
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Distributed boundary estimation for spectrum
sensing in cognitive radio networks

Zhang, Yi; Tay, Wee Peng; Li, Kwok Hung; Gaïti, Dominique

2014

Zhang, Y., Tay, W. P., Li, K. H., & Gaïti, D. (2014). Distributed boundary estimation for
spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in
Communications, 32(11), 1961‑1973.

https://hdl.handle.net/10356/81706

https://doi.org/10.1109/JSAC.2014.1411RP08

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/JSAC.2014.1411RP08].

Downloaded on 29 Mar 2024 20:13:31 SGT



1

Distributed Boundary Estimation for Spectrum
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Abstract

In a cognitive radio network, a primary user (PU) shares its spectrum with secondary users (SUs)

temporally and spatially, while allowing for some interference. We consider the problem of estimating the

no-talk region of the PU, i.e., the region outside which SUs may utilize the PU’s spectrum regardless of

whether the PU is transmitting or not. We propose a distributed boundary estimation algorithm that allows

SUs to estimate the boundary of the no-talk region collaboratively through message passing between SUs,

and analyze the trade-offs between estimation error, communication cost, setup complexity, throughput

and robustness. Simulations suggest that our proposed scheme has better estimation performance and

communication cost trade-off compared to several other alternative benchmark methods, and is more

robust to SU sensing errors, except when compared to the least squares support vector machine approach,

which however incurs a much higher communication cost.

Index Terms

Cognitive radio, boundary estimation, spectrum sensing.

I. INTRODUCTION

A cognitive radio (CR) network improves radio spectrum utilization by permitting unlicensed

secondary users (SUs) to access the same spectrum when the licensed primary users (PUs) are

not using it, or when SU transmissions do not interfere significantly with the PUs. Various
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spectrum sensing methods have been proposed, including centralized [1], distributed [2] and

relay-assisted cooperative detection schemes [3].

In this paper, we consider the spatial usage diversity of the PU by letting the PU fix an

interference temperature limit that allows for interference from SUs in its licensed spectrum

below a threshold [4], [5]. This translates to a no-talk region around the PU, in which SUs

opportunistically transmit only if the PU is not transmitting [4], [6]. SUs outside of this no-talk

region can transmit regardless of whether the PU is active or not. Our main goal is to develop

a distributed algorithm that allows SUs to cooperatively determine the boundary of the no-talk

region.

In [6]–[8], different spectrum sharing regions, including a primary exclusive region and the

no-talk region, are defined. However, all these works assume that the propagation path loss

between the PU and SUs are isotropic, and all regions are assumed to be circular. Bounds

on the radius of each region are given based on interference and outage considerations, which

are characterized in terms of propagation parameters like path loss exponents. In practice, the

propagation environment may be very difficult to model quantitatively, and the no-talk region

is unlikely to be circular. Therefore, in this work, we develop boundary estimation methods for

the no-talk region without relying on extensive assumptions about the shape of the region.

Boundary estimation is widely used in different sensor networking applications, and has been

extensively studied. Methods based on node degrees [9], connectivity information [10], and

topology information [11] have been proposed to estimate the coverage region of a sensor

network. Although the definition of a no-talk region was comprehensively addressed in [4],

little work has been done to estimate the boundary of this region. A classifier-based cooperative

boundary detection algorithm for estimating the no-talk region using support vector machines

(SVM) [12] has been proposed in [13]. A computational geometry method based on convex hulls

has also been utilized for boundary estimation in [13]. All these works however assume that

sensors send their local information to a fusion center, and boundary estimation is performed

at the fusion center. In a cognitive radio network, constraints on energy and bandwidth usually

restrict SUs from communicating with a single fusion center effectively. Localized edge detection

algorithms based on statistical, image processing and classification methods have been proposed

in [14] to allow a sensor to locally decide whether or not it is located on or near a boundary.

A distributed Bayesian algorithm has also been proposed to determine event regions [15], [16].
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These methods however do not make use of cooperation between sensors. A hierarchical tree-

based estimation method using recursive dyadic partitioning [17] and a dynamic boundary

tracking algorithm that combines spatial and temporal estimation techniques [18] have been

proposed for boundary estimation in ad-hoc networks. However, this method is again centralized,

and does not consider the smoothness of the estimated boundary.

In this paper, we consider the cooperative estimation of the PU’s no-talk region by exploiting

local communications amongst SUs. Our main contributions are the following:

1) We propose a distributed boundary estimation method based on the distributed learning

framework of [19], and with additional smoothness constraints. Sensors outside the esti-

mated no-talk region are allowed to transmit even if the PU is transmitting.

2) We provide approximate theoretical bounds for the communication cost incurred by our

proposed method and the expected estimation error, so that the approximate optimal SU

density can be inferred. This is useful for randomly allocating SUs to estimate the no-

talk regions of multiple PUs transmitting over different frequency bands. We note that our

theoretical performance analysis is not considered in [19], and to the best of our knowledge,

is new.

3) We derive order bounds for the setup complexity of our proposed method, and expressions

for the throughput achievable by the PU and SUs.

4) Simulations suggest that our proposed boundary estimation algorithm have better trade-offs

in the throughput and setup communication cost than various other boundary estimation

algorithms in the literature, and is more robust to SU sensing errors except when compared

to the centralized least squares SVM (LS-SVM) method, which however incurs a much

higher communication cost.

Our method allows better spatial usage of the spectrum and improves the overall system through-

put, albeit at the cost of estimating the boundary. For a stationary PU, this is a fixed cost that

does not contribute significantly to the overall operational energy cost. An example is the use of

CR systems in the Internet-of-Things framework [20], where devices like electrical appliances

are fixed and CRs in the devices allow opportunistic use of the cluttered spectrum.

The rest of this paper is organized as follows. In Section II, we introduce our system model and

problem formulation. In Section III, we propose a distributed boundary estimation algorithm for

estimating the boundary of R. In Section IV, we analyze the trade-offs between communication
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cost and estimation error of our boundary estimation method for a Poisson field of SUs, and

determine its setup complexity and throughput. Simulation results are provided in Section V.

Finally, we conclude in Section VI.

II. SYSTEM MODEL

Suppose that there is one PU and N SUs in a bounded region A ⊂ R
d.1 We say that the

PU is active if it is transmitting in its licensed spectrum. Suppose that the PU is located at x0.

We assume that all wireless channels are symmetric, and define the no-talk region [4] of the

PU to be the set R = {x ∈ R
d : P0 − L(x, x0) > θ0}, where P0 is the transmit power of

the PU, L(x, x0) is the average propagation loss function between the PU and a SU located

at x, and θ0 is a fixed threshold. The average propagation loss can be modeled as L(x, x0) =

l(‖x− x0‖)+S(x, x0)+F (x, x0),
2 where l(‖x− x0‖) is the power attenuation due to the distance

‖x− x0‖ between a SU at location x and the PU at location x0, S(x, x0) represents the average

shadowing effect, and F (x, x0) is the average power loss due to multipath fading. We suppose

that the PU can tolerate an average interference below the fixed threshold θ0 so that SUs outside

of R can utilize the PU spectrum regardless of whether it is active or not. SUs within the no-talk

region R are required to refrain from using the PU spectrum if the PU is transmitting. Note

that the threshold θ0 is chosen to include a safety margin or budget for the propagation loss due

to shadowing and fading, and other parameters like the average density of SUs. The reader is

referred to [4] for a detailed discussion of the different considerations involved in defining the

no-talk region of a PU.

In this paper, we aim to estimate the no-talk region R, or equivalently the boundary of R, in

order to facilitate spatial spectrum sharing between the PU and SUs. The average propagation

loss L(x, x0) for a SU at position x depends on various factors including the terrain, the type and

number of reflectors and attenuators between the PU and SU, and other ambient environmental

factors. The propagation loss function is thus difficult to determine to good accuracy in practice,

and therefore we assume that L(x, x0) is unknown, and adopt a learning approach to estimate the

region R solely based on the received power at the SUs. We make the following assumptions.

1In most applications, d = 2 or 3, which corresponds to SUs scattered over a geographical region or in a building respectively.

2All power quantities are expressed in dB.
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Assumption 1:

(a) Communications by SUs are over relatively shorter distances than the PU, and hence the

transmit power of each SU is at most P0. Multiple SUs can share the PU’s spectrum spatially

(see Figure 1).3

(b) The region R is compact, and has a smooth4 boundary.

(c) Time can be discretized into intervals and the PU is active in each interval with known

probability π ∈ [0, 1], independently across intervals.5

PU

SU 1

SU 2
SU 3

No-talk Region

Fig. 1. Spatial spectrum sharing between PU and multiple SUs. SU 1 and 2 can use the licensed spectrum of the PU without

spectrum sensing. SU 3 can only utilize the spectrum when the PU is inactive.

We let each SU sample the PU licensed spectrum over a sufficiently long calibration phase

in order to perform boundary estimation of R. We assume that R has a smooth boundary in

Assumption 1(b) to avoid the case where a temporary degradation in the channel between the

PU and a SU during the calibration phase may incur a large estimation error. This assumption

is also valid in most practical situations, except when there are strong attenuators close to the

boundary, in which case our solution leads to an estimated no-talk region larger than the actual

one. In our problem formulation (cf. Section III-B), we will not impose Assumption 1(b) strictly,

but rather adopt a simpler constraint to approximate it. In addition, for practicality, we require

that the estimation algorithm is distributed, with each SU having access only to local information

(its own observations and information from its neighbors).

3Various spectrum sharing schemes have been described in [21].

4Formally, this means that the boundary is parameterizable and differentiable in that parameter.

5Although we restrict our analysis to the case where the PU active probability π is the same across intervals, our analysis

can be easily generalized to the case where each interval has a different PU active probability.
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Suppose that SU i is located at xi, for i = 1, . . . , N , and suppose that the calibration period

for SU i is divided into J observation intervals, where the PU is active with probability π during

each interval independently (cf. Assumption 1(c)). Let Yi[j] be the signal sample obtained by

SU i in interval j, where j = 1, . . . , J . If the PU is inactive during interval j, we have

Yi[j] = Wi[j],

where the noise variables Wi[j] are independent zero mean Gaussian random variables with

variance σ2
W . If the PU is active during interval j, we have

Yi[j] = Xi[j] +Wi[j],

where Xi[j] is the PU signal, which is assumed to be a Gaussian random variable with zero mean,

and independent of Wi[j]. The variance or power of Xi[j] is then given by µi = P0 −L(xi, x0).

Let H0 : µi ≤ θ0 and H1 : µi > θ0 be the hypotheses that SU i is outside and within the no-

talk region R, respectively. For the sake of generality, we assume that the PU signal modulation

scheme is unknown to the SUs. Therefore, SUs are constrained to use energy detection methods

[4], [22] in order to perform the hypothesis test. For this purpose, SU i forms the test statistic

Ti =
1
J

∑J

j=1 |Yi[j]|2 and uses the following threshold rule to determine the hypothesis:

Ti

H0

≤
>
H1

θ, (1)

where θ is chosen so that the false alarm probability is below a predefined threshold α ∈ (0, 1).

Since µi is unknown a priori, we need to make further approximations in order to determine θ.

The mean of Ti is given by

m(µi) = πµi + σ2
W ,

and applying Wald’s identity [23], we obtain after some algebra, the variance of Ti is

η(µi) =
1

J

(

µ2
iπ(3− π) + 2σ2

W (σ2
W + 2π)

)

.

Assuming that J is sufficiently large, the central limit theorem [23] allows us to approximate

the distribution of Ti as a Gaussian distribution with mean m(µi) and variance η(µi). Since both

m(·) and η(·) are increasing functions, the threshold θ can now be chosen to ensure that the

false alarm constraint in the worst case situation is satisfied, by setting

Q
(

θ −m(θ0)
√

η(θ0)

)

= α,
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where Q(·) is the complementary cumulative distribution function for the standard normal

distribution. We note that the test (1) and the choice of θ do not require knowledge of the

PU transmit power P0 or the locations of the PU and SUs.

When there are multiple PUs transmitting in the same spectrum, the no-talk region is the

union of all PUs’ no-talk regions. Suppose there are N ′ > 1 PUs, and that all PU signals are

uncorrelated. Let Yip[j] be the signal sample received by SU i from the PU p in the interval j.

For a sufficiently large J and p 6= p′, we have 1
J

∑J

j=1 Yip[j]Yip′ [j] ≈ 0, and the test statistic

Ti =
1
J

∑J

j=1 |
∑N ′

p=1 Yip[j]|2 can be approximated as 1
J

∑N ′

p=1

∑J

j=1 |Yip[j]|2. A threshold for Ti

similar to that in (1) can be found to determine if SU i is within the no-talk region of at least

one PU.

Let ui be the decision of SU i for the test (1), where ui = −1 if it decides in favor of

H0, and ui = 1 otherwise. Recall that xi is the position of SU i, and let yi = (xi, ui), for

i = 1, . . . , N . Our aim is to learn a function f : Rd 7→ R based on the collection of pairs

y = {yi : i = 1, . . . , N}, so that f(x) ≥ 0 or f(x) < 0 if a SU location x is inside or outside the

region R respectively, and with {x : f(x) = 0} corresponding to the boundary of R. In the same

spirit as statistical learning theory [24], we can regard each yi as being drawn independently

from the same joint distribution p(x, u) (which is unknown because the path loss L(x, x0) is

unknown). Then, in estimating the boundary of R, we hope to obtain a function f with small

generalization error

E = E[(f(X)− U)2], (2)

where (X,U) has joint distribution p(x, u). If E is large, the throughput at the PU deteriorates

because of interference from SUs that wrongly believe themselves to be in Rc.6 Therefore,

we are interested to study the trade-offs in throughputs with E and the communication cost of

performing the boundary estimation.

In a centralized estimation algorithm, the data y is sent to a fusion center, which trains a global

function. Such centralized algorithms suffer from several disadvantages, including the need to

select a site for the fusion center, the susceptibility of the whole network to a single point

of failure at the fusion center, the need for significant processing power and memory storage

6We use Rc = A\R to denote the complement of R in the region of interest A.
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at the fusion center, and the use of long range communications as the area A becomes large.

In this paper, we consider distributed algorithms, in which each SU communicates only with

neighboring SUs to collaboratively estimate the boundary of R.

For the convenience of the reader, we list some commonly used notations in Table I. Some

of these notations have been defined in this section, while the remaining ones will be defined

formally in the sequel where they first appear. In addition, we adopt the following definitions.

For SU i and cluster C, we use i ∈ C to mean xi ∈ C. The number of SUs in y belonging

to C is given by |C|. The indicator function 1{S} equals to 1 if the statement S is true and 0

otherwise.

TABLE I

SUMMARY OF NOTATIONS USED

Symbol Definition

A region of interest containing the PU and all SUs

R no-talk region of PU

N number of SUs in region of interest A

δ broadcast range of a SU

ph probability of a SU to become a cluster head

γ threshold to determine if a cluster is a boundary cluster

M number of boundary clusters

Cj the jth boundary cluster, j = 1, . . . ,M

B set of boundary clusters {C1, . . . , CM}

N (Cj) set of neighboring clusters of Cj

fCj
local boundary estimation function of cluster Cj

III. DISTRIBUTED BOUNDARY ESTIMATION

In this section, we propose a distributed boundary estimation algorithm that determines the

boundary of the set R based on message passing between SUs. The SUs are grouped into

clusters, and most communications are over relatively short ranges within clusters. Each cluster

has a SU that serves as the cluster head. The cluster head communicates with SUs inside its

cluster, performs most of the necessary computations required for distributed estimation of the

boundary, and communicates with other cluster heads. Cluster heads thus expend more energy

than typical SUs inside the cluster. Incentives can be designed to compensate cluster heads; an

example being given higher priority to access the spectrum. Such incentive mechanisms are out

of the scope of our current work, and will not be discussed here.

Our distributed boundary estimation procedure consists of the following steps.
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(i) Formation of clusters. Each SU independently nominates itself to be a cluster head with

probability ph. A cluster head broadcasts a message over a control channel to all SUs

within a distance δ to inform them of their inclusion into the cluster. To avoid collisions

amongst cluster heads, a carrier sense multiple access protocol [25] is used. Note that a

cluster head can also belong to another cluster, and a SU can belong to multiple clusters.

(ii) Boundary cluster identification. We design a metric to identify those clusters that lie close

to the boundary of the set R. We call these the boundary clusters.

(iii) Distributed boundary estimation. Messages are exchanged between members of a boundary

cluster and its cluster head. In addition, messages are exchanged between cluster heads of

neighboring boundary clusters to collaboratively estimate the boundary of R.

In the following subsections, we describe steps (ii) and (iii) in detail.

A. Boundary Cluster Identification

Let C be a cluster, and U− = 1
|C|

∑

i∈C 1{ui = −1} to be the fraction of SUs in cluster C

with ui = −1. The clusters within R have a higher probability of 1 − U− being much larger

than U−, while the reverse is true for clusters that are far from the PU. To identify those clusters

that are close to the boundary of R, we let S = max(U−, 1−U−), and say that C is a boundary

cluster if and only if S ≤ γ, where γ to be a fixed threshold. If C is not a boundary cluster,

the cluster head declares it to be within R if U− < 1/2, and outside vice versa. We call those

clusters in the former class inside clusters, and those in the latter class outside clusters.

B. Distributed Boundary Estimation

To learn a function f that can be used to determine if a new SU location x (not necessarily

belonging to the training data y) is within or without R, we consider the following approach.

A SU at location x queries its cluster head to check the types of cluster it belongs to (recall

that a SU may belong to multiple clusters). If it belongs to an inside cluster, we let f(x) = 1

and declare that it belongs to R. If it does not belong to any inside clusters, and it belongs to

a boundary cluster, it uses a local function, which we describe below, to determine its location

status. Finally, if it is not within any inside or boundary clusters, we let f(x) = −1, and declare

that the SU is in Rc.
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Let B = {C1, . . . , CM} be the set of boundary clusters. The boundary clusters collaboratively

estimate the boundary of R based on local information and message exchanges between cluster

heads. We use the reproducing kernel Hilbert space (RKHS) [19], [26] formulation to obtain a

function that distinguishes a location x to be inside or outside R. However, since we do not

assume that there is a central authority to perform the estimation, we consider instead finding a

collection {fCj
} of local functions, each corresponding to a boundary cluster. If x is not within

an inside cluster and it belongs to a boundary cluster, we let the estimation function f(x) take

the value fC(x) where C is chosen randomly from the set of boundary clusters containing x.

Let HK be a RKHS corresponding to a kernel K(·, ·) that serves as a similarity measure

between two SU locations. We restrict to kernels that are radial basis functions (RBF), i.e.,

those kernels that can be expressed as functions of the Euclidean distance between two SUs.

For each Cj ∈ B, let N (Cj) be the set of indices k with j 6= k and |Ck ∩Cj| 6= 0. We call those

clusters in N (Cj) the neighboring clusters of Cj . Our goal is to

min
∑

i∈∪M
j=1

Cj

(zi − ui)
2 +

M
∑

m=1

νm‖fCm
‖2HK

+
M
∑

m=1

∑

k∈N (Cm)

ηmǫ
2
m,k (3)

subject to

fCm
∈ HK , ∀ Cm ∈ B, (4)

zi = fCm
(xi), ∀ i ∈ Cm, Cm ∈ B, (5)

ǫm,k =
1

|Cm|
∑

i∈Cm

fCm
(xi)−

1

|Ck|
∑

i∈Ck

fCk
(xi), ∀ k ∈ N (Cj), Cj ∈ B, (6)

where ‖·‖HK
is the norm of HK , and νm, ηm, for j = 1, . . . ,M , are positive constants. The

minimization in (3) is over all variables zi, fCm
and ǫm,k. The constraints (4) require that the local

classifier fCm
from each boundary cluster Cm is chosen from the RKHS HK . The constraints (5)

ensure that if a SU belongs to multiple boundary clusters, the classification result remains the

same regardless of the local classifier used. Finally, the constraints (6) ensure that the estimated

boundary is smooth (cf. Assumption 1(b)).

The kernel least squares minimization problem (3) is similar to that proposed in [19], which

considers a general distributed learning framework, but without additional constraints like (6).

The reference [19] also provides a distributed method to iteratively obtain the optimizers {fCm
}

by message exchanges between cluster heads. In the following, we show that their distributed
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algorithm can be adapted to our minimization problem (3). Our argument is similar to that in

[19], and treats the minimization in (3) as projections onto closed convex subspaces of a Hilbert

space. This can be done because of the successive orthogonal projection (SOP) theorem [27],

which we state below without proof.

Theorem 1: Let {Λm}Mm=1 be a set of closed, convex, and affine subsets of a RKHS H , and

whose intersection Λ =
⋂M

m=1 Λm is nonempty. For any v0 ∈ H , let v∗ be the orthogonal

projection of v0 onto Λ, and for all n ≥ 1, let vn be the orthogonal projection of vn−1 onto

Λ(n mod M). Then, limn→∞ ‖vn − v∗‖ = 0.

Suppose that S =
∑M

m=1 |N (Cm)| is the total number of variables ǫm,k where m = 1, . . . ,M

and k ∈ N (Cm). Let H = R
N ×HM

K × R
S . In the sequel, to avoid cluttered notations, we let

v = ((zi), (fm), (ǫm,k)) ∈ H to denote an element from H with the understanding that the index

i runs from 1 to N , the index m runs from 1 to M , and the index k ∈ N (Cm) for each m. We

let H be a Hilbert space by letting the squared norm of v be

‖v‖2H =
N
∑

i=1

|zi|2 +
M
∑

m=1

νm‖fCm
‖2HK

+
M
∑

m=1

∑

k∈N (Cm)

ηmǫ
2
m,k.

For each j = 1, . . . ,M , let

Λj =
{

((zi), (fm), (ǫm,k)) ∈ H : zi = fCm
(xi), ∀ i ∈ Cm, and

ǫm,k =
1

|Cm|
∑

i∈Cm

fCm
(xi)−

1

|Ck|
∑

i∈Ck

fCk
(xi), ∀ k ∈ N (Cm)

}

.

It can be shown that Λj is a closed subspace of H . Then, the minimization problem (3) is

equivalent to finding the projection of (u1, . . . , uN , 0, . . . , 0) onto the closed and convex set

Λ = ∩M
j=1Λj .

As pointed out in [19], instead of directly finding the projection onto Λ, Theorem 1 allows

us to iteratively project onto each Λm, for m = 1, . . . ,M . The SOP algorithm first finds the

projection v1 of (u1, . . . , uN , 0, . . . , 0) onto Λ1, then finds the projection of v1 onto Λ2, and so

on. Projections are performed over all Λm, m = 1, . . . ,M , with multiple iterations over the

indices m. Suppose that at an iteration, we seek to project v = ((z̃i), (f̃j), (ǫ̃j,k)) onto Λm. This
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is equivalent to

min
∑

i∈Cm

(fCm
(xi)− z̃i)

2 + νm

∥

∥

∥
fCm

− f̃Cm

∥

∥

∥

2

HK

+ ηm
∑

k∈N (Cm)

(ǫm,k − ǫ̃m,k)
2 (7)

subject to

fCm
∈ HK ,

ǫm,k =
1

|Cm|
∑

i∈Cm

fCm
(xi)−

1

|Ck|
∑

i∈Ck

fCk
(xi), ∀ k ∈ N (Cm).

The minimization in (7) is over fCm
and ǫm,k, and involves only data from Cm and its neigh-

boring clusters. It is thus a local optimization problem. Suppose that (f ∗
Cm

, (ǫ∗m,k)k∈N (Cm)) is the

optimizer for (7). The projected point is then given by v∗ = ((z∗i ), (f
∗
j ), (ǫ

∗
j,k)), where

z∗i = z̃i if i /∈ Cm, and z∗i = f ∗
Cm

(xi) if i ∈ Cm,

f ∗
Cj

= f̃Cj
and ǫ∗j,k = ǫ̃j,k if j 6= m.

The messages that cluster Cm passes to a neighboring cluster Ck are {z∗i : i ∈ Cm ∩ Ck}
and 1

|Cm|

∑

i∈Cm

fCm
(xi), where the first message represents its current best estimate of {ui : i ∈

Cm ∩Ck} subject to the constraints (4)-(6), and serves as the “training labels” [19] for the SUs

in both clusters. The second message encodes the average value achieved by f ∗
Cm

, and allows Ck

to adjust its own classifier to improve the smoothness of the estimated boundary. The following

result is a direct consequence of the Representer Theorem [28], and its proof is omitted. It

characterizes the form of the optimal solution f ∗
Cm

for (7).

Proposition 1: For each Cm ∈ B, the optimal solution to the minimization problem (7) is

given by

f ∗
Cm

(x) =
∑

i∈Cm

βm,iK(x, xi).

Furthermore, if the kernel K(·, ·) is a radial basis function, the computation of fCm
(x) requires

only knowledge of ‖x− xi‖, for all i ∈ Cm.

From (7) and Proposition 1, to train the classifier for a cluster Cm ∈ B, we require the

cluster head to know ‖xi − xj‖, for all i, j ∈ Cm. This can be obtained using various ranging

techniques. Examples include methods in which each SU i broadcasts a pilot signal with known

transmit power, or exchange messages with timestamps [29]. Our distributed boundary estimation
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algorithm is formally stated in Algorithm 1, which we call the DBE algorithm. The following

proposition shows that the classifiers in the DBE algorithm converges.

Proposition 2: For each Cm, where m = 1, . . . ,M , the sequence (f t
Cm

) in line 9 of the DBE

algorithm converges as number of iterations t → ∞.

Proof: Since each Λm is a closed subspace of H , and their intersection Λ = ∩mΛm is

nonempty, the result follows from Theorem 1.

The DBE algorithm presented in Algorithm 1 assumes that boundary cluster heads are syn-

chronized so that local projections can be performed sequentially. We note however that it is

still possible to achieve convergence if after a boundary cluster head has performed its local

projection, it randomly chooses a neighboring boundary cluster head to pass information to. The

chosen neighboring cluster head then repeats the same procedure. We call this the randomized

DBE algorithm. Let G be the graph with vertex set B, which has an edge between Ci and Cj if

they are neighboring clusters. We have the following convergence result.

Proposition 3: Suppose that K(u, u) ≤ κ2 for all u ∈ HK , and G is connected. The estimation

error in the randomized DBE algorithm converges to E[(f ∗(X) − U)2] where f ∗ is an optimal

solution to (3).

Proof: Let fn be the estimation function at the n-th projection of the randomized DBE

algorithm. Since G is connected, the random sequence of chosen cluster heads is an irreducible

and recurrent Markov chain so that every cluster head appears infinitely often in the random

sequence. From [30], the sequence fn is weakly convergent to an optimal estimation function f ∗.

Since weakly convergent sequences are bounded [31], we have |fn(x)| ≤ ‖fn‖HK

√

K(x, x) ≤
κ‖fn‖HK

is bounded. From the dominated convergence theorem [23] and the reproducing prop-

erty of HK , we obtain

lim
n→∞

E[(fn(X)− U)2] = E[ lim
n→∞

(〈fn, K(·, X)〉HK
− U)2]

= E[ lim
n→∞

(f ∗(X)− U)2],

where 〈·, ·〉HK
is the inner product of HK , and the proof is now complete.

IV. PERFORMANCE ANALYSIS

In this section, we first analyze the trade-off between communication cost and estimation

error in the DBE algorithm. Then, we propose a two-step approach to spatial spectrum sensing
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Algorithm 1 Distributed Boundary Estimation (DBE)

1: Initialization:

• z̃i = ui, for i = 1, . . . , N ,

• f 0
Cj

= 0, mj,k = 0 and ǫ̃j,k = 0, for all Cj ∈ B, k ∈ N (Cj).

• tmax = maximum number of iterations

2: for each C ∈ B do

3: for each i ∈ C do

4: Compute K(xi, xj) by measuring ‖xi − xj‖ for all j ∈ C. Send computed values to

the cluster head.

5: end for

6: end for

7: for t = 1, . . . , tmax do

8: for j = 1, . . . ,M do

9: Solve (7) by setting fCj
(x) =

∑

i∈Cj
βj,iK(x, xi), and minimizing over ({βj,i : i ∈

Cj}, ǫj,k). Let f t
Cj

be the optimal solution for fCj
.

10: Update

• z̃i = f t
Cj
(xi), and send z̃i to all k ∈ N (Cj).

• ǫ̃j,k = ǫj,k,

• mj,k =
1

|Cj |

∑

i∈Cj

f t
Cj
(xi), and send mj,k to all k ∈ N (Cj).

11: end for

12: end for

based on the DBE algorithm, and compare its setup complexity and throughput with that of the

traditional fusion center (FC) approach.

A. Communication Cost and Estimation Error

We let the SU locations be distributed as a homogeneous Poisson point process Π in R
d with

rate λ, and assume that the region of interest A has unit d-dimensional volume. Since we do not

have any prior knowledge of the SU locations, it is reasonable to assume that SUs are located

independently and randomly. The homogeneous Poisson point process captures this assumption
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and has been widely adopted in the literature to model the distribution of ad hoc communicating

devices [32], [33]. The Poisson point process also makes the mathematical analysis tractable,

which provides insights into the system performance in practical scenarios. In Section V-C,

we present simulation results for a specific case when SUs are not distributed according to a

homogeneous Poisson point process.

We consider the trade-off between communication cost and the estimation error resulting from

the boundary estimation as the rate λ varies, and we determine an approximate optimal density for

the SUs that minimizes a weighted sum of the communication cost and estimation error. Finding

the optimal density is useful in the case where there are multiple PUs, and random subsets of

SUs may be chosen to estimate the boundary of each PU. Intuitively, as SUs become more

dense, the expected communication cost increases because the number of SUs in each cluster

and the number of boundary clusters increase, but the expected estimation error decreases due to

the availability of more training examples. In the following, because of technical difficulties, we

present heuristic approximations to both the expected communication cost and estimation error,

and determine the optimal density by minimizing a weighted sum of these approximations. We

present simulation results in Section V to verify that the approximate optimal density found is

close to the true optimal one.

For simplicity, we assume that the boundary cluster heads all come from a fixed region D with

volume b > 0, that this region contains the boundary of R, and that it is sufficiently small so

that certain approximations, which we describe below, hold. In finding the optimal density, we

will see that the region D need not be known in advance. We summarize some of the notations

introduced in this section in Table II for ease of reference.

TABLE II

SUMMARY OF NOTATIONS USED

Symbol Definition

λ rate of SU location Poisson point process

D approximate region in A containing all boundary clusters

b volume of the region D

Bx(δ) disk of radius δ centered at x

vd volume of B0(1) in R
d

g(r) communication cost function between two SUs distance r apart

pB approximate probability a cluster centered in D is a boundary cluster (see (9))

κ K(u, u) ≤ κ2 for all u ∈ HK
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1) Communication Cost: Suppose that the cost of sending a message from a SU at position

x to another at position x′ is given by a non-negative function g(‖x− x′‖) with g(0) = 0. In

many wireless applications, this cost is modeled by the power required to achieve a given signal

to noise ratio at the receiver, and g(r) is a function of the form crζ , where c > 0 and ζ ∈ [2, 5].

Let a disk of radius δ centered at x be denoted as Bx(δ), and let vd be the volume of a unit

disk in R
d. The expected communication cost can be found by considering the intra-cluster

communication cost and the inter-cluster communication cost separately. The intra-cluster cost

is incurred when SUs within a cluster communicate with their cluster head. Let the cluster head

of cluster Cj be x̄j . The intra-cluster cost is then given by

E





M
∑

j=1

∑

i∈Cj

g(‖xi − x̄j‖)



 = E[M ] E[|C1|] E [g(‖x‖)1{x ∈ B0(δ)}]

= λ3bphvdδ
d G(δ), (8)

where the first equality follows from Wald’s identity [23], the expected number of boundary

clusters is given by E[M ] = phλb, and

G(δ) =

∫

B0(δ)

g(‖x‖) dx.

The inter-cluster communication cost is incurred when boundary cluster heads exchange

messages during the execution of the DBE algorithm. Cluster heads form a marked Poisson

process with rate phλ. Let pB(x) be the probability that a cluster C with cluster head at x ∈ D,

is a boundary cluster. We make the following approximations in order to compute pB(x): (i) we

assume that the boundary cluster test in Section III-A does not include the observation at the

cluster head; (ii) we replace the number of SUs |C| in one cluster by E[|C|] = vdδ
d; and (iii)

we assume that every SU in a cluster has the same probability ᾱ = 1− α of declaring itself to

be in Rc (this assumption is exact for those SUs in Rc, and approximately true for all SUs in

a boundary cluster if the cluster radius δ is sufficiently small). It can be shown that declaring

a cluster C to be a boundary cluster is equivalent to requiring that |C|(1 − γ) ≤ U− ≤ |C|γ.

Under the above approximations, we then have for x ∈ D,

pB(x) ≈
∑

(1−γ)vdδd≤k≤γvdδd

ᾱkeᾱ

k!
, pB. (9)
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The expected inter-cluster communication cost is then given by

tmaxE

[

∑

x,x′∈D

g(‖x− x′‖)1{Bx(δ), Bx′(δ) ∈ B, ‖x− x′‖ ≤ 2δ}
]

≤ tmaxE

[

∑

x,x′∈D

g(‖x− x′‖)1{‖x− x′‖ ≤ 2δ}pB
]

= pBp
2
hλ

2tmax

∫

D

∫

Bx(2δ)

g(‖x− x′‖)dx′dx

= λ2bphpBtmaxG(2δ), (10)

where the penultimate equality follows from two applications of the Slivnyak-Mecke Theo-

rem [34].

From (8) and (10), the total expected communication cost per SU in D is then upper bounded

by

C(λ) = λ2phvdδ
dG(δ) + λphpBtmaxG(2δ). (11)

2) Estimation Error: To evaluate the estimation error E in (2), we consider

E[(f ∗(X)− U)21{X ∈ D}] = bED, (12)

where

ED = E[(f ∗(X)− U)2 | X ∈ D], (13)

and f ∗ is the solution to (3) given the data y = {(xi, ui) : i = 1, . . . , N}. Compared to E in

(2), we have ignored the estimation errors incurred in clusters close to the PU or far away from

the no-talk region boundary. This is because for sufficiently large rate λ, these errors are largely

dependent on the detection threshold instead of the rate.

Unfortunately, to the best of our knowledge, finding high probability bounds for the gener-

alization error of learning problems like (3) is an open problem, because of correlations in the

loss functions for the clusters due to constraints (5) and (6). We therefore make a simplification

by dropping these constraints in our analysis, and assume the boundary clusters perform their

learning independently of each other. Furthermore, for a boundary cluster Cj , let f ∗
Cj

be the local
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estimation function corresponding to f ∗, and we approximate (13) using

ẼD = E

[

1

M

M
∑

j=1

(f ∗
Cj
(X)− U)21{X ∈ Cj} | X ∈ D

]

=
vdδ

d

bM

M
∑

j=1

Rj,

where Rj = E[(f ∗
Cj
(X)− U)2 | X ∈ Cj].

We assume that the kernel K satisfies the bound K(u, u) ≤ κ2 for all u ∈ HK , and for

some constant κ > 0. We also assume that νj = ν|Cj| for all j = 1, . . . ,M , and some positive

constant ν. We first state two lemmas, the first of which follows from the Chernoff bound, and

the second from Lemma 23, Theorems 12 and 22 of [35]. We omit their proofs here.

Lemma 1: For any measurable set C, let N(C) and µ(C) be the count function and mean

measure of the Poisson point process Π, respectively. For any ε > 0, we have

P(|N(C)− µ(C)| ≥ ε) ≤ 2e−
1

4
ε2µ(C).

Lemma 2: Suppose that K(u, u) ≤ κ2 for all u ∈ HK . Then, for any j = 1, . . . ,M , and any

ε > 0, with probability at least 1− ε over the random draw of the data y, we have

Rj ≤
1

|Cj|
∑

i∈Cj

(f ∗
Cj
(xi)− ui)

2 +
4κ2

ν|Cj|
(
κ√
ν
+ 1)2 + (

8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

ln(1/ε)

2|Cj|
.

For simplicity, we approximate M ≈ phλb. From Lemma 1, if λ is sufficiently large, we have

for any region C, (1 − ε)µ(C) ≤ N(C) ≤ (1 + ε)µ(C) with high probability. Therefore, by

choosing λ to be large enough, with probability at least 1− ε, where ε ∈ (0, 1), we have for all

j = 1, . . . ,M ,

Rj ≤
1

λ(1− ε)vdδd

∑

i∈Cj

(f ∗
Cj
(xi)− ui)

2 +
4κ2

νλ(1− ε)vdδd
(
κ√
ν
+ 1)2

+ (
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

ln(phλb/ε)

2λ(1− ε)vdδd
.

Using the probability union bound, we have with probability at least 1− ε,

ẼD ≤ 1

λ(1− ε)bM

∑

i

(f ∗(xi)− ui)
2 +

4κ2

νλ(1− ε)b
(
κ√
ν
+ 1)2

+
1

b
(
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

vdδd ln(phλb/ε)

2λ(1− ε)
. (14)
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Furthermore, Lemma 23 of [35] yields

(f ∗
Cj
(x)− u)2 ≤ (

κ√
ν
+ 1)2,

for all j = 1, . . . ,M , x ∈ D, and u ∈ {−1, 1}. This implies that with probability one, ẼD is

upper bounded by the right hand side of (14) plus ε(κ/
√
ν + 1)2.

We aim to find λ > 0 that minimizes a weighted sum of the communication cost upper bound

(11) and the estimation error upper bound given by (12) and (14). The objective function to be

minimized is given by

C(λ) + β

(

F3

λ
+ F4

√

lnλ

λ

)

= F1λ
2 + F2λ+ β

(

F3

λ
+ F4

√

lnλ

λ

)

, (15)

where β > 0 is a constant, and

F1 = phvdδ
dG(δ),

F2 = phpBtmaxG(2δ),

F3 =
4κ2

ν
(
κ√
ν
+ 1)2,

F4 = (
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

(1− ε)vdδd

2
.

We have made the approximation that ln(phb/ε)/λ ≈ 0 when λ is sufficiently large so that the

value of b need not be known a priori. The optimal rate can be found by setting the derivative

with respect to λ of (15) to zero (it is clear that there is a positive minimizer) to obtain

4F1λ
5

2 + 2F2λ
3

2 + β(−2F3λ
− 1

2 + F4((lnλ)
− 1

2 − (lnλ)
1

2 )) = 0,

the solution of which can be computed numerically. To find the optimal SU density that minimizes

the communication cost subject to the constraint that the estimation error is below a given level

is equivalent to (15), where β is a Lagrange multiplier.

B. Setup Complexity and Throughput

Let R̂ be the estimator for R produced by the DBE algorithm. Those SUs outside of R̂
can utilize the spectrum without performing spectrum sensing, while SUs inside of R̂ perform
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collaborative spectrum sensing by sending their local sensing decisions to a fusion center. For

convenience, we call our two-step approach the DBE-spectrum sensing (DBE-SS) method. We

analyze the complexity and throughput of the DBE-SS method and the traditional FC method,

where all SUs send their local sensing decisions to a fusion center. In the FC method, SUs do

not know the boundary of R, therefore the spectrum is utilized by the SUs only if the fusion

center declares that the PU is inactive.

We first consider the complexity of performing boundary estimation using the DBE algorithm.

Recall that each SU nominates itself to be a cluster head with probability ph, and each cluster is

covered by a disk of radius δ. Therefore, there are on average O(δd) SUs in a cluster and line 4

in the DBE algorithm has complexity O(δ2d). The optimization problem (7) can be viewed as

a convex quadratic program with O(δd) constraints, with complexity O(δdδ3d) = O(δ4d). The

expected number of boundary clusters is bounded by O(phN), therefore the overall expected

complexity of the DBE algorithm is O(phNδ4d). On the other hand, in the FC approach, SUs

route their local decisions to a fusion center using a minimum spanning tree (MST). If we

assume that the underlying communication network is formed by joining any two SUs that are

within distance δ of each other, then the complexity of setting up a MST (with global knowledge

of the whole network topology) is O(Nδd). Clearly, the DBE algorithm has higher complexity

than the fusion center setup if ph > δ−3d.

We now compare the throughput of the DBE-SS method with that achieved by the FC

approach. We make several assumptions to simplify the analysis. Suppose that all SUs transmit

at the same power Ps < P0, and that in any given area, at most a fraction q of the SUs can

share the spectrum. We assume additive white Gaussian noise channels with noise power N0.

We also assume that interference between the PU and the SUs outside of R is negligible, while

the throughput for SUs in R when the PU is active is negligible. Then, the throughput of a SU

in the absence of the PU is [36] R̄0 = log2

(

1 + Ps

N0

)

. We further assume that each SU uses a

periodic frame structure of duration T , which includes a sensing duration of τ . Suppose that the

PU is active with probability π. Then, the average throughput per user under the FC method is

RFC
s = (1− π)qR̄0(1−

τ

T
)(1−QFC

f ),

where QFC
f is the false alarm rate at the fusion center. As the fusion center does not know the

receiver operating characteristic (ROC) of each sensor, it uses a simple k-out-of-N rule to fuse
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the SUs’ local decisions. The false alarm is given by7

QFC
f =

k
∑

i=1

(

qN

i

)

αi(1− α)qN−i. (16)

The value of k is chosen so that the probability of detection QFC
d ≥ β̄, for some fix threshold β̄.

On the other hand, the average throughput per user for the SUs under DBE-SS is

Rs = (1− π)qR̄0

(

|R̂|
N

(1− τ

T
)(1−Qf ) + 1− |R̂|

N

)

+ πqR̄0

(

1− |R ∪ R̂|
N

)

,

where Qf is the false alarm rate for the SUs inside R̂, with the same minimum probability of

detection β̄, and can be computed in a similar manner as (16). It can be shown that if R̂ ≈ R
and |R|/N is sufficiently small, then Rs > RFC

s . This is intuitively clear as there is little benefit

to perform boundary estimation if R covers almost all the SUs.

Next, we derive the throughput for the PU. In the FC approach, the PU average throughput is

RFC
p = π

(

QFC
d log2

(

1 +
P0

N0

)

+ (1−QFC
d ) log2

(

1 +
P0

N0 + qNPs

))

,

where QFC
d is the detection probability at the fusion center. Because of estimation errors in the

DBE-SS scheme, R\R̂ may be non-empty. Interference from SUs in this set is bounded by

N1 = q|R\R̂|Ps. The PU average throughput under the DBE-SS scheme is then given by

Rp = π

(

Qd log2

(

1 +
P0

N0 +N1

)

+ (1−Qd) log2

(

1 +
P0

N0 + q|R|Ps

))

,

where Qd ≥ β̄ is the detection probability for the SUs inside R̂. In Section V, we present

simulation results to compare the throughput Rs under the DBE-SS scheme with RFC
s under the

FC method, when Rp = RFC
p .

V. SIMULATION RESULTS

In this section, we present simulation results to verify the performance of the DBE algorithm

and the DBE-SS method. In each simulation run, 1000 sensors are uniformly distributed in a

region A of size 5×5 km2, with the PU (e.g., a TV transmitter) located at the center of the

region. We use the standard CCIR model [37] for the path loss. For each data point, we perform

1000 simulation runs using the parameters in Table III.

7To avoid cluttered expressions, we assume that qN is always an integer.
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TABLE III

SIMULATION PARAMETERS

Parameters Value Parameters Value

PU transmit power P0 40 dBm SU transmit power Ps 10 dBm

PU transmitter antenna height 30 m SU transmitter antenna height 3 m

PU transmit antenna gain 6 dBd SU transmit antenna gain 0 dBd

PU active probability π 0.3 SU coverage radius δ 0.25 km

interference threshold θ0 -75 dBm SU false alarm probability α 0.05

frame duration T 20 ms shadow fading standard deviation σ 6 dB

sensing time τ 1 ms learning parameters ν1 = . . . = νM 1

communication cost function g(r) r2 learning parameters η1 = . . . = ηM 10

noise power N0 -10 dBm learning kernel K(x, x′) e−0.5‖x−x′‖2

estimation error parameter ε 0.01 trade-off weight β 500

A. Estimation Error and Communication Cost

We compare the communication cost incurred and the estimation performance of the DBE

algorithm with that of various benchmark algorithms, including the following:

1) Centralized boundary estimation algorithm based on LS-SVM [12]: a global classifier is

trained based on information from all SUs in the boundary clusters.

2) Centralized image processing based seeded region growing (SRG) algorithm [38]: we regard

the decision ui of each SU i as a pixel gray level in a binary image and segment the image

by growing a region from a seed point using an intensity mean measure.

3) Distributed Bayesian event region detection (ERD) algorithm [15], [16]: a threshold decision

scheme is applied to correct the errors of local SU decisions. We refer the reader to [15]

for details.

The estimation performance is evaluated according to (2), normalized by four times the area of

R. Since the estimation function f takes values close to 1 or −1, the normalized estimation

error is approximately the area in which misclassification occurs, expressed as a fraction of the

area of R. The communication cost is computed by assuming that each message passed between

two SUs a distance r apart incurs a cost of g(r) = r2.

Figure 2 shows the normalized estimation error and communication cost for each algorithm

when choosing different values for ph, which is the probability that each SU independently

nominates itself to be a cluster head. The threshold γ in the boundary cluster decision rule in

Section III-A is set to be 0.6. As ph increases, the performance of the SRG and ERD algorithms

remain constant as these algorithms do not use clustering. The performance of our proposed DBE
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Fig. 2. Normalized estimation errors and total communication costs for different values of ph when γ = 0.6.

algorithm on the other hand, becomes better than the SRG and the ERD algorithms, but still

underperforms the centralized LS-SVM algorithm. Centralized methods like LS-SVM and SRG

however have higher communication costs than the ERD and DBE algorithms as only short

range communications are required for the latter algorithms. We see that the DBE algorithm

achieves arguably the best trade-off between the estimation error and communication cost if ph

is chosen to be sufficiently large.

We now set the probability ph = 0.8 and vary the threshold γ in the boundary cluster decision

rule, with a higher value of γ corresponding to more clusters being chosen as the boundary

clusters. We see from Figure 3 that although the estimation error decreases with increasing γ,

the rate of decrease is not very significant. This is because most of the actual boundary clusters

have already been included for reasonable values of γ. This implies that in practice, a reasonably

small value of γ can be chosen to reduce the communication costs incurred during boundary

estimation.

We next fix ph = 0.8 and γ = 0.6, and vary the SU density from 5 to 160 SU per km2.

In Figure 4, we use simulation to compute the sum of the communication cost and estimation

error (2) weighted by β. For comparison, we also plot the cost function C(λ) in (15). Although

C(λ) does not include the estimation errors incurred in clusters far away from the boundary of

R, it is seen that it still serves as an upper bound to the simulated cost as estimation errors in

clusters located far from the boundary are very small. We see from Figure 4 that the simulated

and theoretical optimal SU densities are nearly identical to each other.
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Fig. 3. Normalized estimation errors and total communication costs when ph = 0.8, and the threshold γ is varied.
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Fig. 4. Weighted sum of communication cost and estimation error when γ = 0.6 and ph = 0.8, with varying SU density.

In Figure 5, we show the convergence of the normalized estimation error with respect to

the number of inter-cluster communications for a particular simulation run with 70 boundary

clusters. We see that for the DBE algorithm the estimation error converges within 200 messages

(or equivalently about 3 passes over all boundary clusters). This shows that in practice, tmax

in the DBE algorithm can be chosen to be a reasonably small value. The randomized DBE

algorithm on the other hand requires a much larger number of inter-cluster communications, but

less coordination amongst the boundary cluster heads.
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B. Throughput

In this subsection, we present numerical results for the ROCs and throughputs of the FC and

DBE-SS methods after boundary estimation with ph = 0.8 and γ = 0.6. Recall that the fusion

center has no knowledge of the ROC of individual SUs, and a simple k-out-of-N fusion rule is

utilized in place of optimal fusion. Figure 6 shows the ROC curves of the two methods. It is

seen that the DBE-SS method has a higher detection probability for each false alarm probability

because only information from SUs in R are utilized, leading to less errors.
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Fig. 6. ROC curves under FC and DBE-SS.

In Figure 7, we vary the detection probability and plot the PU throughput versus the throughput

per SU for both DBE-SS and FC methods. The throughput per SU for the DBE-SS method is
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Fig. 7. PU throughput and throughput per SU under FC and DBE-SS.

relatively flat over all PU throughputs as SUs outside R̂ can transmit regardless of whether the

PU is present or not. We also see that the SU throughput is higher than that for the FC method.

Figure 8 shows the average SU throughput when the PU throughput is fixed at 4 bits/sec/Hz,

and the volume of A is decreased. We see that the DBE-SS method should only be used if A

is more than 10% larger than R.
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Fig. 8. Average throughput per SU as volume of A changes.

C. Robustness

We now compare the robustness of the various boundary estimation algorithms. We fix ph =

0.8 and γ = 0.6. To simulate SU sensing errors, a boundary cluster is randomly chosen with
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probability ς , and then a random subset of the SU sensing decisions in the chosen cluster is

changed from −1 to 1, while an equal number of SU sensing decisions is changed from 1 to −1.

We plot the average normalized estimation error in Figure 9. Figure 9 shows that our proposed

DBE algorithm is more robust than the other benchmark boundary estimation methods, except

for the centralized LS-SVM method. We also compare with a modified version of the DBE

algorithm in which we set ηj = 0 for all j = 1, . . . ,M so that the smoothness constraint (6) no

longer applies. We see that including the smoothing constraint improves the robustness of our

algorithm as neighboring boundary clusters moderate their local classifiers to avoid an abrupt

change in the average classification function value within their clusters.
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Fig. 9. Robustness comparison of boundary estimation algorithms after flipping the observations.

Next, we compare the estimation error of the DBE algorithm with and without the smoothness

constraint (6) when the SUs are no longer distributed as a homogeneous Poisson point process.

With probability ω, a boundary cluster is independently populated with 20 SUs uniformly

distributed inside the cluster. With probability 1 − ω, a boundary cluster is divided into four

quadrants, and a quadrant is chosen randomly. The chosen quadrant is then populated with 20

SUs uniformly. In Figure 10, we see that the smoothing constraint results in a lower estimation

error. Figure 11 shows a portion of the estimated boundaries.

VI. CONCLUSION

We have developed a distributed boundary estimation algorithm for estimating the no-talk

region of a PU in a cognitive radio network, and analyzed the trade-offs between the communi-



28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.1

5.3

5.5

5.7

5.9

6.1

N
or

m
al

iz
ed

 E
st

im
at

io
n 

E
rr

or

 

 

DBE (no smoothing)

DBE

× 10
−2

ω

Fig. 10. Robustness comparison of DBE algorithm with and without smoothing constraints after changing the density.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.25

0.5

0.75

1

1.25

1.5

x−axis

y−
ax

is

 

 

DBE (no smoothing)

DBE

True Boundary

Fig. 11. Estimated boundaries with and without smoothing constraints.

cation cost and estimation error of our proposed method. We derive approximate upper bounds

for the communication cost and estimation error, and provide a method to compute the optimal

SU density. Simulation results suggest that our proposed algorithm have lower estimation errors

and better robustness compared to various other methods.

We have made various simplifying and heuristic assumptions in deriving the optimal SU

density. Our simulations however shows that despite these assumptions, the theoretical optimal

SU density found is not significantly different from the actual one. Bounding the estimation

error more precisely remains a difficult open problem. In this work, we have also assumed that

the PU is static and the received interference of SUs at the PU do not vary over time. Future

work includes developing boundary estimation techniques for the cases where PUs are mobile
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and where communication channels are time variant.
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Distributed Boundary Estimation for Spectrum

Sensing in Cognitive Radio Networks
Yi Zhang, Student Member, IEEE, Wee Peng Tay, Member, IEEE, Kwok Hung Li, Senior Member, IEEE,

Dominique Gaïti, Member, IEEE

Abstract—In a cognitive radio network, a primary user (PU)
shares its spectrum with secondary users (SUs) temporally and
spatially, while allowing for some interference. We consider the
problem of estimating the no-talk region of the PU, i.e., the region
outside which SUs may utilize the PU’s spectrum regardless of
whether the PU is transmitting or not. We propose a distributed
boundary estimation algorithm that allows SUs to estimate the
boundary of the no-talk region collaboratively through message
passing between SUs, and analyze the trade-offs between estima-
tion error, communication cost, setup complexity, throughput and
robustness. Simulations suggest that our proposed scheme has
better estimation performance and communication cost trade-off
compared to several other alternative benchmark methods, and
is more robust to SU sensing errors, except when compared to the
least squares support vector machine approach, which however
incurs a much higher communication cost.

Index Terms—Cognitive radio, boundary estimation, spectrum
sensing.

I. INTRODUCTION

A cognitive radio (CR) network improves radio spectrum

utilization by permitting unlicensed secondary users (SUs)

to access the same spectrum when the licensed primary

users (PUs) are not using it, or when SU transmissions do

not interfere significantly with the PUs. Various spectrum

sensing methods have been proposed, including centralized

[1], distributed [2] and relay-assisted cooperative detection

schemes [3].

In this paper, we consider the spatial usage diversity of

the PU by letting the PU fix an interference temperature limit

that allows for interference from SUs in its licensed spectrum

below a threshold [4], [5]. This translates to a no-talk region

around the PU, in which SUs opportunistically transmit only if

the PU is not transmitting [4], [6]. SUs outside of this no-talk

region can transmit regardless of whether the PU is active or

not. Our main goal is to develop a distributed algorithm that

allows SUs to cooperatively determine the boundary of the

no-talk region.

In [6]–[8], different spectrum sharing regions, including a

primary exclusive region and the no-talk region, are defined.

However, all these works assume that the propagation path

loss between the PU and SUs are isotropic, and all regions are

assumed to be circular. Bounds on the radius of each region are

given based on interference and outage considerations, which

This research was supported in part by the MOE AcRF Tier 1 Grant
RG25/10. Y. Zhang, W. P. Tay, and K. H. Li, are with the Nanyang
Technological University, Singapore. E-mail: yzhang29@e.ntu.edu.sg,
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are characterized in terms of propagation parameters like path

loss exponents. In practice, the propagation environment may

be very difficult to model quantitatively, and the no-talk region

is unlikely to be circular. Therefore, in this work, we develop

boundary estimation methods for the no-talk region without

relying on extensive assumptions about the shape of the region.

Boundary estimation is widely used in different sensor

networking applications, and has been extensively studied.

Methods based on node degrees [9], connectivity information

[10], and topology information [11] have been proposed to

estimate the coverage region of a sensor network. Although the

definition of a no-talk region was comprehensively addressed

in [4], little work has been done to estimate the boundary of

this region. A classifier-based cooperative boundary detection

algorithm for estimating the no-talk region using support

vector machines (SVM) [12] has been proposed in [13]. A

computational geometry method based on convex hulls has

also been utilized for boundary estimation in [13]. All these

works however assume that sensors send their local informa-

tion to a fusion center, and boundary estimation is performed

at the fusion center. In a cognitive radio network, constraints

on energy and bandwidth usually restrict SUs from communi-

cating with a single fusion center effectively. Localized edge

detection algorithms based on statistical, image processing and

classification methods have been proposed in [14] to allow a

sensor to locally decide whether or not it is located on or near

a boundary. A distributed Bayesian algorithm has also been

proposed to determine event regions [15], [16]. These methods

however do not make use of cooperation between sensors.

A hierarchical tree-based estimation method using recursive

dyadic partitioning [17] and a dynamic boundary tracking

algorithm that combines spatial and temporal estimation tech-

niques [18] have been proposed for boundary estimation in ad-

hoc networks. However, this method is again centralized, and

does not consider the smoothness of the estimated boundary.

In this paper, we consider the cooperative estimation of

the PU’s no-talk region by exploiting local communications

amongst SUs. Our main contributions are the following:

1) We propose a distributed boundary estimation method

based on the distributed learning framework of [19], and

with additional smoothness constraints. Sensors outside

the estimated no-talk region are allowed to transmit even

if the PU is transmitting.

2) We provide approximate theoretical bounds for the com-

munication cost incurred by our proposed method and the

expected estimation error, so that the approximate optimal

SU density can be inferred. This is useful for randomly
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allocating SUs to estimate the no-talk regions of multiple

PUs transmitting over different frequency bands. We

note that our theoretical performance analysis is not

considered in [19], and to the best of our knowledge,

is new.

3) We derive order bounds for the setup complexity of our

proposed method, and expressions for the throughput

achievable by the PU and SUs.

4) Simulations suggest that our proposed boundary estima-

tion algorithm have better trade-offs in the throughput and

setup communication cost than various other boundary

estimation algorithms in the literature, and is more robust

to SU sensing errors except when compared to the

centralized least squares SVM (LS-SVM) method, which

however incurs a much higher communication cost.

Our method allows better spatial usage of the spectrum and

improves the overall system throughput, albeit at the cost

of estimating the boundary. For a stationary PU, this is a

fixed cost that does not contribute significantly to the overall

operational energy cost. An example is the use of CR systems

in the Internet-of-Things framework [20], where devices like

electrical appliances are fixed and CRs in the devices allow

opportunistic use of the cluttered spectrum.

The rest of this paper is organized as follows. In Section II,

we introduce our system model and problem formulation.

In Section III, we propose a distributed boundary estimation

algorithm for estimating the boundary of R. In Section IV,

we analyze the trade-offs between communication cost and

estimation error of our boundary estimation method for a

Poisson field of SUs, and determine its setup complexity

and throughput. Simulation results are provided in Section V.

Finally, we conclude in Section VI.

II. SYSTEM MODEL

Suppose that there is one PU and N SUs in a bounded

region A ⊂ R
d.1 We say that the PU is active if it is

transmitting in its licensed spectrum. Suppose that the PU

is located at x0. We assume that all wireless channels are

symmetric, and define the no-talk region [4] of the PU to be

the set R = {x ∈ R
d : P0 − L(x, x0) > θ0}, where P0 is the

transmit power of the PU, L(x, x0) is the average propagation

loss function between the PU and a SU located at x, and

θ0 is a fixed threshold. The average propagation loss can be

modeled as L(x, x0) = l(‖x− x0‖) + S(x, x0) + F (x, x0),
2

where l(‖x− x0‖) is the power attenuation due to the distance

‖x− x0‖ between a SU at location x and the PU at location

x0, S(x, x0) represents the average shadowing effect, and

F (x, x0) is the average power loss due to multipath fading.

We suppose that the PU can tolerate an average interference

below the fixed threshold θ0 so that SUs outside of R can

utilize the PU spectrum regardless of whether it is active or

not. SUs within the no-talk region R are required to refrain

from using the PU spectrum if the PU is transmitting. Note that

the threshold θ0 is chosen to include a safety margin or budget

1In most applications, d = 2 or 3, which corresponds to SUs scattered over
a geographical region or in a building respectively.

2All power quantities are expressed in dB.

for the propagation loss due to shadowing and fading, and

other parameters like the average density of SUs. The reader

is referred to [4] for a detailed discussion of the different

considerations involved in defining the no-talk region of a PU.

In this paper, we aim to estimate the no-talk region R, or

equivalently the boundary of R, in order to facilitate spatial

spectrum sharing between the PU and SUs. The average

propagation loss L(x, x0) for a SU at position x depends on

various factors including the terrain, the type and number of

reflectors and attenuators between the PU and SU, and other

ambient environmental factors. The propagation loss function

is thus difficult to determine to good accuracy in practice,

and therefore we assume that L(x, x0) is unknown, and adopt

a learning approach to estimate the region R solely based

on the received power at the SUs. We make the following

assumptions.

Assumption 1:

(a) Communications by SUs are over relatively shorter dis-

tances than the PU, and hence the transmit power of

each SU is at most P0. Multiple SUs can share the PU’s

spectrum spatially (see Figure 1).3

(b) The region R is compact, and has a smooth4 boundary.

(c) Time can be discretized into intervals and the PU is

active in each interval with known probability π ∈ [0, 1],
independently across intervals.5

PU

SU 1

SU 2
SU 3

No-talk Region

Fig. 1. Spatial spectrum sharing between PU and multiple SUs. SU 1 and
2 can use the licensed spectrum of the PU without spectrum sensing. SU 3
can only utilize the spectrum when the PU is inactive.

We let each SU sample the PU licensed spectrum over a suf-

ficiently long calibration phase in order to perform boundary

estimation of R. We assume that R has a smooth boundary

in Assumption 1(b) to avoid the case where a temporary

degradation in the channel between the PU and a SU during

the calibration phase may incur a large estimation error. This

assumption is also valid in most practical situations, except

when there are strong attenuators close to the boundary, in

which case our solution leads to an estimated no-talk region

larger than the actual one. In our problem formulation (cf.

Section III-B), we will not impose Assumption 1(b) strictly,

but rather adopt a simpler constraint to approximate it. In

3Various spectrum sharing schemes have been described in [21].
4Formally, this means that the boundary is parameterizable and differen-

tiable in that parameter.
5Although we restrict our analysis to the case where the PU active prob-

ability π is the same across intervals, our analysis can be easily generalized
to the case where each interval has a different PU active probability.
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addition, for practicality, we require that the estimation al-

gorithm is distributed, with each SU having access only to

local information (its own observations and information from

its neighbors).

Suppose that SU i is located at xi, for i = 1, . . . , N , and

suppose that the calibration period for SU i is divided into J
observation intervals, where the PU is active with probability

π during each interval independently (cf. Assumption 1(c)).

Let Yi[j] be the signal sample obtained by SU i in interval j,

where j = 1, . . . , J . If the PU is inactive during interval j,

we have

Yi[j] = Wi[j],

where the noise variables Wi[j] are independent zero mean

Gaussian random variables with variance σ2
W . If the PU is

active during interval j, we have

Yi[j] = Xi[j] +Wi[j],

where Xi[j] is the PU signal, which is assumed to be a

Gaussian random variable with zero mean, and independent

of Wi[j]. The variance or power of Xi[j] is then given by

µi = P0 − L(xi, x0).
Let H0 : µi ≤ θ0 and H1 : µi > θ0 be the hypotheses that

SU i is outside and within the no-talk region R, respectively.

For the sake of generality, we assume that the PU signal

modulation scheme is unknown to the SUs. Therefore, SUs

are constrained to use energy detection methods [4], [22] in

order to perform the hypothesis test. For this purpose, SU

i forms the test statistic Ti = 1
J

∑J
j=1 |Yi[j]|2 and uses the

following threshold rule to determine the hypothesis:

Ti

H0

≤
>
H1

θ, (1)

where θ is chosen so that the false alarm probability is below a

predefined threshold α ∈ (0, 1). Since µi is unknown a priori,

we need to make further approximations in order to determine

θ. The mean of Ti is given by

m(µi) = πµi + σ2
W ,

and applying Wald’s identity [23], we obtain after some

algebra, the variance of Ti is

η(µi) =
1

J

(

µ2
iπ(3− π) + 2σ2

W (σ2
W + 2π)

)

.

Assuming that J is sufficiently large, the central limit theorem

[23] allows us to approximate the distribution of Ti as a Gaus-

sian distribution with mean m(µi) and variance η(µi). Since

both m(·) and η(·) are increasing functions, the threshold θ
can now be chosen to ensure that the false alarm constraint in

the worst case situation is satisfied, by setting

Q
(

θ −m(θ0)
√

η(θ0)

)

= α,

where Q(·) is the complementary cumulative distribution

function for the standard normal distribution. We note that

the test (1) and the choice of θ do not require knowledge of

the PU transmit power P0 or the locations of the PU and SUs.

When there are multiple PUs transmitting in the same

spectrum, the no-talk region is the union of all PUs’ no-talk

regions. Suppose there are N ′ > 1 PUs, and that all PU signals

are uncorrelated. Let Yip[j] be the signal sample received by

SU i from the PU p in the interval j. For a sufficiently large

J and p 6= p′, we have 1
J

∑J
j=1 Yip[j]Yip′ [j] ≈ 0, and the test

statistic Ti =
1
J

∑J
j=1 |

∑N ′

p=1 Yip[j]|2 can be approximated as
1
J

∑N ′

p=1

∑J
j=1 |Yip[j]|2. A threshold for Ti similar to that in

(1) can be found to determine if SU i is within the no-talk

region of at least one PU.

Let ui be the decision of SU i for the test (1), where ui =
−1 if it decides in favor of H0, and ui = 1 otherwise. Recall

that xi is the position of SU i, and let yi = (xi, ui), for

i = 1, . . . , N . Our aim is to learn a function f : Rd 7→ R

based on the collection of pairs y = {yi : i = 1, . . . , N},

so that f(x) ≥ 0 or f(x) < 0 if a SU location x is inside

or outside the region R respectively, and with {x : f(x) =
0} corresponding to the boundary of R. In the same spirit

as statistical learning theory [24], we can regard each yi as

being drawn independently from the same joint distribution

p(x, u) (which is unknown because the path loss L(x, x0) is

unknown). Then, in estimating the boundary of R, we hope

to obtain a function f with small generalization error

E = E[(f(X)− U)2], (2)

where (X,U) has joint distribution p(x, u). If E is large, the

throughput at the PU deteriorates because of interference from

SUs that wrongly believe themselves to be in Rc.6 Therefore,

we are interested to study the trade-offs in throughputs with

E and the communication cost of performing the boundary

estimation.

In a centralized estimation algorithm, the data y is sent to a

fusion center, which trains a global function. Such centralized

algorithms suffer from several disadvantages, including the

need to select a site for the fusion center, the susceptibility

of the whole network to a single point of failure at the

fusion center, the need for significant processing power and

memory storage at the fusion center, and the use of long

range communications as the area A becomes large. In this

paper, we consider distributed algorithms, in which each SU

communicates only with neighboring SUs to collaboratively

estimate the boundary of R.

For the convenience of the reader, we list some commonly

used notations in Table I. Some of these notations have been

defined in this section, while the remaining ones will be

defined formally in the sequel where they first appear. In

addition, we adopt the following definitions. For SU i and

cluster C, we use i ∈ C to mean xi ∈ C. The number of SUs

in y belonging to C is given by |C|. The indicator function

1{S} equals to 1 if the statement S is true and 0 otherwise.

III. DISTRIBUTED BOUNDARY ESTIMATION

In this section, we propose a distributed boundary estimation

algorithm that determines the boundary of the set R based

6We use Rc = A\R to denote the complement of R in the region of
interest A.
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TABLE I
SUMMARY OF NOTATIONS USED

Symbol Definition

A region of interest containing the PU and all SUs

R no-talk region of PU

N number of SUs in region of interest A

δ broadcast range of a SU

ph probability of a SU to become a cluster head

γ threshold to determine if a cluster is a boundary cluster

M number of boundary clusters

Cj the jth boundary cluster, j = 1, . . . ,M

B set of boundary clusters {C1, . . . , CM}

N (Cj) set of neighboring clusters of Cj

fCj
local boundary estimation function of cluster Cj

on message passing between SUs. The SUs are grouped into

clusters, and most communications are over relatively short

ranges within clusters. Each cluster has a SU that serves as

the cluster head. The cluster head communicates with SUs

inside its cluster, performs most of the necessary computations

required for distributed estimation of the boundary, and com-

municates with other cluster heads. Cluster heads thus expend

more energy than typical SUs inside the cluster. Incentives can

be designed to compensate cluster heads; an example being

given higher priority to access the spectrum. Such incentive

mechanisms are out of the scope of our current work, and will

not be discussed here.

Our distributed boundary estimation procedure consists of

the following steps.

(i) Formation of clusters. Each SU independently nominates

itself to be a cluster head with probability ph. A cluster

head broadcasts a message over a control channel to

all SUs within a distance δ to inform them of their

inclusion into the cluster. To avoid collisions amongst

cluster heads, a carrier sense multiple access protocol

[25] is used. Note that a cluster head can also belong to

another cluster, and a SU can belong to multiple clusters.

(ii) Boundary cluster identification. We design a metric to

identify those clusters that lie close to the boundary of

the set R. We call these the boundary clusters.

(iii) Distributed boundary estimation. Messages are ex-

changed between members of a boundary cluster and

its cluster head. In addition, messages are exchanged

between cluster heads of neighboring boundary clusters

to collaboratively estimate the boundary of R.

In the following subsections, we describe steps (ii) and (iii) in

detail.

A. Boundary Cluster Identification

Let C be a cluster, and U− = 1
|C|

∑

i∈C 1{ui = −1} to be

the fraction of SUs in cluster C with ui = −1. The clusters

within R have a higher probability of 1 − U− being much

larger than U−, while the reverse is true for clusters that are

far from the PU. To identify those clusters that are close to the

boundary of R, we let S = max(U−, 1 − U−), and say that

C is a boundary cluster if and only if S ≤ γ, where γ to be

a fixed threshold. If C is not a boundary cluster, the cluster

head declares it to be within R if U− < 1/2, and outside

vice versa. We call those clusters in the former class inside

clusters, and those in the latter class outside clusters.

B. Distributed Boundary Estimation

To learn a function f that can be used to determine if a

new SU location x (not necessarily belonging to the training

data y) is within or without R, we consider the following

approach. A SU at location x queries its cluster head to check

the types of cluster it belongs to (recall that a SU may belong

to multiple clusters). If it belongs to an inside cluster, we let

f(x) = 1 and declare that it belongs to R. If it does not

belong to any inside clusters, and it belongs to a boundary

cluster, it uses a local function, which we describe below, to

determine its location status. Finally, if it is not within any

inside or boundary clusters, we let f(x) = −1, and declare

that the SU is in Rc.

Let B = {C1, . . . , CM} be the set of boundary clusters. The

boundary clusters collaboratively estimate the boundary of R
based on local information and message exchanges between

cluster heads. We use the reproducing kernel Hilbert space

(RKHS) [19], [26] formulation to obtain a function that distin-

guishes a location x to be inside or outside R. However, since

we do not assume that there is a central authority to perform

the estimation, we consider instead finding a collection {fCj
}

of local functions, each corresponding to a boundary cluster. If

x is not within an inside cluster and it belongs to a boundary

cluster, we let the estimation function f(x) take the value

fC(x) where C is chosen randomly from the set of boundary

clusters containing x.

Let HK be a RKHS corresponding to a kernel K(·, ·) that

serves as a similarity measure between two SU locations.

We restrict to kernels that are radial basis functions (RBF),

i.e., those kernels that can be expressed as functions of the

Euclidean distance between two SUs. For each Cj ∈ B, let

N (Cj) be the set of indices k with j 6= k and |Ck ∩Cj | 6= 0.

We call those clusters in N (Cj) the neighboring clusters of

Cj . Our goal is to

min
∑

i∈∪M
j=1

Cj

(zi − ui)
2 +

M
∑

m=1

νm‖fCm
‖2HK

+
M
∑

m=1

∑

k∈N (Cm)

ηmǫ2m,k (3)

subject to

fCm
∈ HK , ∀ Cm ∈ B, (4)

zi = fCm
(xi), ∀ i ∈ Cm, Cm ∈ B, (5)

ǫm,k =
1

|Cm|
∑

i∈Cm

fCm
(xi)−

1

|Ck|
∑

i∈Ck

fCk
(xi),

∀ k ∈ N (Cj), Cj ∈ B, (6)

where ‖·‖HK
is the norm of HK , and νm, ηm, for j =

1, . . . ,M , are positive constants. The minimization in (3) is

over all variables zi, fCm
and ǫm,k. The constraints (4) require

that the local classifier fCm
from each boundary cluster Cm is

chosen from the RKHS HK . The constraints (5) ensure that if

a SU belongs to multiple boundary clusters, the classification

result remains the same regardless of the local classifier used.

Finally, the constraints (6) ensure that the estimated boundary

is smooth (cf. Assumption 1(b)).
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The kernel least squares minimization problem (3) is similar

to that proposed in [19], which considers a general distributed

learning framework, but without additional constraints like

(6). The reference [19] also provides a distributed method to

iteratively obtain the optimizers {fCm
} by message exchanges

between cluster heads. In the following, we show that their

distributed algorithm can be adapted to our minimization

problem (3). Our argument is similar to that in [19], and

treats the minimization in (3) as projections onto closed convex

subspaces of a Hilbert space. This can be done because of the

successive orthogonal projection (SOP) theorem [27], which

we state below without proof.

Theorem 1: Let {Λm}Mm=1 be a set of closed, convex,

and affine subsets of a RKHS H , and whose intersection

Λ =
⋂M

m=1 Λm is nonempty. For any v0 ∈ H , let v∗ be the

orthogonal projection of v0 onto Λ, and for all n ≥ 1, let vn
be the orthogonal projection of vn−1 onto Λ(n mod M). Then,

limn→∞ ‖vn − v∗‖ = 0.

Suppose that S =
∑M

m=1 |N (Cm)| is the total number of

variables ǫm,k where m = 1, . . . ,M and k ∈ N (Cm). Let

H = R
N × HM

K × R
S . In the sequel, to avoid cluttered

notations, we let v = ((zi), (fm), (ǫm,k)) ∈ H to denote an

element from H with the understanding that the index i runs

from 1 to N , the index m runs from 1 to M , and the index

k ∈ N (Cm) for each m. We let H be a Hilbert space by

letting the squared norm of v be

‖v‖2H =

N
∑

i=1

|zi|2 +
M
∑

m=1

νm‖fCm
‖2HK

+

M
∑

m=1

∑

k∈N (Cm)

ηmǫ2m,k.

For each j = 1, . . . ,M , let

Λj =
{

((zi), (fm), (ǫm,k)) ∈ H : zi = fCm
(xi), ∀ i ∈ Cm,

and

ǫm,k =
1

|Cm|
∑

i∈Cm

fCm
(xi)−

1

|Ck|
∑

i∈Ck

fCk
(xi),

∀ k ∈ N (Cm)
}

.

It can be shown that Λj is a closed subspace of H . Then, the

minimization problem (3) is equivalent to finding the projec-

tion of (u1, . . . , uN , 0, . . . , 0) onto the closed and convex set

Λ = ∩M
j=1Λj .

As pointed out in [19], instead of directly finding the

projection onto Λ, Theorem 1 allows us to iteratively project

onto each Λm, for m = 1, . . . ,M . The SOP algorithm first

finds the projection v1 of (u1, . . . , uN , 0, . . . , 0) onto Λ1, then

finds the projection of v1 onto Λ2, and so on. Projections

are performed over all Λm, m = 1, . . . ,M , with multiple

iterations over the indices m. Suppose that at an iteration,

we seek to project v = ((z̃i), (f̃j), (ǫ̃j,k)) onto Λm. This is

equivalent to

min
∑

i∈Cm

(fCm
(xi)− z̃i)

2 + νm

∥

∥

∥
fCm

− f̃Cm

∥

∥

∥

2

HK

+ ηm
∑

k∈N (Cm)

(ǫm,k − ǫ̃m,k)
2 (7)

subject to

fCm
∈ HK ,

ǫm,k =
1

|Cm|
∑

i∈Cm

fCm
(xi)−

1

|Ck|
∑

i∈Ck

fCk
(xi),

∀ k ∈ N (Cm).

The minimization in (7) is over fCm
and ǫm,k, and involves

only data from Cm and its neighboring clusters. It is thus a lo-

cal optimization problem. Suppose that (f∗
Cm

, (ǫ∗m,k)k∈N (Cm))
is the optimizer for (7). The projected point is then given by

v∗ = ((z∗i ), (f
∗
j ), (ǫ

∗
j,k)), where

z∗i = z̃i if i /∈ Cm, and z∗i = f∗
Cm

(xi) if i ∈ Cm,

f∗
Cj

= f̃Cj
and ǫ∗j,k = ǫ̃j,k if j 6= m.

The messages that cluster Cm passes to a neighboring cluster

Ck are {z∗i : i ∈ Cm ∩ Ck} and 1
|Cm|

∑

i∈Cm

fCm
(xi),

where the first message represents its current best estimate

of {ui : i ∈ Cm ∩ Ck} subject to the constraints (4)-(6), and

serves as the “training labels” [19] for the SUs in both clusters.

The second message encodes the average value achieved by

f∗
Cm

, and allows Ck to adjust its own classifier to improve the

smoothness of the estimated boundary. The following result

is a direct consequence of the Representer Theorem [28], and

its proof is omitted. It characterizes the form of the optimal

solution f∗
Cm

for (7).

Proposition 1: For each Cm ∈ B, the optimal solution to

the minimization problem (7) is given by

f∗
Cm

(x) =
∑

i∈Cm

βm,iK(x, xi).

Furthermore, if the kernel K(·, ·) is a radial basis function, the

computation of fCm
(x) requires only knowledge of ‖x− xi‖,

for all i ∈ Cm.

From (7) and Proposition 1, to train the classifier for

a cluster Cm ∈ B, we require the cluster head to know

‖xi − xj‖, for all i, j ∈ Cm. This can be obtained using

various ranging techniques. Examples include methods in

which each SU i broadcasts a pilot signal with known transmit

power, or exchange messages with timestamps [29]. Our

distributed boundary estimation algorithm is formally stated in

Algorithm 1, which we call the DBE algorithm. The following

proposition shows that the classifiers in the DBE algorithm

converges.

Proposition 2: For each Cm, where m = 1, . . . ,M , the

sequence (f t
Cm

) in line 9 of the DBE algorithm converges as

number of iterations t → ∞.

Proof: Since each Λm is a closed subspace of H , and

their intersection Λ = ∩mΛm is nonempty, the result follows

from Theorem 1.

The DBE algorithm presented in Algorithm 1 assumes

that boundary cluster heads are synchronized so that local

projections can be performed sequentially. We note however

that it is still possible to achieve convergence if after a

boundary cluster head has performed its local projection, it

randomly chooses a neighboring boundary cluster head to

pass information to. The chosen neighboring cluster head then

repeats the same procedure. We call this the randomized DBE

algorithm. Let G be the graph with vertex set B, which has an
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edge between Ci and Cj if they are neighboring clusters. We

have the following convergence result.

Proposition 3: Suppose that K(u, u) ≤ κ2 for all u ∈ HK ,

and G is connected. The estimation error in the randomized

DBE algorithm converges to E[(f∗(X)−U)2] where f∗ is an

optimal solution to (3).

Proof: Let fn be the estimation function at the n-th

projection of the randomized DBE algorithm. Since G is con-

nected, the random sequence of chosen cluster heads is an irre-

ducible and recurrent Markov chain so that every cluster head

appears infinitely often in the random sequence. From [30],

the sequence fn is weakly convergent to an optimal estimation

function f∗. Since weakly convergent sequences are bounded

[31], we have |fn(x)| ≤ ‖fn‖HK

√

K(x, x) ≤ κ‖fn‖HK
is

bounded. From the dominated convergence theorem [23] and

the reproducing property of HK , we obtain

lim
n→∞

E[(fn(X)− U)2] = E[ lim
n→∞

(〈fn,K(·, X)〉HK
− U)2]

= E[ lim
n→∞

(f∗(X)− U)2],

where 〈·, ·〉HK
is the inner product of HK , and the proof is

now complete.

Algorithm 1 Distributed Boundary Estimation (DBE)

1: Initialization:

• z̃i = ui, for i = 1, . . . , N ,
• f0

Cj
= 0, mj,k = 0 and ǫ̃j,k = 0, for all Cj ∈ B, k ∈

N (Cj).
• tmax = maximum number of iterations

2: for each C ∈ B do
3: for each i ∈ C do
4: Compute K(xi, xj) by measuring ‖xi − xj‖ for all j ∈ C.

Send computed values to the cluster head.
5: end for
6: end for
7: for t = 1, . . . , tmax do
8: for j = 1, . . . ,M do
9: Solve (7) by setting fCj

(x) =
∑

i∈Cj
βj,iK(x, xi), and

minimizing over ({βj,i : i ∈ Cj}, ǫj,k). Let f t
Cj

be the

optimal solution for fCj
.

10: Update

• z̃i = f t
Cj

(xi), and send z̃i to all k ∈ N (Cj).
• ǫ̃j,k = ǫj,k,
• mj,k = 1

|Cj |

∑

i∈Cj

f t
Cj

(xi), and send mj,k to all k ∈

N (Cj).

11: end for

12: end for

IV. PERFORMANCE ANALYSIS

In this section, we first analyze the trade-off between com-

munication cost and estimation error in the DBE algorithm.

Then, we propose a two-step approach to spatial spectrum

sensing based on the DBE algorithm, and compare its setup

complexity and throughput with that of the traditional fusion

center (FC) approach.

A. Communication Cost and Estimation Error

We let the SU locations be distributed as a homogeneous

Poisson point process Π in R
d with rate λ, and assume that

the region of interest A has unit d-dimensional volume. Since

we do not have any prior knowledge of the SU locations, it is

reasonable to assume that SUs are located independently and

randomly. The homogeneous Poisson point process captures

this assumption and has been widely adopted in the literature

to model the distribution of ad hoc communicating devices

[32], [33]. The Poisson point process also makes the math-

ematical analysis tractable, which provides insights into the

system performance in practical scenarios. In Section V-C,

we present simulation results for a specific case when SUs

are not distributed according to a homogeneous Poisson point

process.

We consider the trade-off between communication cost and

the estimation error resulting from the boundary estimation as

the rate λ varies, and we determine an approximate optimal

density for the SUs that minimizes a weighted sum of the

communication cost and estimation error. Finding the optimal

density is useful in the case where there are multiple PUs,

and random subsets of SUs may be chosen to estimate

the boundary of each PU. Intuitively, as SUs become more

dense, the expected communication cost increases because

the number of SUs in each cluster and the number of

boundary clusters increase, but the expected estimation error

decreases due to the availability of more training examples.

In the following, because of technical difficulties, we present

heuristic approximations to both the expected communication

cost and estimation error, and determine the optimal density

by minimizing a weighted sum of these approximations. We

present simulation results in Section V to verify that the

approximate optimal density found is close to the true optimal

one.

For simplicity, we assume that the boundary cluster heads

all come from a fixed region D with volume b > 0, that this

region contains the boundary of R, and that it is sufficiently

small so that certain approximations, which we describe below,

hold. In finding the optimal density, we will see that the region

D need not be known in advance. We summarize some of the

notations introduced in this section in Table II for ease of

reference.

TABLE II
SUMMARY OF NOTATIONS USED

Symbol Definition

λ rate of SU location Poisson point process

D approximate region in A containing all boundary clusters

b volume of the region D

Bx(δ) disk of radius δ centered at x

vd volume of B0(1) in R
d

g(r) communication cost function between two SUs distance r apart

pB approximate probability a cluster centered in D is a boundary cluster (see (9))

κ K(u, u) ≤ κ2 for all u ∈ HK

1) Communication Cost: Suppose that the cost of sending

a message from a SU at position x to another at position x′ is

given by a non-negative function g(‖x− x′‖) with g(0) = 0.

In many wireless applications, this cost is modeled by the

power required to achieve a given signal to noise ratio at the

receiver, and g(r) is a function of the form crζ , where c >
0 and ζ ∈ [2, 5]. Let a disk of radius δ centered at x be

denoted as Bx(δ), and let vd be the volume of a unit disk

in R
d. The expected communication cost can be found by
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considering the intra-cluster communication cost and the inter-

cluster communication cost separately. The intra-cluster cost

is incurred when SUs within a cluster communicate with their

cluster head. Let the cluster head of cluster Cj be x̄j . The

intra-cluster cost is then given by

E





M
∑

j=1

∑

i∈Cj

g(‖xi − x̄j‖)





= E[M ] E[|C1|] E [g(‖x‖)1{x ∈ B0(δ)}]
= λ3bphvdδ

d G(δ), (8)

where the first equality follows from Wald’s identity [23], the

expected number of boundary clusters is given by E[M ] =
phλb, and

G(δ) =

∫

B0(δ)

g(‖x‖) dx.

The inter-cluster communication cost is incurred when

boundary cluster heads exchange messages during the exe-

cution of the DBE algorithm. Cluster heads form a marked

Poisson process with rate phλ. Let pB(x) be the probability

that a cluster C with cluster head at x ∈ D, is a boundary

cluster. We make the following approximations in order to

compute pB(x): (i) we assume that the boundary cluster test

in Section III-A does not include the observation at the cluster

head; (ii) we replace the number of SUs |C| in one cluster by

E[|C|] = vdδ
d; and (iii) we assume that every SU in a cluster

has the same probability ᾱ = 1 − α of declaring itself to

be in Rc (this assumption is exact for those SUs in Rc, and

approximately true for all SUs in a boundary cluster if the

cluster radius δ is sufficiently small). It can be shown that

declaring a cluster C to be a boundary cluster is equivalent

to requiring that |C|(1 − γ) ≤ U− ≤ |C|γ. Under the above

approximations, we then have for x ∈ D,

pB(x) ≈
∑

(1−γ)vdδd≤k≤γvdδd

ᾱkeᾱ

k!
, pB . (9)

The expected inter-cluster communication cost is then given

by

tmaxE

[

∑

x,x′∈D

g(‖x− x′‖)

1{Bx(δ), Bx′(δ) ∈ B, ‖x− x′‖ ≤ 2δ}
]

(10)

≤ tmaxE





∑

x,x′∈D

g(‖x− x′‖)1{‖x− x′‖ ≤ 2δ}pB





= pBp
2
hλ

2tmax

∫

D

∫

Bx(2δ)

g(‖x− x′‖)dx′dx

= λ2bphpBtmaxG(2δ), (11)

where the penultimate equality follows from two applications

of the Slivnyak-Mecke Theorem [34].

From (8) and (11), the total expected communication cost

per SU in D is then upper bounded by

C(λ) = λ2phvdδ
dG(δ) + λphpBtmaxG(2δ). (12)

2) Estimation Error: To evaluate the estimation error E in

(2), we consider

E[(f∗(X)− U)21{X ∈ D}] = bED, (13)

where

ED = E[(f∗(X)− U)2 | X ∈ D], (14)

and f∗ is the solution to (3) given the data y = {(xi, ui) :
i = 1, . . . , N}. Compared to E in (2), we have ignored the

estimation errors incurred in clusters close to the PU or far

away from the no-talk region boundary. This is because for

sufficiently large rate λ, these errors are largely dependent on

the detection threshold instead of the rate.

Unfortunately, to the best of our knowledge, finding high

probability bounds for the generalization error of learning

problems like (3) is an open problem, because of correlations

in the loss functions for the clusters due to constraints (5)

and (6). We therefore make a simplification by dropping

these constraints in our analysis, and assume the boundary

clusters perform their learning independently of each other.

Furthermore, for a boundary cluster Cj , let f∗
Cj

be the local

estimation function corresponding to f∗, and we approximate

(14) using

ẼD = E





1

M

M
∑

j=1

(f∗
Cj
(X)− U)21{X ∈ Cj} | X ∈ D





=
vdδ

d

bM

M
∑

j=1

Rj ,

where Rj = E[(f∗
Cj
(X)− U)2 | X ∈ Cj ].

We assume that the kernel K satisfies the bound K(u, u) ≤
κ2 for all u ∈ HK , and for some constant κ > 0. We also

assume that νj = ν|Cj | for all j = 1, . . . ,M , and some

positive constant ν. We first state two lemmas, the first of

which follows from the Chernoff bound, and the second from

Lemma 23, Theorems 12 and 22 of [35]. We omit their proofs

here.

Lemma 1: For any measurable set C, let N(C) and µ(C)
be the count function and mean measure of the Poisson point

process Π, respectively. For any ε > 0, we have

P(|N(C)− µ(C)| ≥ ε) ≤ 2e−
1

4
ε2µ(C).

Lemma 2: Suppose that K(u, u) ≤ κ2 for all u ∈ HK .

Then, for any j = 1, . . . ,M , and any ε > 0, with probability

at least 1− ε over the random draw of the data y, we have

Rj ≤
1

|Cj |
∑

i∈Cj

(f∗
Cj
(xi)− ui)

2 +
4κ2

ν|Cj |
(
κ√
ν
+ 1)2

+ (
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

ln(1/ε)

2|Cj |
.

For simplicity, we approximate M ≈ phλb. From Lemma

1, if λ is sufficiently large, we have for any region C,

(1 − ε)µ(C) ≤ N(C) ≤ (1 + ε)µ(C) with high probability.
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Therefore, by choosing λ to be large enough, with probability

at least 1−ε, where ε ∈ (0, 1), we have for all j = 1, . . . ,M ,

Rj ≤
1

λ(1− ε)vdδd

∑

i∈Cj

(f∗
Cj
(xi)− ui)

2

+
4κ2

νλ(1− ε)vdδd
(
κ√
ν
+ 1)2

+ (
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

ln(phλb/ε)

2λ(1− ε)vdδd
.

Using the probability union bound, we have with probability

at least 1− ε,

ẼD ≤ 1

λ(1− ε)bM

∑

i

(f∗(xi)− ui)
2 +

4κ2

νλ(1− ε)b
(
κ√
ν
+ 1)2

+
1

b
(
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

vdδd ln(phλb/ε)

2λ(1− ε)
. (15)

Furthermore, Lemma 23 of [35] yields

(f∗
Cj
(x)− u)2 ≤ (

κ√
ν
+ 1)2,

for all j = 1, . . . ,M , x ∈ D, and u ∈ {−1, 1}. This implies

that with probability one, ẼD is upper bounded by the right

hand side of (15) plus ε(κ/
√
ν + 1)2.

We aim to find λ > 0 that minimizes a weighted sum of the

communication cost upper bound (12) and the estimation error

upper bound given by (13) and (15). The objective function

to be minimized is given by

C(λ) + β

(

F3

λ
+ F4

√

lnλ

λ

)

= F1λ
2 + F2λ+ β

(

F3

λ
+ F4

√

lnλ

λ

)

, (16)

where β > 0 is a constant, and

F1 = phvdδ
dG(δ),

F2 = phpBtmaxG(2δ),

F3 =
4κ2

ν
(
κ√
ν
+ 1)2,

F4 = (
8κ2

ν
+ 1)(

κ√
ν
+ 1)2

√

(1− ε)vdδd

2
.

We have made the approximation that ln(phb/ε)/λ ≈ 0 when

λ is sufficiently large so that the value of b need not be known a

priori. The optimal rate can be found by setting the derivative

with respect to λ of (16) to zero (it is clear that there is a

positive minimizer) to obtain

4F1λ
5

2 + 2F2λ
3

2 + β(−2F3λ
− 1

2 + F4((lnλ)
− 1

2 − (lnλ)
1

2 ))

= 0,

the solution of which can be computed numerically. To find

the optimal SU density that minimizes the communication cost

subject to the constraint that the estimation error is below

a given level is equivalent to (16), where β is a Lagrange

multiplier.

B. Setup Complexity and Throughput

Let R̂ be the estimator for R produced by the DBE

algorithm. Those SUs outside of R̂ can utilize the spectrum

without performing spectrum sensing, while SUs inside of R̂
perform collaborative spectrum sensing by sending their local

sensing decisions to a fusion center. For convenience, we call

our two-step approach the DBE-spectrum sensing (DBE-SS)

method. We analyze the complexity and throughput of the

DBE-SS method and the traditional FC method, where all SUs

send their local sensing decisions to a fusion center. In the

FC method, SUs do not know the boundary of R, therefore

the spectrum is utilized by the SUs only if the fusion center

declares that the PU is inactive.

We first consider the complexity of performing boundary

estimation using the DBE algorithm. Recall that each SU

nominates itself to be a cluster head with probability ph,

and each cluster is covered by a disk of radius δ. Therefore,

there are on average O(δd) SUs in a cluster and line 4 in

the DBE algorithm has complexity O(δ2d). The optimization

problem (7) can be viewed as a convex quadratic program

with O(δd) constraints, with complexity O(δdδ3d) = O(δ4d).
The expected number of boundary clusters is bounded by

O(phN), therefore the overall expected complexity of the

DBE algorithm is O(phNδ4d). On the other hand, in the FC

approach, SUs route their local decisions to a fusion center

using a minimum spanning tree (MST). If we assume that the

underlying communication network is formed by joining any

two SUs that are within distance δ of each other, then the

complexity of setting up a MST (with global knowledge of

the whole network topology) is O(Nδd). Clearly, the DBE

algorithm has higher complexity than the fusion center setup

if ph > δ−3d.

We now compare the throughput of the DBE-SS method

with that achieved by the FC approach. We make several

assumptions to simplify the analysis. Suppose that all SUs

transmit at the same power Ps < P0, and that in any given

area, at most a fraction q of the SUs can share the spectrum.

We assume additive white Gaussian noise channels with noise

power N0. We also assume that interference between the PU

and the SUs outside of R is negligible, while the throughput

for SUs in R when the PU is active is negligible. Then,

the throughput of a SU in the absence of the PU is [36]

R̄0 = log2

(

1 + Ps

N0

)

. We further assume that each SU uses

a periodic frame structure of duration T , which includes a

sensing duration of τ . Suppose that the PU is active with

probability π. Then, the average throughput per user under

the FC method is

RFC
s = (1− π)qR̄0(1−

τ

T
)(1−QFC

f ),

where QFC
f is the false alarm rate at the fusion center. As the

fusion center does not know the receiver operating character-

istic (ROC) of each sensor, it uses a simple k-out-of-N rule

to fuse the SUs’ local decisions. The false alarm is given by7

QFC
f =

k
∑

i=1

(

qN

i

)

αi(1− α)qN−i. (17)

7To avoid cluttered expressions, we assume that qN is always an integer.



9

The value of k is chosen so that the probability of detection

QFC
d ≥ β̄, for some fix threshold β̄.

On the other hand, the average throughput per user for the

SUs under DBE-SS is

Rs = (1− π)qR̄0

(

|R̂|
N

(1− τ

T
)(1−Qf ) + 1− |R̂|

N

)

+ πqR̄0

(

1− |R ∪ R̂|
N

)

,

where Qf is the false alarm rate for the SUs inside R̂, with

the same minimum probability of detection β̄, and can be

computed in a similar manner as (17). It can be shown that if

R̂ ≈ R and |R|/N is sufficiently small, then Rs > RFC
s . This

is intuitively clear as there is little benefit to perform boundary

estimation if R covers almost all the SUs.

Next, we derive the throughput for the PU. In the FC

approach, the PU average throughput is

RFC
p = π

(

QFC
d log2

(

1 +
P0

N0

)

+(1−QFC
d ) log2

(

1 +
P0

N0 + qNPs

))

,

where QFC
d is the detection probability at the fusion center.

Because of estimation errors in the DBE-SS scheme, R\R̂
may be non-empty. Interference from SUs in this set is

bounded by N1 = q|R\R̂|Ps. The PU average throughput

under the DBE-SS scheme is then given by

Rp = π

(

Qd log2

(

1 +
P0

N0 +N1

)

+(1−Qd) log2

(

1 +
P0

N0 + q|R|Ps

))

,

where Qd ≥ β̄ is the detection probability for the SUs inside

R̂. In Section V, we present simulation results to compare the

throughput Rs under the DBE-SS scheme with RFC
s under the

FC method, when Rp = RFC
p .

V. SIMULATION RESULTS

In this section, we present simulation results to verify the

performance of the DBE algorithm and the DBE-SS method.

In each simulation run, 1000 sensors are uniformly distributed

in a region A of size 5×5 km2, with the PU (e.g., a TV

transmitter) located at the center of the region. We use the

standard CCIR model [37] for the path loss. For each data

point, we perform 1000 simulation runs using the parameters

in Table III.

A. Estimation Error and Communication Cost

We compare the communication cost incurred and the

estimation performance of the DBE algorithm with that of

various benchmark algorithms, including the following:

1) Centralized boundary estimation algorithm based on LS-

SVM [12]: a global classifier is trained based on infor-

mation from all SUs in the boundary clusters.

TABLE III
SIMULATION PARAMETERS

Parameters Value

PU transmit power P0 40 dBm

PU transmitter antenna height 30 m

PU transmit antenna gain 6 dBd

PU active probability π 0.3

SU transmit power Ps 10 dBm

SU transmitter antenna height 3 m

SU transmit antenna gain 0 dBd

SU coverage radius δ 0.25 km

SU false alarm probability α 0.05

interference threshold θ0 -75 dBm

shadow fading standard deviation σ 6 dB

frame duration T 20 ms

sensing time τ 1 ms

learning parameters ν1 = . . . = νM 1

learning parameters η1 = . . . = ηM 10

learning kernel K(x, x′) e−0.5‖x−x′‖2

communication cost function g(r) r2

noise power N0 -10 dBm

estimation error parameter ε 0.01

trade-off weight β 500

2) Centralized image processing based seeded region grow-

ing (SRG) algorithm [38]: we regard the decision ui of

each SU i as a pixel gray level in a binary image and

segment the image by growing a region from a seed point

using an intensity mean measure.

3) Distributed Bayesian event region detection (ERD) algo-

rithm [15], [16]: a threshold decision scheme is applied

to correct the errors of local SU decisions. We refer the

reader to [15] for details.

The estimation performance is evaluated according to (2),

normalized by four times the area of R. Since the estimation

function f takes values close to 1 or −1, the normalized

estimation error is approximately the area in which misclas-

sification occurs, expressed as a fraction of the area of R.

The communication cost is computed by assuming that each

message passed between two SUs a distance r apart incurs a

cost of g(r) = r2.
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Fig. 2. Normalized estimation errors and total communication costs for
different values of ph when γ = 0.6.

Figure 2 shows the normalized estimation error and com-

munication cost for each algorithm when choosing different

values for ph, which is the probability that each SU indepen-

dently nominates itself to be a cluster head. The threshold

γ in the boundary cluster decision rule in Section III-A is

set to be 0.6. As ph increases, the performance of the SRG

and ERD algorithms remain constant as these algorithms do
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not use clustering. The performance of our proposed DBE

algorithm on the other hand, becomes better than the SRG and

the ERD algorithms, but still underperforms the centralized

LS-SVM algorithm. Centralized methods like LS-SVM and

SRG however have higher communication costs than the ERD

and DBE algorithms as only short range communications

are required for the latter algorithms. We see that the DBE

algorithm achieves arguably the best trade-off between the

estimation error and communication cost if ph is chosen to

be sufficiently large.

We now set the probability ph = 0.8 and vary the threshold

γ in the boundary cluster decision rule, with a higher value of

γ corresponding to more clusters being chosen as the boundary

clusters. We see from Figure 3 that although the estimation

error decreases with increasing γ, the rate of decrease is not

very significant. This is because most of the actual boundary

clusters have already been included for reasonable values of

γ. This implies that in practice, a reasonably small value of

γ can be chosen to reduce the communication costs incurred

during boundary estimation.
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Fig. 3. Normalized estimation errors and total communication costs when
ph = 0.8, and the threshold γ is varied.

We next fix ph = 0.8 and γ = 0.6, and vary the SU density

from 5 to 160 SU per km2. In Figure 4, we use simulation to

compute the sum of the communication cost and estimation

error (2) weighted by β. For comparison, we also plot the

cost function C(λ) in (16). Although C(λ) does not include

the estimation errors incurred in clusters far away from the

boundary of R, it is seen that it still serves as an upper bound

to the simulated cost as estimation errors in clusters located

far from the boundary are very small. We see from Figure

4 that the simulated and theoretical optimal SU densities are

nearly identical to each other.

In Figure 5, we show the convergence of the normalized

estimation error with respect to the number of inter-cluster

communications for a particular simulation run with 70 bound-

ary clusters. We see that for the DBE algorithm the estimation

error converges within 200 messages (or equivalently about

3 passes over all boundary clusters). This shows that in

practice, tmax in the DBE algorithm can be chosen to be a

reasonably small value. The randomized DBE algorithm on

the other hand requires a much larger number of inter-cluster

communications, but less coordination amongst the boundary
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Fig. 4. Weighted sum of communication cost and estimation error when
γ = 0.6 and ph = 0.8, with varying SU density.
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B. Throughput

In this subsection, we present numerical results for the

ROCs and throughputs of the FC and DBE-SS methods after

boundary estimation with ph = 0.8 and γ = 0.6. Recall that

the fusion center has no knowledge of the ROC of individual

SUs, and a simple k-out-of-N fusion rule is utilized in place

of optimal fusion. Figure 6 shows the ROC curves of the two

methods. It is seen that the DBE-SS method has a higher

detection probability for each false alarm probability because

only information from SUs in R are utilized, leading to less

errors.

In Figure 7, we vary the detection probability and plot the

PU throughput versus the throughput per SU for both DBE-

SS and FC methods. The throughput per SU for the DBE-SS

method is relatively flat over all PU throughputs as SUs outside

R̂ can transmit regardless of whether the PU is present or not.

We also see that the SU throughput is higher than that for the

FC method. Figure 8 shows the average SU throughput when

the PU throughput is fixed at 4 bits/sec/Hz, and the volume of

A is decreased. We see that the DBE-SS method should only

be used if A is more than 10% larger than R.
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C. Robustness

We now compare the robustness of the various boundary

estimation algorithms. We fix ph = 0.8 and γ = 0.6. To

simulate SU sensing errors, a boundary cluster is randomly

chosen with probability ς , and then a random subset of the SU

sensing decisions in the chosen cluster is changed from −1 to

1, while an equal number of SU sensing decisions is changed

from 1 to −1. We plot the average normalized estimation error

in Figure 9. Figure 9 shows that our proposed DBE algorithm

is more robust than the other benchmark boundary estimation

methods, except for the centralized LS-SVM method. We also

compare with a modified version of the DBE algorithm in

which we set ηj = 0 for all j = 1, . . . ,M so that the

smoothness constraint (6) no longer applies. We see that

including the smoothing constraint improves the robustness

of our algorithm as neighboring boundary clusters moderate

their local classifiers to avoid an abrupt change in the average

classification function value within their clusters.
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Fig. 9. Robustness comparison of boundary estimation algorithms after
flipping the observations.

Next, we compare the estimation error of the DBE algorithm

with and without the smoothness constraint (6) when the SUs

are no longer distributed as a homogeneous Poisson point pro-

cess. With probability ω, a boundary cluster is independently

populated with 20 SUs uniformly distributed inside the cluster.

With probability 1−ω, a boundary cluster is divided into four

quadrants, and a quadrant is chosen randomly. The chosen

quadrant is then populated with 20 SUs uniformly. In Figure

10, we see that the smoothing constraint results in a lower

estimation error. Figure 11 shows a portion of the estimated

boundaries.
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Fig. 10. Robustness comparison of DBE algorithm with and without
smoothing constraints after changing the density.

VI. CONCLUSION

We have developed a distributed boundary estimation algo-

rithm for estimating the no-talk region of a PU in a cognitive

radio network, and analyzed the trade-offs between the com-

munication cost and estimation error of our proposed method.

We derive approximate upper bounds for the communication
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cost and estimation error, and provide a method to compute

the optimal SU density. Simulation results suggest that our

proposed algorithm have lower estimation errors and better

robustness compared to various other methods.

We have made various simplifying and heuristic assump-

tions in deriving the optimal SU density. Our simulations

however shows that despite these assumptions, the theoretical

optimal SU density found is not significantly different from

the actual one. Bounding the estimation error more precisely

remains a difficult open problem. In this work, we have also

assumed that the PU is static and the received interference of

SUs at the PU do not vary over time. Future work includes

developing boundary estimation techniques for the cases where

PUs are mobile and where communication channels are time

variant.
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Response to Reviewers’ Comments

Reply to the reviewers’ comments on “Distributed Boundary Estimation for Spectrum Sensing in Cognitive Radio

Networks” (Manuscript I.D. 1569812379).

We would like to thank all the reviewers for their insightful, constructive and professional comments. We have revised the

manuscript according to the reviewers’ comments and we believe that this current revision contains enough contributions to

be considered in JSAC-CRS. Attached below please find our responses to the suggestions and questions from the reviewers.

Response to Editor Review 1

Recommendation: Accept with minor revision

Comments: The paper has improved after the revision and most of the issues raised by reviewers are resolved. However,

there are two remaining comments that need to be addressed:

Comment 1. How does your approach deal with the case of multiple PUs which are uncorrelated but operate in the same

frequency band. How do you distinguish them by using only energy detection?

Response 1. Thank you for your comment. We have added a brief discussion on the case where there are multiple PUs in

Section II, which we reproduce below for your convenience. When there are multiple PUs, we are interested in finding the

union of all PUs’ no-talk regions since as long as a SU is within the no-talk region of at least one PU, it has to perform

temporal spectrum sensing in order to opportunistically utilize the PU spectrum. There is no need to distinguish the PUs

explicitly.

“ When there are multiple PUs transmitting in the same spectrum, the no-talk region is the union of all PUs’ no-talk regions.

Suppose there are N ′ > 1 PUs, and that all PU signals are uncorrelated. Let Yip[j] be the signal sample received by SU i

from the PU p in the interval j. For a sufficiently large J and p 6= p′, we have 1

J

∑J

j=1
Yip[j]Yip′ [j] ≈ 0, and the test statistic

Ti =
1

J

∑J

j=1
|∑N ′

p=1
Yip[j]|2 can be approximated as 1

J

∑N ′

p=1

∑J

j=1
|Yip[j]|2. A threshold for Ti similar to that in (1) can be

found to determine if SU i is within the no-talk region of at least one PU. ”

Comment 2. Please provide related literature survey and discuss your contribution in comparison with other related papers.

Response 2. Thank you for your suggestions. We have added some references on exclusion zone (EZ) estimation for spectrum

utilization in Section I:

“ In [6]-[8], different spectrum sharing regions, including a primary exclusive region and the no-talk region, are defined.

However, all these works assume that the propagation path loss between the PU and SUs are isotropic, and all regions are

assumed to be circular. Bounds on the radius of each region are given based on interference and outage considerations, which

are characterized in terms of propagation parameters like path loss exponents. In practice, the propagation environment may

be very difficult to model quantitatively, and the no-talk region is unlikely to be circular. Therefore, in this work, we develop

boundary estimation methods for the no-talk region without relying on extensive assumptions about the shape of the region. ”
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Response to Reviewer 2

Recommendation: Accept

Comments: The manuscript has been carefully revised by taking into consideration of the reviewer’s previous concern and

comments. The readability is improved significantly. The reviewer has no more further revision comments.

Response 1. Thank you for your positive comments.
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Response to Reviewer 3

Recommendation: Accept with minor revision

Comments: I would like to thank authors for considering all of my comments and revising their paper substantially. My

main concern regarding the excessive primary user side information requirements of the proposed technique is alleviated. I

think the paper has improved a lot technically and deserves publication. My suggestion is to accept the paper with a minor

revision as follows:

Comment 1. Your proposed scheme seems related to the exclusion zone (EZ) estimation approaches. There are a couple of

major papers related to the EZ in cognitive radio systems, I think it shall improve your literature survey section, if you discuss

some of the related works in EZ and describe what you have done more.

Response 1. Thank you for your suggestions. We have added some references on exclusion zone (EZ) estimation for spectrum

utilization in Section I:

“ In [6]-[8], different spectrum sharing regions, including a primary exclusive region and the no-talk region, are defined.

However, all these works assume that the propagation path loss between the PU and SUs are isotropic, and all regions are

assumed to be circular. Bounds on the radius of each region are given based on interference and outage considerations, which

are characterized in terms of propagation parameters like path loss exponents. In practice, the propagation environment may

be very difficult to model quantitatively, and the no-talk region is unlikely to be circular. Therefore, in this work, we develop

boundary estimation methods for the no-talk region without relying on extensive assumptions about the shape of the region. ”
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Response to Reviewer 4

Recommendation: Accept

Comments: This paper considers the estimation of the no-talk region boundary of secondary users in cognitive radio

networks. It is well-presented and the contribution is clear. Authors have addressed the comments of my last review. In this

revision, more simulations and descriptions of the validity of the considered system models are provided and make this paper

clearer.

Comment 1. One more question: if you consider the multiple PUs which are uncorrelated but operating in the same frequency

band, how do you distinguish them by only energy detection?

Response 1. Thank you for your comment. We have added a brief discussion on the case where there are multiple PUs in

Section II, which we reproduce below for your convenience. When there are multiple PUs, we are interested in finding the

union of all PUs’ no-talk regions since as long as a SU is within the no-talk region of at least one PU, it has to perform

temporal spectrum sensing in order to opportunistically utilize the PU spectrum. There is no need to distinguish the PUs

explicitly.

“ When there are multiple PUs transmitting in the same spectrum, the no-talk region is the union of all PUs’ no-talk regions.

Suppose there are N ′ > 1 PUs, and that all PU signals are uncorrelated. Let Yip[j] be the signal sample received by SU i

from the PU p in the interval j. For a sufficiently large J and p 6= p′, we have 1

J

∑J

j=1
Yip[j]Yip′ [j] ≈ 0, and the test statistic

Ti =
1

J

∑J

j=1
|∑N ′

p=1
Yip[j]|2 can be approximated as 1

J

∑N ′

p=1

∑J

j=1
|Yip[j]|2. A threshold for Ti similar to that in (1) can be

found to determine if SU i is within the no-talk region of at least one PU. ”
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