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Abstract—Spectrum cartography is the process of constructing
a map showing Radio Frequency signal strength over a finite
geographical area. In our previous work we formulated spectrum
cartography as a compressive sensing problem and we illustrated
how cartography can be used in the context of discovering
spectrum holes in space that can be exploited locally in cognitive
radio networks. This paper investigates the performance of
compressive sensing based approach to cartography in a fading
environment where realtime channel estimation is not feasible. To
accommodate for lack of channel information we take an iterative
approach. We extend the well-known iteratively reweighted `1
minimisation approach by exploiting spatial correlation between
two points in space. We evaluate the performance in an urban
environment where Rayleigh fading is prominent. Our numerical
results show a significant improvement in the probability of accu-
rately making a spectrum sensing decision, in comparison to the
well-known weighted approach and the traditional compressive
sensing based method.

Index Terms—Cognitive Radio, Spectrum Cartography, Itera-
tively Reweighted Compressive Sensing, Rayleigh Fading.

I. INTRODUCTION

Spectrum cartography can be envisioned as the process of
plotting an attribute of the Radio Frequency (RF) environment
over a finite geographical area. A common practice is to
plot Received Signal Strength (RSS) in 2-dimensional space,
considering a specific frequency of interest. We recognise the
resulting plot in R3 as a Radio Environment Map (REM).
Commercial software packages are widely used in the industry
for spectrum cartography in network planning, maintenance
and optimisation [1], [2]. Such commercial software packages
can predict the coverage area and the capacity of a cellular
base station assuming certain channel characteristics in the
geographical area of interest. Although such applications are
common, enabling dynamic spectrum access using spectrum
cartography has not been well explored.

In a cognitive radio network, a mode of realising dy-
namic spectrum access, Secondary Users (SUs) utilise the
spectrum without disrupting the communication of Primary
Users (PUs). In traditional detect and avoid schemes, if a
PU was discovered by a certain number of nodes sensing the
spectrum, the whole network will avoid using that frequency.
However, when the secondary network spans over a large

area in comparison to the range of the PU network, SUs
outside the range of the PU can safely use the bandwidth
which enhances the spatial efficiency of spectral usage. Herein,
spectrum cartography can be used as a powerful tool to
determine the presence and the range of PU transmitters.

In [2], the authors propose to interpolate geolocalised Re-
ceived Signal Strength (RSS) data in producing a REM. They
use an interpolation technique called Kriging Spatial Inter-
polation, also used in many commercial network prediction
software packages. In [3], the authors use the same interpo-
lator and present an interference classification algorithm for
dynamic spectrum access. In [4], the authors develop a testbed
which constructs a REM assuming an inverse distance channel
model. However, the work in [2]–[4] is only based on spatial
interpolation techniques. The sparsity of PUs in multiple
domains (time, frequency and space), which is common in
many practical applications, is not exploited.

In our previous work [1], we formulated cartography as
an `1 norm minimisation problem (i.e. a compressive sensing
problem) exploiting the spatial sparsity of PUs. However, we
considered only a distance based path loss channel model that
was assumed to be known. In this paper, we extend our anal-
ysis into a fading environment. We assume the deterministic
component of the channel related to path loss and large scale
fading is known. However, the stochastic component arising
from small scale fading is not known, also a posteriori esti-
mation is not available. Under these circumstances the classic
`1 norm minimisation approaches are less effective, hence we
formulate a weighted `1 norm minimisation problem. The au-
thors in [5] propose the well-known Iteratively Reweighted `1
norm (IRL1) algorithm for solving such problems. We extend
IRL1 by exploiting the spatial correlation between two points
in space. Our numerical results indicate that our approach is
significantly more effective than classic compressive sensing
as well as IRL1.

In Section II we present the system model. REM con-
struction problem is formulated as a weighted `1 norm min-
imisation problem in Section III and our extension to IRL1
is illustrated in Section IV. Finally, numerical results are
included in Section V.
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Fig. 1. System model: the Spectrum Broker collects RSS from sensor nodes
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II. SYSTEM MODEL

In our work, REM is defined as a map that shows the RSS
value in R2 space for a certain frequency of interest. We
assume the existence of a central entity named the Spectrum
Broker that constructs a REM for each frequency of interest.
System model is composed of Ns spectrum sensing nodes, N ′s
SUs and 1 randomly located PU transmitter (system model is
illustrated in Fig. 1).

Sensor nodes collect the RSS values and forward to the
Spectrum Broker, along with their spatial coordinates. The
Spectrum Broker constructs REMs for each frequency of
interest indicating the corresponding geographical area where
PU RSS is high. Generally, a PU receiver can decode a
signal only if the SNR is higher than a minimum threshold.
Therefore, the Spectrum Broker can determine the region
where PU receivers are most likely to be present, assuming
a reasonable threshold. This approach is similar to the inter-
ference temperature concept in IEEE 802.22 [6]. SUs are able
to consult the Spectrum Broker to determine a frequency and
the corresponding geographical region in which SUs can safely
use that frequency without causing harmful interference to PU
receivers. Further, we consider the interference between SUs
and PUs only.

Additionally, we consider a Np(� Ns) point grid layout.
Similar to [7], we consider that sensor nodes are uniformly
distributed. Although we assume the presence of only one PU
transmitter for simplicity, our work is still valid when multiple
PUs are present as shown in our previous work [1]. To reduce
the complexity of the problem in hand, we assume that sensor
nodes and PUs are located on a grid as shown in Fig. 2.
Although it can be criticised that assuming PUs are on a grid
is less practical, clearly the system resolution can be increased

by using a dense grid which minimises the error induced by
this assumption. Even though we consider a dedicated static
sensor network for simplicity in illustration, a sensor node
could be a SU with spectrum sensing capability and the ability
to determine its spatial coordinates using an external service
such as the Global Positioning System (GPS).

We assume the existence of a common control channel
between sensors, the Spectrum Broker and SUs to communi-
cate RSS value and spectrum allocation information. Common
spectrum sensing issues such as differentiating a PU signal
from a SU signal at the sensing nodes can be overcome by
assuming a quiet period or by using advanced schemes such
as cyclostationary based detection. Such issues are beyond
our scope, since this paper focuses only on the accuracy of
spectrum sensing decisions in discrete space. In the rest of the
paper, we limit our analysis to a single frequency REM, yet
our work can be clearly replicated for multiple frequency bins
of interest.

III. PROBLEM FORMULATION

In this section we formulate REM construction as a
weighted `1 norm minimisation problem. Let Ps ∈ RNs be
a column vector representing the RSS of the PU signals as
measured by Ns sensors and Pr ∈ RNp a column vector
representing the RSS of PU signal at all Np reference points
in Fig. 2 (Note: Ps ⊂ Pr). Also, let Pt ∈ RNp be a column
vector in which the 1 ≤ jth ≤ Np element is defined as,

Pt(j) =

{
EIRPj if a PU exists at the jth reference point
0 otherwise

(1)
where EIRPj is the Effective Isotropic Radiated Power of
the PU at jth reference point. In our grid layout, shown in
Fig. 2, the jth reference point can be mapped to (row, column)
coordinates as: j → (dj/

√
Npe, j −

√
Np(dj/

√
Npe − 1).

Assuming a narrowband channel in the presence of Additive
White Gaussian Noise (AWGN), we write Pr as follows,

Pr = ΨPt + η (2)

where η ∈ RNp is a column vector representing noise power at
Np reference points, Ψ is the Np×Np channel characteristic
matrix defined as,

[Ψ]ij = FijGijLij : ∀1 ≤ i, j ≤ Np (3)

where Lij is the pathloss from point j to i, Gij is a large
scale shadow fading coefficient and Fij models Rayleigh
fading. Fij∀1 ≤ i, j ≤ Np are independent and exponentially
distributed random variables with unit mean. In a Rayleigh
fading environment the signal envelope follows a Rayleigh dis-
tribution, but the received signal power follows an exponential
distribution [8]. We assume that stochastic component of the
channel Fij is not known to the Spectrum Broker, however
the deterministic component (i.e. GijLij) is assumed to be
known. Hence, the expectation E [[Ψ]ij ] = GijLij is known.

The measured RSS values at sensors Ps can be written as,

Ps = ΦΨPt + Φη (4)



where Φ is the Ns×Np geolocation matrix defined as follows
∀1 ≤ j ≤ Np and ∀1 ≤ k ≤ Ns,

[Φ]kj =

{
1 if kth sensor is at jth reference point
0 otherwise

(5)

Since η is not zero mean we rearrange (4) as follows,

Ps − ηavg = ΦΨPt + ζ (6)

where ηavg is the long term average AWGN power measured
at the Spectrum Broker and ζ ∈ RNs is a column vector with
error terms that provides for possible measurement errors at
sensors.

We now have an underdetermined system of equations in
(6). REM construction can be summarised as finding the
expectation of Pr. Our approach is to find some Pt by solving
(6), then construct the REM as follows: E[Pr] = ΦE[Ψ]Pt+
ηavg . Since Pt is a sparse vector, we can formulate a classic
`1 norm minimisation problem (i.e. a compressive sensing
problem) as follows,

arg min
Pt

||Pt||1 subject to ||Ps − ηavg −ΦΨPt||2 ≤ ϑ′ (7)

where ‖(·)‖p is the `p-norm of (·) ∀p ∈ Z+ and ϑ′ is
a constraint relaxation parameter providing for measurement
errors. Due to the unknown stochastic element Fij in Ψ, the
Spectrum Broker is unable to directly solve (7). Instead we
solve,

arg min
Pt

||Pt||1 subject to ||Ps−ηavg−ΦE[Ψ]Pt||2 ≤ ϑ (8)

However, the error introduced by solving (8) instead of (7) is
substantial, as we illustrate further in Section V. To mitigate
this harmful impact, we formulate a weighted problem as
follows,

arg min
Pt

Np∑
i=1

ω(i)|Pt(i)| (9)

subject to:

||Ps − ηavg −ΦE[Ψ]Pt||2 ≤ ϑ

where Pt(i) refers to the ith element of Pt and ω is a Np× 1
column vector of weights adjusted in each time iteration.

IV. EXTENDED ITERATIVELY REWEIGHTED `1 NORM
MINIMISATION ALGORITHM

In this section we present our extension to the well-known
IRL1 algorithm. In [5] the authors investigate a weighted `1
norm minimisation problem, primarily in the context of image
processing. They propose the following weight adjustment
(IRL1),

ωk+1(i) =
1

|P k
t (i)|+ γ

(10)

where P k
t (i) is the ith element of k time sample of Pt and

similarly ωk+1(i) is the ith element of k + 1 time sample of
the weight vector ω. The parameter γ > 0 provides stability
and it also ensures zero elements in Pk

t do not strictly prohibit

non zero estimates in Pk+1
t in the next step [5]. It is suggested

that γ should be chosen as a value slightly smaller than the
expected non zero values in Pt [5].

IRL1 is well known to outperform traditional (not weighted)
`1 norm minimisation problems in general. However, in con-
ventional `1 norm minimisation problems the orthogonal basis
vectors are known a priori (i.e. ideal knowledge on channel
estimates is available). In our REM construction application
it is difficult to assume that realtime channel estimates are
available, as it increases the overhead. In other words, we are
unable to solve (7) directly, therefore we solve (9) by adjusting
the weight ω as shown in Algorithm 1.

Algorithm 1 Extension to IRL1 Algorithm: kth iteration

Require:
• ωk - Np × 1 column vector of weights calculated in

the previous iteration. For k = 1 iteration choose the
initial condition ω1 = 1

• Pth - minimum transmit power of the PU
• 0 < α < 1 - coefficient that determines the depen-

dency of ωk+1 on ωk i.e. the memory effect
1: procedure EXTENDED IRL1(ωk, Pth, α)
2: Solve the following convex `1 minimisation problem

arg min
Pk

t

Np∑
i=1

ωk(i)|P k
t (i)| subject to:

||Pk
s − ηavg −ΦE[Ψ]Pk

t ||2 ≤ ϑ

3: Calculate the weight vector for the next iteration ωk+1

as follows
4: Initialise a temporary Np×1 vector $ to hold weight

adjustment considering spatial correlation between
grid points
$ ← 1/γ

5: for all P k
t (i) > Pth do

6: Λ← {Set of grid points spatially correlated with i}
7: $(Λ)← min

(
$(Λ), 1/(|P k

t (i)|+ γ)
)

8: end for
9: Calculate the weight vector for the next iteration

ωk+1 = αωk + (1− α)$
10: end procedure

In Line 2, we use the ωk (calculated in the previous
iteration) find a solution for Pk

t , similar to IRL1. However,
our algorithm is significantly different from IRL1 due to the
weight computation in Line 3-9. Due to noisy measurements
and unknown stochastic element in Ψ, convex optimisation
results in a large number of non zero (near zero however)
entries in Pk

t . A non zero entry in Pk
t implies the presence

of a PU transmitter as per the definition in 1). Hence, such
values that are unreasonably small for the transmit power of
a potential PU need to be removed, for this filtering we use
a minimum threshold in Line 5. In Line 6 we find the set
of grid points that are neighbouring to point i and adjust the



corresponding weights (a neighbourhood can be discovered as
we illustrated in [1]). Hence in Algorithm 1, a non zero entry
at i has an influence on the weights corresponding to a set
of neighbouring points, whereas in IRL1 such an entry would
affect only one entry in ω. Additionally, in Line 9 we take
the weighted average of ωk and $. Therefore, ωk+1 has a
strong dependency on ω from previous iterations. This helps
in mitigating the impact of the incompleteness of compressive
sensing dictionary.

V. SIMULATION AND ANALYSIS

In this section we present our simulation setup and the
results showing the effectiveness of our algorithm. We con-
struct a REM using classic `1 norm minimisation (compressive
sensing) and also using weighted `1 norm minimisation where
the weight was adjusted as per IRL1 in [5] and the proposed
algorithm in this paper. For solving convex problems we use
the well-known SeDuMi solver [9].

In our setup, we assume a 11 × 11 point grid and sensor
nodes at every other grid point as shown in Fig. 2 (i.e. Np =
121 and Ns = 36). We use the pathloss and large scale fading
parameters found in the WINNER+ UMi channel model [10],
which is the TV White Space frequency extension of the 3GPP
channel model. A PU is located at a randomly selected grid
point and we run an experiment for 1000 iterations.

Since we are using a discrete space model, the performance
evaluation criteria is the proportion of grid points where False
Alarm (FA) and Missed Detection (MD) occur. FA and MD at
point i are defined as follows,

H0(i) : RSS at point i < Pth (i.e. ∃ a spectrum hole)
H1(i) : RSS at point i ≥ Pth (i.e. @ a spectrum hole)

Nfa = Number of points where H1|H0 (11)
Nmd = Number of points where H0|H1 (12)

Therefore the proportion of area with FA and MD are the ratios
Nfa/Np and Nmd/Np respectively, the evaluation criteria. The
IEEE 802.22 standard does not provide a default value for the
decision threshold Pth, a range is stated however as −120 ≤
Pth ≤ −10 dBm [6]. The threshold is said to be subject to
the type of application. Therefore we select Pth = −70 dBm
which falls well within the range.

A. Detecting the PU active region

In Fig. 3 we show the contour plot of RSS at Pth. The
Actual RSS plot shows a heat map of RSS resulted by a PU.
The red area is where the PU is present, the RSS is high.
As the colour turns into blue the RSS is lower. The other
three plots in Fig. 3 show the contour at the selected Pth. We
notice that the contour resulted by our iteratively reweighted
`1 approach closely follows the expected. The IRL1 approach
and the traditional compressive sensing approaches result in
a large FA area (the white area surrounded by red contours),
in comparison to the FA area of our approach. However, all
three methods seem similar in terms of the MD area, except

Fig. 3. The expected REM and contour plots from each method. The green
area is where H1|H1 occurs (i.e. no spectrum hole, a PU is present). The
white area is where H0|H0 occurs. The red line shows the boundary of PU
active area obtained from each method.

Fig. 4. Empirical Probability Distribution Function of the false alarm area.
Mean of the distribution is marked with a red line

for the small island shapes in the green area of compressive
sensing and IRL1 plots in Fig. 3. The rest of Section V further
analyses the FA area and MD area.

B. False alarm area

The empirical Probability Distribution Function (PDF) of
the ratio Nfa/Np is shown in Fig. 4. Plots are normalised such
that the integral of the bar graph results in 1, a fundamental
requirement in a PDF. The ratio Nfa/Np corresponds to the



Fig. 5. Empirical Cumulative Distribution Function of the false alarm area.
The 95% probability level is marked with broken black lines

percentage of the area that encountered a FA. The Fig. 4
clearly shows that our algorithm results in a tall and narrow
distribution. The mean and standard deviation for each dis-
tribution are also shown in Fig. 4. On average our approach
results in only 7.27% of FA area, this is the percentage of
area with undiscovered spectrum opportunities. In comparison
to other approaches, the mean has been improved by at least
48% (≈ (13.98−7.27)/13.98). Further, the standard deviation
has been dropped down to 3.26% of space, which is at least
a 40% (≈ (5.42− 3.26)/5.42) improvement.

For further analysis we plot the empirical Cumulative Dis-
tribution Function (CDF) of the ratio Nfa/Np in Fig. 5. IRL1
marginally outperforms the traditional approach, however our
algorithm results in significantly less FA area in comparison
to both other approaches. Extended IRL1 ensures with 95%
probability that FA occurs in less than 14.88% of the space.
Both other methods can only guarantee that FA area is less
than 20.66%, which indicates a significant improvement.

Our algorithm is able to closely follow the contours of high
PU activity area, the green area shown in Fig. 3. Both other
methods are not as effective as our approach in following the
contours, which helps to improve the FA area in Fig. 4 and
Fig. 5.

C. Missed detection area

In Fig. 6 we show the empirical probability distribution
function for MD area (i.e. Nmd/Np). In our proposed method,
the standard deviation has been improved. The mean however
appears to have worsened marginally. By careful observation
we discover that mean values of all three distributions fall
well within 0.73% (= 0.0442 − 0.0369), and the standard
deviations fall within 0.31% (= 0.0225 − 0.0194). Therefore
we conclude that the difference is not significant enough for
statistical inference.

As shown in Fig. 3, the IRL1 and conventional compressive
sensing approaches tend to result in a larger area surrounded

Fig. 6. Empirical Probability Distribution Function of the missed detection
area. Mean of the distribution is marked with a red line. Note: scales are
different from Fig. 4 (especially the x scale)

Fig. 7. Impact of the decision threshold. Mean and standard deviation values
for a range of thresholds is shown for all three methods under evaluation

by red contours in comparison to the green area. In other
words, the FA area is prominent in those two methods. How-
ever, the MD area, which is already marginal, is essentially
similar in all three methods. This explains the result in Fig. 6,
all three methods lead to similar MD areas, although the FA
area was improved significantly.

D. Impact of the decision threshold

In previous experiments we selected the detection threshold
Pth = −70 dBm. To determine the impact of this threshold
on the results, we vary it from -100 dBm to -40 dBm. We



calculate the mean and standard deviation of the FA area
(Nfa/Np) and MD area (Nmd/Np) in each method for a set
of random locations of a PU. The results are shown in Fig. 7.
Extended IRL1 appear to result in lower FA mean and standard
deviation in the threshold range [−80,−60] dBm. Although
our approach outperforms MD of conventional compressive
sensing in the range [−80,−75] dBm, we prudently conclude
that the difference is not substantial for statistical inference.
Therefore we determine that our algorithm outperforms both
other methods discussed in this paper in terms of FA area,
over a pragmatic range of the detection threshold.

VI. CONCLUSION

In our previous work [1] we proposed how a compressive
sensing (`1 minimisation) problem can be formulated for
spectrum cartography. In this paper we extended our previous
work to a Rayleigh fading environment. We investigated the
scenario where realtime channel estimation is not feasible, as
such estimation imposes a large overhead. The main challenge
in applying compressive sensing techniques in this scenario
is the presence of an unknown stochastic element in the
dictionary, due to unavailability of realtime channel estimation.
We were able to overcome this by formulating a weighted `1
norm minimisation problem. We proposed an extension to the
well known IRL1 algorithm in [5] that solves weighted `1
norm problems. Numerical results indicates that our algorithm
is able to closely follow the border of a PU active area.
Although the improvement in Missed Detection area was
concluded not substantial enough for statistical inference, our
algorithm results in a significantly smaller False Alarm area
in comparison to the traditional compressive sensing technique
and IRL1. Improvement in False Alarm area is approximately
50% of mean, 40% of standard deviation and 30% of 0.95
probability cut off.
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