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Abstract—Capacity computations are presented for Faster-  In practice, it is difficult to approximate sinc pulses. One

Than-Nyquist (FTN) signaling in the presence of interfereme jnstead often analyzes square root raised cosine (RRC3suls
from neighboring frequency bands. It is shown that Shannors that decay more quickly than sinc pulses and can be approx-

sinc pulses maximize the spectral efficiency for a multi-a@ss . e .
channel, where spectral efficiency is defined as the sum rata i imated more accurately. Rusek, Anderson &wall show in

bits per second per Hertz. Comparisons using root raised case  [Z] and [€] that FTN signaling achieves a substantially leigh
pulses show that the spectral efficiency decreases monotoally ~ spectral efficiency tharl2) if the comparison is based on the

with the roll-off factor. At high signal-to-noise ratio, th ese pulses 3-dB power bandwidth of RRC pulses with independent and
have an additive gap to capacity that increases monotonidgl gentically distributed (i.i.d.) Gaussian symbols. Thdcaa
with the roll-off factor. . . . .

lations are performed for a single channel, i.e., there is no
interference or spectral sharing.

We revisit this comparison by viewing bandwidth as a

Shannon([L, Sec. 25] showed that the capacity of an additigareq resource where the spectral efficiendg computed
white Gaussian noise (AWGN) channel with bandwitdthand by normalizing the sum rate ok users (or systems) by an

average transmit power constraifitis

I. INTRODUCTION

overall bandwidth of approximatelix B Hz, whereB is the
bandwidth assigned to each user. For example, for Shannon’s

> bits/sec (1) sinc pulse, every user receivBs= W Hz of non-overlapping
bandwidth and the spectral efficiency is givenBly (2). One may

whereN is the noise power spectral density. The capaCity (1) to improver by using non-orthogonal signaling such as

is achieved by a sinc pulse and the spectral efficiency is FTN. Of course, now the users experience interference. Our

main goal is to explore the spectral efficiency of FTN sigmgli
> bits/sec/Hz (2) from the shared resource perspective.

This paper is organized as follows: Sectioh Il analyzes the
Mazo [2] introduced faster-than-Nyquist (FTN) signalingapacity of FTN signaling for a single user, Secfioh Il defin
for sinc pulses where the pulses are modulated faster th@ analyzes spectral efficiency for a multiaccess chanitiel w
the Nyquist rate. The resulting intersymbol interfereni@&)( spectrum sharing, and Sectionl IV discusses the resultseiurt

can be interpreted as a type of coding [3] and is the sarfi# low and high SNR.

as correlative or partial response signaling [4] such as the

duobinary techniqLﬂMazo showed that increasing the mod-

ulation rate by up to25% does not affect the minimum Il. CAPACITY

Euclidean distance between the closest two signals wheg usi ) ) )

binary antipodal modulation. Thus, the coding induced by The Nyquistrate usually refers to twice the bandwidth of a
FTN signaling increases the spectral efficiency at highadign Pandlimited signal. The Nyquist intersymbol interfere(ic)
to-noise ratio (SNR). Non-orthogonal transmission screm@iterion refers to the requirement that sampling at regular
such as FTN[[5],[[6] are receiving renewed attention forrtheintervals incurs no ISL[9, p. 557]. For sinc pulses, Nycute
potential to increase capacity. FTN may also be interesting sampling satisfies the Nyquist ISI criterion, so that FTNeref

applications that need low cost transmitters and flexibte rd© sampling faster than both the Nyquist rated a Nyquist
adaptation. ISI criterion rate. However, in terms of capacity there is no

need to sample faster than the Nyquist rate for linear AWGN

1Alternatively, FTN may be viewed as a coded multi-level miatian channels[[L, Sec. 19]. For pulses other than sinc pulses, on

where the transmitter-induced ISI enlarges the modulagiemin addition to  the other hand, it might be interesting to sample faster than

introducing memory (or coding). One should not, therefaempare FTN ; g
with Nyquist ISI criterion signaling and the same modulatget unless the the fastest Nyquist ISI criterion ratel [7]

transmitter must use this particular modulation set fosguhaping. A FTN signal with complex pulse shapgét) is given by

P
=Wl 1
C W0g2< +WN0

=lo 1+ P
n = 1089 W N,
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Fig. 1. Magnitude of the spectrum of a complex-valued sigvitii absolute
bandwidth A.

i Blk]h(t — krT).
k=0

S(t) 3)

where the complex random symboB[k] are sent at rate

1/(7T) Hertz. The FTN rate id/7 where0 < 7 < 1. We
chooseh(t) to have unit energy, i.e., we choose

0
L.
Suppose tha$(¢) is constrained to have the spectruif f)
with absolute bandwidth4, as shown in Fig[J1. For i.i.d.
complex B[k] with varianceP, let SNR f) be the SNR at
frequencyf, i.e., define

N limy o E[T'f] _ P|H(f)?
NO NO

|h(t)2dt = 1. (4)

SNR(f) (5)

where
1™ i o ’
I J BEJh(t — krT)e—i27Ftqy
L) k=0
Note that SNRf) does not depend on the FTN ratér. The
capacity is achieved with proper complex Gaussigt] and

is (see([8] and[10])
Crrn(a) = J

—00

J? log, (1 + HHTW) df.
—4 0

For example, a RRC pulse with roll-off factar 0 < o < 1,
hasA = (1 + o)W and

0

log, (1 4+ SNR(f)) df

(6)

YW, |fl<s(l-a)f

|H(f)|2 _ ﬁ[l—i_cos(ﬁ |f|—(1—0¢)%])],(7)
(1-« % <|fl < (1+a)%

0, else.

The capacity[(B) is thus
P
OFTN(O[) = (1 — O[)WlOgQ (1 + W—JVO>
1+ sobe= + 4/ 1 + v
+ 2aW log, el Sl (8)

2

whereW = 1/T and where we have used (seel[11, p. 531])
r LAtV
2
0

for a > |b| > 0. The normalized capacitieSpry (a)/W are
plotted as the solid curves in Flg. 2 for variaugnote thati’

is the 3 dB bandwidth used inl[7, Sec. 3]). Observe that the
capacities increase with the roll-off factor due to the haidlth
expansion. The asymptotic gain in slope as compared t®
proportional to theexcess bandwidthaWW for high SNR [8,
Sec. 1]. To see this, note thél (8) gives

In(a + beosz)dr = 7l

9)

Crrn(a)

lim
logy p

p—D0

—(1+a)W (10)

wherep = -

IIl. SPECTRALEFFICIENCY

Consider aK-user multiaccess channel (MAC) and define
the spectral efficiency as the sum-rate in bits per second per
Hertz. We place the signals of thE users at the center
frequencieskB,k = 0,+1,+2,...,£(K — 1)/2, where we
assume that the number of useksis odd and where the
centered spectrum of uséris Hy(f), see Fig[B. All spectra
have at most bandwidti. Note that choosing = 0 has all
users transmitting in the same frequency band. We focus on
MACs because we are interested in cellular uplinks.

Another natural scenario is &-user interference network,
but now the crosstalk gains play an important role in how the
receivers should operate. For example, for weak interteren
it is usually best to treat interference as noise while fovrgj
interference one may wish to decode the interfering signal.
The K-user interference network becomes a compound MAC
if all crosstalk gains are similar to the direct gains, and th
one further motivation for studying MACs.

We have decided to focus on sum-rate for simplicity. One
may instead wish to study weighted sum rates or other utility
functions such as proportionally fair rates. These studiay
lead to other conclusions, although we expect that the fisig
for sum-rate carries over to other important cases.

For the sum-rate, we first show that sinc pulses maximize
the spectral efficiency. The total bandwidth and power age th
respective

Bot= A+ (K —1)B

(K—1)
2

DI

_ (K-
k=— ==

11
Ptot = ( )

whereP;, is the transmit power of usér. Suppose the average
power per Hertz is constrained to W&./Bir. The power
spectral density of the received signal is

No + > PelHi(f — kB)|*. (12)
k
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Fig. 2. Normalized capacities of FTN for RRC pulses and hffe roll-off factorsa. The solid lines represent the normalized capacities withterference
and the dashed lines represent the normalized capacitiéss(gectral efficiencies) with interference and spectridets of B = W Hertz.
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Fig. 3. Spectral sharing with different spectra for eachr.use

To upper bound the spectral efficiency, we compute the following simplifications. We choose:

Bt - 9 . to treat interference as noise, i.e., the signal-to-
Ui (2 L log, (1 + 2 Pl Hi (f = kB)| )df inteference-plus-noise-ratio (SINR) for uskr= 0 at
Biot J_ B No frequencyf is

—
(=
~

_ PolHo(f)[? :
No + Dpro PelHi(f — kB)[>’
(13) « to use Gaussian signaling so that we may use $INR)

to compute reliable communication rates, i.e., we have the
information rate

C;«“TN(avB) =J.

SINR(f, B)

Bot
1 2
< 1 1 P Hu(f — kB)]?d
og2< * oy 2P | g S 4B f) (1)

B
© log, (1 + B, S;O) .
(0]

where (a) follows by a classic maximum entropy result (see
[1Q]), (b) follows by Jensen’s inequality, and (c) followy b
(@) and Parseval's identity. Furthermore, we achieve diyual
in (3) by using sinc pulses with bandwidth = B = W,
and choosingP;, = Poi/K for all k, see[[R). We also achieve « Hi(f) = H(f) for all k, whereH(f) is the RRC pulse
equality by using sinc pulses with = 7, B = 0, and any with A = (1 + o)W, see[[¥) and Fid.14;

o0

log, (1 + SINR(f, B))df; (15)

P, such thaty, P, = P We note that the bound(3) is « Fr = P forall k;

valid irrespective of the receiver algorithm. This meanat th
sinc pulses maximize the spectral efficiency even if mugu
detection is permitted, as long as the total transmit poveer p
Hertz is constrained to b€/ Biot.

Having established the optimality of Shannon’s approach,

we now calculate the spectral efficiency of FTN for RRC

A/2 < B < A so that there is at most one interferer at
each frequency, i.e., we have

B PlH(f)?
SINR(f, B) = No + P[H(f — B)]2

(16)

where0 < f < A.

pulses. To avoid having to consider too many cases, we mak&here are now four cases to consider for RRC pulses.
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Fig. 5. Spectral efficiencies for roll-off facter = 0.5.

1) B = (1 + «)W: there is no interference; n 2J"O‘W log <1+

2) W < B < (1 + «)W: only the cosine-portions of the 2
RRC pulses overlap; fr

3) max[(1 — )W, (1 + a)W /2] < B < W: the cosine P [1 + cos (W)] )df (18)
portions overlap the flat portions of the RRC pulses but ((f=B+(1—a)W)x '
the flat portions do not overlap; 2WhNo + P [1 o ( aW )]

4) 14+ a)W/2<B<(1—aW:requiresO < a < 1/3

B-W

For the special cas®& = W, we compute (see Appendix

and that the flat portions of the pulses overlap. B):
We treat the first two cases here and the next two cases in
Appendix[A. ForB > (1 + «)W there is no interference and _,
we have (sed[8)) Cprn(o, W) = (1+ )W log, ( 1+ W,
P / P
’ 1 + 2WN() + 1 + WNO

(19)
ForW < B < (1 + «)W, we have
To compute the spectral efficiency, we divide](15) by the
total bandwidth(1 + o)W + (K — 1)B. As K gets large,
> the bandwidth per user is approximatdB/ and the spectral
efficiency is

Cprn(a, B) = (1 — a)W log, (1 + NG

+2JBW10 (1+ D [1+cos (ﬂ)]) df 1
0 b2 2W No al nprn (o, B) = ECFTN(avB)- (20)
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Fig. 6. Spectral efficiencies for roll-off factax = 0.5 with transmit power normalized t&/W Watts/Hz.

For B = W, we plot the corresponding spectral efficienciesptimize overB in the range(l + o)W /2 < B < (1 + o)W
n}?TN(a,W) as the dashed curves in Fig. 2. Observe thate arrive at the curves shown in F[d. 6. Now any choice for
the spectral efficiencylecreases with increasinga which is B gives the same spectral efficiency at low SNR, as expected.
the opposite as in_[7, Sec. 2] where the interference is notAt high SNR orWLN0 — 0, the spectral efficiency(20)
accounted for. based on[(T8) can be approximated as

The spectral efficiencies optimized ovBr satisfying (1 +
@)W /2 < B < (1+ o)W are shown in Fig.J5 for the roll-off Nepn (0, B) ~ 2B - (1+ )W log, ( ) (22)
factor « = 0.5. The reader may find it strange that choosing B W Ny
B = (1 + a)W /2 beats Shannon'€'/IV curve at low SNR.
We discuss the low and high SNR effects next.

and it is best to choos® as large as possible, i.eR =
(1+ )W which corresponds to no interefernce. The resulting
IV. LOow AND HIGH SNR spectral efficiency pre-log is 1. The spectral efficiency-lpge
p o for B = W and high SNR isl — «, which is the high-SNR
At low SNR or wrze — 0, the spectral efficiency (20) CaNgiope of the dashed curves in Fig. 2.
be approximated as Finally, a more precise version df{20) fé = (1 + o)W
/ P and high SNR gives
nern (o, B) ~ BNo log, e (21)
and it is best to choosB as small as possible. In fact &—

0 the approximation[{21) remains valid and we can achieve _ - .
an arbitrarily large spectral efficiency. This perhaps weeted Note that there is an additive gap as compareflib (22) and this

behavior is because the transmit power per Hertz for ldfge 9ap increases monotonically with For example, the gap for

is Pot/Biot ~ P/B, i.e., the power per Hertz increasesAs & = 0.5 is 4/3 bit/sec/Hz which corresponds to a 4.01 dB loss

decreases. In comparison, the transmit power per Hertz farenergy efficiency. This gap can be seen at high SNR in Fig.

orthogonal transmission with Shannon’s sinc pulse® i§’. B The gap fora = 1 is 2 bit/sec/Hz which corresponds to a

We should thus normaliz€{R1) by multiplying by/W, and 6 dB loss in energy efficiency. After normalizing the transmi

we arrive at the same spectral efficiency for all positi?e Power per Hertz ta”?/W, the gap reduces to

The result[(2l1) remains valid faB > A also, and this relates Aoy

to the optimality of bursty signaling at low SNR. Tra log,(1 + «) bits/sec/Hz (24)
This observation also explains the low-SNR behavior of the

curves in Fig[h: the gains and losses fdr« W as compared which we plot in Figl. Forv = 0.5 the gap is 0.75 bit/sec/Hz,

to B = W are because the transmit power per HePtzB i.e., the loss is 2.25 dB which can be seen at high SNR in Fig.

depends omB. If we normalize toP/W Watts/Hz and then [@. The gap fore = 1 is 1 bit/sec/Hz, i.e., the loss is 3 dB.

’ P 4 .
Nery (o, B) ~ log, (W—NO) - 1+—aa bits/sec/Hz (23)



P
2((1—a)W — B)1 1+ ————
: F2( =)W - B)log, (14 )
09F
osh (1+a)W-B P [1 + cos (W)]
2 1 1 df.
o7l * JWB gz | L W Ny + 2P f
g APPENDIXB
A I B We compute[(19) as follows:
© 04} : :
5 : : , P
02 o e WNo
b where X; is
00 012 0%4 . 0i6 0:8 1 2 J‘QW 1og2 1 + P [1 + cos (({_‘;TV)] df
0 2WNO+P[1+COS (%)]
Fig. 7. Additive gap of the spectral efficiency at high SNR. W
« WNy + P
= 2J. log, - 0 7 df
’ WiNo -+ [1 = cos ()
V. CONCLUSION 0t 3 o5\ aw

Spectral efficiency is usually considered in the context of @ 20w logy (1 + WN >
spectrum sharing. We showed that the spectral efficiency of - 0
. . : 2aW P P cos(x)
RRC pulses with FTN decreases monotonically with the roll- — log, ( {1+ — dx
off factor. This means that Shannon'’s sinc pulses are thie bes T Jo 2WNo 2ZWNo

RRC pulses, and they are in fact the best pulses in general?) o ;- log (1 4 )
At low SNR, FTN neither improves nor degrades the spectral g W No
efficiency. At high SNR, it is best to avoid interference foet e P 4+ /14 P
models considered here. — 2aW log, 2WNo Wio
2
APPENDIXA

where (a) follows by subsitiuting = ({—JV and (b) follows by

For max[(1 — o)W, (1 + )W /2] < B < W, we have ©).
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