a system under policyπ∗ and starting at state

[s∗1(k + 1), s∗2(k + 1)]. Hence,

Jπ∗









s1(k + 1)

s2(k + 1)







 ≤ Jπ′









s1(k + 1)

s2(k + 1)









= Jπ′









s′1(k + 1)

s′2(k + 1)









≤ Jπ∗









s1(k + 1) + α∆

s2(k + 1)− β∆/α







 ,

which completes the proof of Claim 4.
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Case 2: We now consider the case where∆/α > sg,2(k+1). This case can actually be treated as an extension of

the previous case (Case 1). Let∆′
c1 +∆′′

c2 = ∆c1 and∆′ +∆′′ = ∆ such that∆′ = αsg,2(k+1) andβ∆′
c1 = ∆′.

Jπ′









s1(k)

s2(k)







 ≥ wg,2(k) + ∆2 + Jπ∗









sg,1(k + 1) + α∆c1

sg,2(k + 1)−∆d2









(a)

≥ wg,2(k) + ∆′′ + Jπ∗









sg,1(k + 1) + α∆′
c1 + α∆′′

c1

sg,2(k + 1)−∆′/α









= wg,2(k) + ∆′′ + Jπ∗









sg,1(k + 1) + α∆′
c1 + α∆′′

c1

sg,2(k + 1)− β∆′
c1/α









(b)

≥ wg,2(k) + ∆′′ + Jπ∗









sg,1(k + 1) + α∆′′
c1

sg,2(k + 1)









(c)

≥ wg,2(k) + ∆′′ + Jπ∗









sg,1(k + 1)

sg,2(k + 1)







− α2β∆′′
c1

=wg,2(k) + β(1− α2)∆′′
c1 + Jπ∗









sg,1(k + 1)

sg,2(k + 1)









≥ Jπog









sg,1(k)

sg,2(k)







 .

(a) follows from Proposition 4.(b) follows from claim 4 and finally,(c) follows from claim 1.

Combining the two cases then completes the proof of this Proposition.
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