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Abstract—Capacity computations are presented for Faster-
Than-Nyquist (FTN) signaling in the presence of interference
from neighboring frequency bands. It is shown that Shannon’s
sinc pulses maximize the spectral efficiency for a multi-access
channel, where spectral efficiency is defined as the sum rate in
bits per second per Hertz. Comparisons using root raised cosine
pulses show that the spectral efficiency decreases monotonically
with the roll-off factor. At high signal-to-noise ratio, th ese pulses
have an additive gap to capacity that increases monotonically
with the roll-off factor.

I. I NTRODUCTION

Shannon [1, Sec. 25] showed that the capacity of an additive
white Gaussian noise (AWGN) channel with bandwidthW and
average transmit power constraintP is

C “ W log2

ˆ

1 ` P

WN0

˙

bits/sec (1)

whereN0 is the noise power spectral density. The capacity (1)
is achieved by a sinc pulse and the spectral efficiency is

η “ log2

ˆ

1 ` P

WN0

˙

bits/sec/Hz. (2)

Mazo [2] introduced faster-than-Nyquist (FTN) signaling
for sinc pulses where the pulses are modulated faster than
the Nyquist rate. The resulting intersymbol interference (ISI)
can be interpreted as a type of coding [3] and is the same
as correlative or partial response signaling [4] such as the
duobinary technique.1 Mazo showed that increasing the mod-
ulation rate by up to25% does not affect the minimum
Euclidean distance between the closest two signals when using
binary antipodal modulation. Thus, the coding induced by
FTN signaling increases the spectral efficiency at high signal-
to-noise ratio (SNR). Non-orthogonal transmission schemes
such as FTN [5], [6] are receiving renewed attention for their
potential to increase capacity. FTN may also be interestingfor
applications that need low cost transmitters and flexible rate
adaptation.

1Alternatively, FTN may be viewed as a coded multi-level modulation
where the transmitter-induced ISI enlarges the modulationset in addition to
introducing memory (or coding). One should not, therefore,compare FTN
with Nyquist ISI criterion signaling and the same modulation set unless the
transmitter must use this particular modulation set for pulse shaping.

In practice, it is difficult to approximate sinc pulses. One
instead often analyzes square root raised cosine (RRC) pulses
that decay more quickly than sinc pulses and can be approx-
imated more accurately. Rusek, Anderson andÖwall show in
[7] and [8] that FTN signaling achieves a substantially higher
spectral efficiency than (2) if the comparison is based on the
3-dB power bandwidth of RRC pulses with independent and
identically distributed (i.i.d.) Gaussian symbols. The calcu-
lations are performed for a single channel, i.e., there is no
interference or spectral sharing.

We revisit this comparison by viewing bandwidth as a
shared resource where the spectral efficiencyη is computed
by normalizing the sum rate ofK users (or systems) by an
overall bandwidth of approximatelyKB Hz, whereB is the
bandwidth assigned to each user. For example, for Shannon’s
sinc pulse, every user receivesB “ W Hz of non-overlapping
bandwidth and the spectral efficiency is given by (2). One may
try to improveη by using non-orthogonal signaling such as
FTN. Of course, now the users experience interference. Our
main goal is to explore the spectral efficiency of FTN signaling
from the shared resource perspective.

This paper is organized as follows: Section II analyzes the
capacity of FTN signaling for a single user, Section III defines
and analyzes spectral efficiency for a multiaccess channel with
spectrum sharing, and Section IV discusses the results further
for low and high SNR.

II. CAPACITY

The Nyquistrate usually refers to twice the bandwidth of a
bandlimited signal. The Nyquist intersymbol interference(ISI)
criterion refers to the requirement that sampling at regular
intervals incurs no ISI [9, p. 557]. For sinc pulses, Nyquist-rate
sampling satisfies the Nyquist ISI criterion, so that FTN refers
to sampling faster than both the Nyquist rateand a Nyquist
ISI criterion rate. However, in terms of capacity there is no
need to sample faster than the Nyquist rate for linear AWGN
channels [1, Sec. 19]. For pulses other than sinc pulses, on
the other hand, it might be interesting to sample faster than
the fastest Nyquist ISI criterion rate [7].

A FTN signal with complex pulse shapehptq is given by
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Fig. 1. Magnitude of the spectrum of a complex-valued signalwith absolute
bandwidthA.

Sptq “
8
ÿ

k“0

Brkshpt ´ kτT q. (3)

where the complex random symbolsBrks are sent at rate
1{pτT q Hertz. The FTN rate is1{τ where0 ă τ ď 1. We
choosehptq to have unit energy, i.e., we choose

ż 8

´8

|hptq|2dt “ 1. (4)

Suppose thatSptq is constrained to have the spectrumHpfq
with absolute bandwidthA, as shown in Fig. 1. For i.i.d.
complexBrks with varianceP , let SNRpfq be the SNR at
frequencyf , i.e., define

SNRpfq ∆“ limLÑ8 E rΓLs
N0

“ P |Hpfq|2
N0

(5)

where

ΓL “ 1

L

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

´8

L
ÿ

k“0

Brkshpt ´ kτT qe´j2πftdt

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Note that SNRpfq does not depend on the FTN rate1{τ . The
capacity is achieved with proper complex GaussianBrks and
is (see [8] and [10])

CFTN pαq “
ż 8

´8

log2 p1 ` SNRpfqq df

“
ż A

2

´ A

2

log2

ˆ

1 ` P |Hpfq|2
N0

˙

df. (6)

For example, a RRC pulse with roll-off factorα, 0 ď α ď 1,
hasA “ p1 ` αqW and

|Hpfq|2 “

$

’

’

’

&

’

’

’

%

1{W, |f | ď p1 ´ αqW
2

1

2W

“

1 ` cos
`

π
αW

“

|f | ´ p1 ´ αqW
2

‰˘‰

,

p1 ´ αqW
2

ă |f | ď p1 ` αqW
2

0, else.

(7)

The capacity (6) is thus

CFTN pαq “ p1 ´ αqW log2

ˆ

1 ` P

WN0

˙

` 2αW log2

¨

˝

1 ` P
2WN0

`
b

1 ` P
WN0

2

˛

‚ (8)

whereW “ 1{T and where we have used (see [11, p. 531])

ż π

0

lnpa ` b cosxqdx “ π ln
a `

?
a2 ´ b2

2
(9)

for a ě |b| ą 0. The normalized capacitiesCFTN pαq{W are
plotted as the solid curves in Fig. 2 for variousα (note thatW
is the 3 dB bandwidth used in [7, Sec. 3]). Observe that the
capacities increase with the roll-off factor due to the bandwidth
expansion. The asymptotic gain in slope as compared toC is
proportional to theexcess bandwidthαW for high SNR [8,
Sec. 1]. To see this, note that (8) gives

lim
ρÑ8

CFTN pαq
log2 ρ

“ p1 ` αqW (10)

whereρ “ P
WN0

.

III. SPECTRAL EFFICIENCY

Consider aK-user multiaccess channel (MAC) and define
the spectral efficiency as the sum-rate in bits per second per
Hertz. We place the signals of theK users at the center
frequencieskB, k “ 0,˘1,˘2, ...,˘pK ´ 1q{2, where we
assume that the number of usersK is odd and where the
centered spectrum of userk is Hkpfq, see Fig. 3. All spectra
have at most bandwidthA. Note that choosingB “ 0 has all
users transmitting in the same frequency band. We focus on
MACs because we are interested in cellular uplinks.

Another natural scenario is aK-user interference network,
but now the crosstalk gains play an important role in how the
receivers should operate. For example, for weak interference
it is usually best to treat interference as noise while for strong
interference one may wish to decode the interfering signal.
TheK-user interference network becomes a compound MAC
if all crosstalk gains are similar to the direct gains, and this is
one further motivation for studying MACs.

We have decided to focus on sum-rate for simplicity. One
may instead wish to study weighted sum rates or other utility
functions such as proportionally fair rates. These studiesmay
lead to other conclusions, although we expect that the insight
for sum-rate carries over to other important cases.

For the sum-rate, we first show that sinc pulses maximize
the spectral efficiency. The total bandwidth and power are the
respective

Btot “ A ` pK ´ 1qB

Ptot “
pK´1q

2
ÿ

k“´
pK´1q

2

Pk

(11)

wherePk is the transmit power of userk. Suppose the average
power per Hertz is constrained to bePtot{Btot. The power
spectral density of the received signal is

N0 `
ÿ

k

Pk|Hkpf ´ kBq|2. (12)
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Fig. 2. Normalized capacities of FTN for RRC pulses and different roll-off factorsα. The solid lines represent the normalized capacities without interference
and the dashed lines represent the normalized capacities (and spectral efficiencies) with interference and spectral offsets ofB “ W Hertz.

Fig. 3. Spectral sharing with different spectra for each user.

To upper bound the spectral efficiency, we compute

η
(a)
ď 1

Btot

ż

Btot
2

´
Btot
2

log2

ˆ

1 `
ř

k Pk|Hkpf ´ kBq|2
N0

˙

df

(b)
ď log2

˜

1 ` 1

BtotN0

ÿ

k

Pk

ż

Btot
2

´
Btot
2

|Hkpf ´ kBq|2df
¸

(c)“ log2

ˆ

1 ` Ptot

BtotN0

˙

. (13)

where (a) follows by a classic maximum entropy result (see
[10]), (b) follows by Jensen’s inequality, and (c) follows by
(4) and Parseval’s identity. Furthermore, we achieve equality
in (13) by using sinc pulses with bandwidthA “ B “ W ,
and choosingPk “ Ptot{K for all k, see (2). We also achieve
equality by using sinc pulses withA “ W , B “ 0, and any
Pk such that

ř

k Pk “ Ptot. We note that the bound (13) is
valid irrespective of the receiver algorithm. This means that
sinc pulses maximize the spectral efficiency even if multi-user
detection is permitted, as long as the total transmit power per
Hertz is constrained to bePtot{Btot.

Having established the optimality of Shannon’s approach,
we now calculate the spectral efficiency of FTN for RRC
pulses. To avoid having to consider too many cases, we make

the following simplifications. We choose:

‚ to treat interference as noise, i.e., the signal-to-
inteference-plus-noise-ratio (SINR) for userk “ 0 at
frequencyf is

SINRpf,Bq “ P0|H0pfq|2
N0 ` ř

k‰0
Pk|Hkpf ´ kBq|2 ; (14)

‚ to use Gaussian signaling so that we may use SINRpf,Bq
to compute reliable communication rates, i.e., we have the
information rate

C
1

FTN pα,Bq “
ż 8

´8

log2 p1 ` SINRpf,Bqq df ; (15)

‚ Hkpfq “ Hpfq for all k, whereHpfq is the RRC pulse
with A “ p1 ` αqW , see (7) and Fig. 4;

‚ Pk “ P for all k;
‚ A{2 ď B ď A so that there is at most one interferer at

each frequency, i.e., we have

SINRpf,Bq “ P |Hpfq|2
N0 ` P |Hpf ´ Bq|2 (16)

where0 ď f ď A.

There are now four cases to consider for RRC pulses.



Fig. 4. Spectral sharing with the same spectrum for each userand A
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Fig. 5. Spectral efficiencies for roll-off factorα “ 0.5.

1) B ě p1 ` αqW : there is no interference;
2) W ď B ď p1 ` αqW : only the cosine-portions of the

RRC pulses overlap;
3) maxrp1 ´ αqW, p1 ` αqW {2s ď B ď W : the cosine

portions overlap the flat portions of the RRC pulses but
the flat portions do not overlap;

4) p1 ` αqW {2 ď B ď p1 ´ αqW : requires0 ď α ď 1{3
and that the flat portions of the pulses overlap.

We treat the first two cases here and the next two cases in
Appendix A. ForB ě p1 ` αqW there is no interference and
we have (see (8))

C
1

FTN pα, p1 ` αqW q “ CFTN pαq. (17)

For W ď B ď p1 ` αqW , we have

C
1

FTN pα,Bq “ p1 ´ αqW log2

ˆ

1 ` P

WN0

˙

` 2

ż B´W

0

log2

ˆ

1 ` P

2WN0

„

1 ` cos

ˆ

fπ

αW

˙˙

df

` 2

ż αW

B´W

log2

˜

1`

P
”

1 ` cos
´

fπ
αW

¯ı

2WN0 ` P
”

1 ` cos
´

pf´B`p1´αqW qπ
αW

¯ı

¸

df. (18)

For the special caseB “ W , we compute (see Appendix
B):

C
1

FTN pα,W q “ p1 ` αqW log2

ˆ

1 ` P

WN0

˙

´ 2αW log2

¨

˝

1 ` P
2WN0

`
b

1 ` P
WN0

2

˛

‚.

(19)

To compute the spectral efficiency, we divide (15) by the
total bandwidthp1 ` αqW ` pK ´ 1qB. As K gets large,
the bandwidth per user is approximatelyB and the spectral
efficiency is

η
1

FTN pα,Bq “ 1

B
C

1

FTN pα,Bq. (20)
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For B “ W , we plot the corresponding spectral efficiencies
η

1

FTN pα,W q as the dashed curves in Fig. 2. Observe that
the spectral efficiencydecreases with increasingα which is
the opposite as in [7, Sec. 2] where the interference is not
accounted for.

The spectral efficiencies optimized overB satisfyingp1 `
αqW {2 ď B ď p1`αqW are shown in Fig. 5 for the roll-off
factor α “ 0.5. The reader may find it strange that choosing
B “ p1 ` αqW {2 beats Shannon’sC{W curve at low SNR.
We discuss the low and high SNR effects next.

IV. L OW AND HIGH SNR

At low SNR or P
WN0

Ñ 0, the spectral efficiency (20) can
be approximated as

η
1

FTN pα,Bq « P

BN0

log2 e (21)

and it is best to chooseB as small as possible. In fact asB Ñ
0 the approximation (21) remains valid and we can achieve
an arbitrarily large spectral efficiency. This perhaps unexpected
behavior is because the transmit power per Hertz for largeK

is Ptot{Btot « P {B, i.e., the power per Hertz increases asB

decreases. In comparison, the transmit power per Hertz for
orthogonal transmission with Shannon’s sinc pulses isP {W .
We should thus normalize (21) by multiplying byB{W , and
we arrive at the same spectral efficiency for all positiveB.
The result (21) remains valid forB ą A also, and this relates
to the optimality of bursty signaling at low SNR.

This observation also explains the low-SNR behavior of the
curves in Fig. 5: the gains and losses forB ‰ W as compared
to B “ W are because the transmit power per HertzP {B
depends onB. If we normalize toP {W Watts/Hz and then

optimize overB in the rangep1 ` αqW {2 ď B ď p1 ` αqW
we arrive at the curves shown in Fig. 6. Now any choice for
B gives the same spectral efficiency at low SNR, as expected.

At high SNR or P
WN0

Ñ 8, the spectral efficiency (20)
based on (18) can be approximated as

η
1

FTN pα,Bq « 2B ´ p1 ` αqW
B

log2

ˆ

P

WN0

˙

(22)

and it is best to chooseB as large as possible, i.e.,B “
p1`αqW which corresponds to no interefernce. The resulting
spectral efficiency pre-log is 1. The spectral efficiency pre-log
for B “ W and high SNR is1 ´ α, which is the high-SNR
slope of the dashed curves in Fig. 2.

Finally, a more precise version of (20) forB “ p1 ` αqW
and high SNR gives

η
1

FTN pα,Bq « log2

ˆ

P

WN0

˙

´ 4α

1 ` α
bits/sec/Hz. (23)

Note that there is an additive gap as compared to (22) and this
gap increases monotonically withα. For example, the gap for
α “ 0.5 is 4/3 bit/sec/Hz which corresponds to a 4.01 dB loss
in energy efficiency. This gap can be seen at high SNR in Fig.
5. The gap forα “ 1 is 2 bit/sec/Hz which corresponds to a
6 dB loss in energy efficiency. After normalizing the transmit
power per Hertz toP {W , the gap reduces to

4α

1 ` α
´ log2p1 ` αq bits/sec/Hz (24)

which we plot in Fig. 7. Forα “ 0.5 the gap is 0.75 bit/sec/Hz,
i.e., the loss is 2.25 dB which can be seen at high SNR in Fig.
6. The gap forα “ 1 is 1 bit/sec/Hz, i.e., the loss is 3 dB.



Fig. 7. Additive gap of the spectral efficiency at high SNR.

V. CONCLUSION

Spectral efficiency is usually considered in the context of
spectrum sharing. We showed that the spectral efficiency of
RRC pulses with FTN decreases monotonically with the roll-
off factor. This means that Shannon’s sinc pulses are the best
RRC pulses, and they are in fact the best pulses in general.
At low SNR, FTN neither improves nor degrades the spectral
efficiency. At high SNR, it is best to avoid interference for the
models considered here.

APPENDIX A

For maxrp1 ´ αqW, p1 ` αqW {2s ď B ď W , we have

C
1

FTN pα,Bq “ r2B ´ p1 ` αqW s log2
ˆ

1 ` P

WN0

˙

` 2

ż W´B

0

log2

˜

1`

2P

2WN0 ` P
”

1 ` cos
´

pf´αW qπ
αW

¯ı

¸

df

` 2

ż αW

W´B

log2

˜

1`

P
”

1 ` cos
´

pf`B´W qπ
αW

¯ı

2WN0 ` P
”

1 ` cos
´

pf´αW qπ
αW

¯ı

¸

df

` 2

ż p1`αqW´B

αW

log2

˜

1 `
P

”

1 ` cos
´

pf`B´W qπ
αW

¯ı

2WN0 ` 2P

¸

df.

For p1 ` αqW {2 ď B ď p1 ´ αqW , we have

C
1

FTN pα,Bq “ r2B ´ p1 ` αqW s log2
ˆ

1 ` P

WN0

˙

` 2

ż αW

0

log2

˜

1 ` 2P

2WN0 ` P
”

1 ` cos
´

pf´αW qπ
αW

¯ı

¸

df

` 2 pp1 ´ αqW ´ Bq log2
ˆ

1 ` P

WN0 ` P

˙

` 2

ż p1`αqW´B

W´B

log2

˜

1 `
P

”

1 ` cos
´

pf`B´W qπ
αW

¯ı

2WN0 ` 2P

¸

df.

APPENDIX B

We compute (19) as follows:

C
1

FTN pα,Bq “ p1 ´ αqW log2

ˆ

1 ` P

WN0

˙

` X1

whereX1 is

2

ż αW

0

log2

¨

˝1 `
P

”

1 ` cos
´

fπ
αW

¯ı

2WN0 ` P
”

1 ` cos
´

pf´αW qπ
αW

¯ı

˛

‚df

“ 2

ż αW

0

log2

¨

˝

WN0 ` P

WN0 ` P
2

”

1 ´ cos
´

fπ
αW

¯ı

˛

‚df

(a)“ 2αW log2

ˆ

1 ` P

WN0

˙

´ 2αW

π

ż π

0

log2

ˆˆ

1 ` P

2WN0

˙

´ P cospxq
2WN0

˙

dx

(b)“ 2αW log2

ˆ

1 ` P

WN0

˙

´ 2αW log2

¨

˝

1 ` P
2WN0

`
b

1 ` P
WN0

2

˛

‚

where (a) follows by subsitiutingx “ fπ
αW

and (b) follows by
(9).
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