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Abstract—In this paper, we study band allocation of Ms

buffered secondary users (SUs) toMp orthogonal primary
licensed bands, where each primary band is assigned to one
primary user (PU). Each SU is assigned to one of the available
primary bands with a certain probability designed to satisfy some
specified quality of service (QoS) requirements for the SUs.In
the proposed system, only one SU is assigned to a particular
band. The optimization problem used to obtain the stability
region’s envelope (closure) is shown to be a linear program.
We compare the stability region of the proposed system with
that of a system where each SU chooses a band randomly
with some assignment probability. We also compare with a fixed
(deterministic) assignment system, where only one SU is assigned
to one of the primary bands all the time. We prove the advantage
of the proposed system over the other systems.

Index Terms—Cognitive radio, closure, stability region, linear
programming, Birkhoff algorithm, queue stability.

I. I NTRODUCTION

There is a recent dramatic increase in the demand for radio
spectrum, stimulated by the enormous influx of new wireless
devices and applications. The cognitive radio communications
paradigm allows a more effective and efficient use of the
electromagnetic spectrum. Cognitive or secondary users (SUs)
utilize the spectrum when it is unused by the primary or
licensed system. The question arises as to how the SUs access
a primary channel while satisfying some quality of service
(QoS) specifications. The design of an efficient medium access
control (MAC) protocol to assign the SUs to the available
primary bands is very crucial.

The problem of band allocation in a cognitive radio setting
has been studied in many works [1]–[8]. In order to avoid con-
vergence to the same channels, [1] proposes a simple random-
ized sensing policy where the channel selection probability by
each SU is determined by its belief, which is the conditional
probability, given all past decisions and observations, that the
channels are in a particular state of occupancy by the primary
users (PUs). In [2], the probability to sense each channel is
assigned to every SU, and the sensing policy is formulated
as an optimization problem over all combinations of the
assignment probabilities to maximize the total throughputof
the network. The work in [3] investigates the case where
a set of channels is distributed among multiple secondary
nodes that opportunistically access the available spectrum.
The solution of the band allocation problem is obtained via
maximizing the total sum capacity of the cognitive radio

network. By introducing an interference temperature constraint
for guaranteeing PUs’ QoS, the authors of [4] proposed an
optimal subcarrier and power allocation algorithm to maximize
the overall utility for SUs. In [6], a cognitive medium access
protocol is proposed for uncertain environments where the PU
traffic statistics are unknown a priori and have to be learned
and tracked. In the case of multiple SUs, the channel selection
is formulated as an optimization problem for cooperative SUs
and a non-cooperative game for selfish SUs, respectively.

The presence of data queues in the system has not been
considered in the aforementioned works. Resource allocation
involving buffer dynamics in a cognitive setting has been con-
sidered in a few works such as [7] and [8]. In [7], a dynamic
channel-selection for autonomous wireless users is proposed,
where each user has set of actions and strategies. Based on
the priority queueing analysis (i.e., priority classes among
SUs), each wireless user can evaluate its utility impact based
on the behaviors of the users deploying the same frequency
channel including the PUs. The work in [8] investigates the
resource allocation problem for the downlink of an OFDMA-
based cognitive radio network. Prior to the beginning of each
frame each user transmits to the base station its sensing
information vector as well as its latest channel gain vector
which was obtained based on pilot symbols. Based on the
received information from the users and the current backlog
for each user, the base station performs resource allocation
for the frame. The resource allocation map is then sent to the
users and is valid for the remainder of the frame, which is
composed of multiple time slots.

In this work, we consider buffered terminals, time slotted
channels and include the impact of channel outage on the
system’s performance. We also do not assume the availability
of channel side information (CSI) at the transmitting terminals.
Specifically, we consider a time-slotted primary channels over
which each PU transmits starting at the beginning of the time
slot whenever it has packets to communicate. Each PU is
assigned singly to one of the bands. In the proposed system,
denoted byS, each band has at most one SU. The SUs are
probabilistically assigned to theMp bands at the beginning
of each time slot. When an SU is assigned to a band, it has
to sense that band forτ seconds relative to the beginning of
the time slot to detect the activity of the PU which owns that
band. Varying the assignment probabilities, we can obtain the
maximum stable throughput region for the secondary network.

We make the following contributions in this paper.
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• We study resource allocation in a cognitive radio network
with buffered users and propose a channel allocation
method for the SUs which results in probabilistic assign-
ment with each primary channel allocated to one SU at
maximum.

• We provide the exact maximum stable throughout region
of the proposed system, which is obtained via solving a
linear program.

• We provide proofs for the advantage of the proposed
system, in terms of service rates, over systems with fixed
channel assignments and systems where each SU can
randomly choose (access) any band and, hence, collisions
among the SUs may occur over a primary channel.

The rest of the paper is organized as follows. In the
following section, we describe the system model considered
in this paper. The stability region of the proposed system is
obtained in Section III. System where each SU can randomly
select any band and the fixed assignment system are discussed
in Section IV. We present some numerical results for the
optimization problems presented in this paper in Section V
and conclude the paper in Section VI.

II. SYSTEM MODEL

We propose a cognitive radio system, denoted byS, in
which the SUs are assigned toMp licensed orthogonal fre-
quency bands over which the PUs operate in a time-slotted
fashion. The primary bandBj has bandwidthWj , where in
generalWj 6= Wi for all j 6= i and j, i ∈ {1, 2, . . . ,Mp}.
The secondary network consists of a finite numberMs of
terminals numbered1, 2, . . . ,Ms. Each terminal, whether
primary or secondary, has an infinite queue for storing fixed-
length packets. Thejth PU, pj , has a queue denoted byQpj

,
whereas thekth SU, sk, has a queue denoted byQsk . We
adopt a discrete-time late arrival model, which means that a
newly arrived packet during a particular time slot cannot be
transmitted during the slot itself even if the queue is empty.
Arrival processes at all queues are Bernoulli random variables
that are independent across terminals and independent from
slot to slot [9]. The mean arrival rate atQpj

is λpj
and at

Qsk is λsk . If a terminal transmits during a time slot, it sends
exactly one packet to its receiver.

A PU, pj , assigned to bandBj , transmits the packet at the
head of its queue starting at the beginning of the time slot. The
SUs access the channel as follows. Each SU senses the band
assigned to it for a duration ofτ seconds, which is assumed
to be a fraction of the slot duration,T . We assume thatτ
is chosen such that the probability of an erroneous secondary
decision regarding primary activity is negligible. If the band
is sensed to be free from primary activity, the SU, which is
assigned to this band, transmits till the far end of the time
slot. Note that the transmission time isT − τ not T , but it
still transmits one full packet. This can be implemented by
the terminal via adjusting its transmission rate, e.g., by using
a signal constellation with more symbols or by increasing
the channel coding rate or both. Note that by doing this,
the probability of link outage increases. This is the price of
transmission delay relative to the beginning of the time slot
and it is exactly quantified at the end of this section.

For systemS, each band has at most one SU, and each SU
is assigned only to one band. Letωjk denote the probability
that sk is assigned to thejth band. It is evident that we have
two constraints. The first constraint is

Ms
∑

k=1

ωjk ≤ 1, ∀j ∈ {1, . . . ,Mp} (1)

The inequality holds to equality in caseMs ≥ Mp. The
second constraint is

Mp
∑

j=1

ωjk ≤ 1, ∀k ∈ {1, . . . ,Ms} (2)

where the inequality holds to equality in caseMp ≥ Ms.
Note that both constraints become equalities if and only if
Mp = Ms.

If the number of SUs is greater than the available pri-
mary bands, and since our protocol does not allow multiple
assignment of users to the same band, we can assume the
presence ofMs −Mp virtual bands with zero bandwidth.
Thus, the service rate on any of these bands is exactly equal
to zero. We define probabilityq(m1,m2, . . . ,mMs

) as the
probability thats1 is assigned to the primary bandm1 and
users2 is assigned to the primary bandm2 and so on, where
mk ∈ {1, 2, . . . ,Mp} for all k = 1, 2, . . . ,Ms if Mp ≥ Ms,
and mk ∈ {0, 1, 2, . . . ,Mp} if Ms > Mp with mk = 0
meaning that the SU is assigned to a virtual band. It is evident
that the assignments are the permutation without repetition of
choosingMs elements out ofMp elements, ifMp ≥ Ms,
or choosingMp elements out ofMs elements, ifMs ≥ Mp.
The total number of the assignments is given by

P =

[

Mp!

(Mp −Ms)!

]1(Mp≥Ms)[ Ms!

(Ms −Mp)!

]1(Ms>Mp)

(3)
where1 (.) is the indicator function andr! denotes the factorial
of r. It is clear that the summation over these probabilities
satisfies the constraint

∑

(m1,m2,...,mMs )

q(m1,m2, . . . ,mMs
) = 1 (4)

The probability that bandBj is free/available is the probability
that the primary queue assigned to the band is empty, which
is given by1

πj = 1−
λpj

µpj

(5)

whereµpj
is the mean service rate ofpj and it is given by the

complement of the outage event of the channel between the
primary transmitterpj and its respective receiver under perfect
sensing assumption.

We summarize MAC operation of systemS as follows.
• At the beginning of the time slot, the PUs with nonempty

queue transmit the packet at the head of their queues, and
a band is assigned to one and only one SU.

• The SUs sense the channel forτ seconds from the
beginning of the time slot. A secondary transmitter with

1This formula is followed from solving the Markov chain of theprimary
queue under the late-arrival model described in Section II [9].



a nonempty queue transmits the packet at the head of its
queue if the band is sensed to be free.

• A feedback message from the respective receiver at
the end of each time slot indicates the corresponding
transmitter about the decodability status of the transmitted
packet.

• If the respective destination decodes the packet success-
fully, it sends back an acknowledgement (ACK), and the
packet is removed from the system.

• If the respective destination fails to decode the packet
due to channel outage, it sends back a negative-
acknowledgement (NACK), and the packet is retransmit-
ted at the following time slot.

We adopt a flat fading channel model and assume that the
channel gains remain constant over the duration of the time
slot. We do not assume the availability of the CSI at the
transmitting terminals. Assuming that the number of bits ina
packet isb, the transmission rate of the secondary transmitter
sk is

rsk =
b

T − τ
(6)

Outage occurs when the transmission rate exceeds the channel
capacity [9]

Pr

{

Oi,sk

}

= Pout,isk = Pr

{

rsk > Wi log2 (1 + γskαisk)

}

(7)
whereOi,sk is the event of channel outage when theith band
is assigned to usersk, Wi is the bandwidth of theith band,γsk
is the received signal-to-noise-ratio (SNR) at usersk receiver
when the channel gain is equal to unity, andαisk is the
channel gain when usersk is assigned theith band, which
is exponentially distributed in the case of Rayleigh fading.
The outage probability can be written as

Pout,isk = Pr

{

αisk <
2

rsk
Wi − 1

γsk

}

(8)

Assuming that the mean value ofαisk is σ2
sk

, Pout,isk =

1− exp

(

− 2

rsk
Wi −1

γsk
σ2
sk

)

for a Rayleigh fading channel. Let

P out,isk = 1−Pout,isk
2 be the probability of the complement

eventOi,sk . This probability of correct packet reception is
therefore given by

P out,isk = exp

(

−
2

b

TWi(1− τ
T ) − 1

γskσ
2
sk

)

(9)

Note that the virtual bands are of unity outage probability
because the available bandwidth is zero. The packet correct
reception probability of userpi transmitting to its respective
receiver is given by a similar formula as in Eqn. (9) with the
respective primary parameters. Mathematically,

P out,ipi
= exp

(

−
2

b
TWi − 1

γpi
σ2
pi

)

(10)

2Throughout the paperz = 1− z.

III. STABILITY ANALYSIS OF SYSTEM S

A fundamental performance measure of a communication
network is the stability of the queues. Stability can be defined
rigorously as follows. For an irreducible and aperiodic Markov
chain with countable number of states, the chain is stable if
and only if there is a positive probability for every queue of
being empty. Denote byQ(t) the length of queueQ at the
beginning of time slott. QueueQ is said to be stable if [9]

lim
x→∞

lim
t→∞

Pr{Q(t) < x} = 1 (11)

In a multiqueue system, the system is stable whenall queues
are stable. We can apply Loynes’ theorem to check the stability
of a queue [9]. This theorem states that if the arrival process
and the service process of a queue are strictly stationary, and
the average service rate is greater than the average arrivalrate
of the queue, then the queue is stable. If the average service
rate is less than the average arrival rate, then the queue is
unstable.

According to the adopted arrival model described in the
system model, the queueQν evolves as follows:

Qt+1
ν = (Qt

ν −Dt
ν)

+ +At
ν (12)

whereDt
ν is the number of departures of queueQν at time

slot t, At
ν is the number of arrivals toQν at time slott, and

(ζ)+ denotesmax{ζ, 0}.
Thejth primary queue is stable whenλpj

< µpj
. Letµsk be

the mean service rate of the queue of usersk, Qsk . Recall that
the probability of assigning usersk to bandmk in a certain
time slot isωmkk. The relationship amongωmkk and theq’s
can be stated as follows.

ωmkk =
∑

∼mk

q(m1,m2, . . . ,mMs
), ∀k ∈ {1, . . . ,Ms} (13)

where the sum is over all indices exceptmk. The mean service
rate of thejth PU is given by

µpj
= P out,jpj

, ∀ j = 1, 2, . . . ,Mp (14)

A packet at the head of usersk queue is served if the band
in whichsk is assigned to is available and the channel to its re-
spective receiver is not in outage. LetPmkk = πmk

P out,mksk ,
the mean service rate of usersk is given by:

µsk =
∑

(m1,m2,...,mMs)

q(m1,m2, . . . ,mMs
) Pmkk (15)

where the sum is over all possible assignments of
(m1,m2, . . . ,mMs

). It is worth noting that during the fraction
of operation time,q(m1,m2, . . . ,mMs

), the average service
rate of usersk is Pmkk. Using the relationship amongω’s and
q’s in (13), we can rewrite (15) as follows:

µsk =

Mp
∑

mk=1

ωmkk Pmkk (16)

Expression (16) is interpreted as follows. Thekth SU is served
if it is assigned to the primary bandmk, which occurs with
probability ωmkk, while this band is free/available and the
associated channel to thekth SU respective receiver is not in
outage. The sum in (16) is over theMp primary bands.



The stability region is characterized by the closure of rates
(λs1 , λs2 , . . . , λMs

). One method to characterize this closure
is to solve a constrained optimization problem to find the
maximum feasibleλsk corresponding to each feasibleλsℓ ,
ℓ 6= k, with all the system queues being stable [9]. Specifically,
for fixed λsℓ , for all ℓ 6= k, the maximum stable throughput
region is obtained via solving the following optimization
problem:

max .
q(m1,m2,...,mMs )≥0

λsk =
∑

(m1,m2,...,mMs)

[

q(m1,m2,. . . ,mMs
)

× Pmkk

]

s.t.
∑

(m1,m2,...,mMs )

q(m1,m2, . . . ,mMs
) = 1,

λsℓ ≤
∑

(m1,m2,...,mMs )

q(m1,m2, . . . ,mMs
) Pmℓℓ, ∀ℓ 6= k

(17)

The optimization problem is a linear program and can be
solved using any standard linear programming technique. In
order to decrease the total number of optimization variables,
we use an equivalent optimization problem, i.e., in terms
of ω’s. Defining matrixΩ such that itsjk element isωjk

and using (16), the optimization problem can be rewritten as
follows:

max .
Ω

λsk =

Mp
∑

mk=1

ωmkk Pmkk

s.t. 0 ≤ ωmhh≤1 ∀(mh, h),

Mp
∑

mh

ωmhh ≤ 1 ∀h,

Ms
∑

h=1

ωmhh ≤ 1 ∀mh, λsℓ ≤

Mp
∑

mℓ=1

ωmℓℓ Pmℓℓ∀ℓ 6= k

(18)

whereh, ℓ ∈ {1, 2, . . . ,Ms} andmh,mℓ ∈ {1, 2, . . . ,Mp}.
The optimization problem is still a linear program, which
can be solved efficiently. It has a total number of variables
Ms × Mp which is much less than the total number of
variables of the original problem, i.e.,Ms × Mp ≪ P.
For the operation of the system, we can obtainq’s from Ω’s
using Birkhoff algorithm (see, for example, [10] and references
therein), which gives theq’s or the fraction of time in which
a certain users configuration is used. The Birkhoff algorithm
is applied on square doubly stochastic matrices.3 Therefore,
if Ms > Mp, we can assume there are virtual bands of
zero bandwidth to whichMs − Mp users are assigned. If
Mp > Ms, we assume that there are virtual SUs with zero-
arrival rate and unity outage probability.

Now we move our attention to the case of two SUs and two
PUs (two bands) to obtain some insights and analytical results

3A doubly stochastic matrix (also called bistochastic), is amatrix A =
(ajk) of nonnegative real numbers and each of its rows and columns sums
to unity, i.e.,

∑

j

ajk =
∑

k

ajk = 1.

for the stability region. SinceMs = Mp = 2 and from (1)
and (13),ω12=ω21

4. The stability region is characterized by
the closure of rate pairs(λs1 , λs2 ). The optimization problem
is stated as:

max .
ǫ

ǫP12 +
(

1− ǫ
)

P22

s.t. λs1 ≤ǫP21+
(

1−ǫ
)

P11, 0 ≤ ǫ ≤ 1
(19)

whereǫ=ω12=ω21 is the probability that users2 is assigned
to band1 (or users1 is assigned to band2). The optimization
problem can be rearranged as follows

max .
ǫ

ǫ
(

P12 − P22

)

s.t. λs1 − P11≤ǫ
(

P21 − P11

)

, 0 ≤ ǫ ≤ 1
(20)

The optimalǫ depends on the values ofPjk for all j, k ∈
{1, 2}. Specifically,

• If P21 < P11 andλs1 > P11; or P21 > P11 andλs1 >

P21, the problem isinfeasible.
• If P12 > P22, P21 ≥ P11, andλs1 ≤ P21, the optimal

value isǫ∗ = 1.
• If P12 > P22, P21 < P11 andλs1 −P11 < 0, the optimal

value isǫ∗ = min
( λs1

−P11

P21−P11

, 1
)

.
• If P12 < P22 andP21 > P11, the optimal value isǫ∗ =

max
( λs1

−P11

P21−P11
, 0
)

.
• If P12 < P22, P21 < P11 and λs1 ≤ P11, the optimal

value isǫ∗ = 0.
• If P12 = P22, the optimization problem becomes a

feasibility problem.

The stability region is given by

R(S) =

{

(λs1 , λs2) : λs2 < ǫ∗P12 +

(

1− ǫ∗
)

P22

}

(21)

IV. COMPARISON BASELINE SYSTEMS

In this section, we consider two systems for comparison
with the proposed system. The first system, denoted byŜ,
needs less coordination and cooperation between SUs. Each
SU chooses a band randomly at the beginning of the time slot.
The probability that usersk chooses bandi is Γik. It is clear
that these probabilities satisfy the constraint

Mp
∑

i=1

Γik ≤ 1, ∀k ∈ {1, . . . ,Ms} (22)

It is possible in system̂S that a band is left unassigned or
that several SUs are assigned to the same band. In this system,
packet loss is due to either packets collision, when two or more
SUs with nonempty queues select the same primary band; or
channels outage. The total number of assignment of SUs to
bands is given by

C = MMs
p (23)

SystemŜ is less complex than systemS due to the lack of
need for strict coordination between the secondary terminals,
which is required inS where one and only one user is given

4Since the SUs are assigned different bands each slot, the probability of
assigning users1 to band2 is equal to the probability of assigning users2

to band1.



a specific band. Nevertheless, the complexity of obtaining the
optimal assignments probability is much higher than systemS
because the optimization problem of system̂S is nonconvex
and the total number of optimization parameters isMMs

p >

Mp ×Ms whenMp ≥ 2 andMMs
p ≫ Mp ×Ms for high

Mp or Ms.

The mean service rate of thejth PU is similar in systemsS
and Ŝ. We investigate now the service rate for the SUs. User
sk, when assigned to bandBi, succeeds in its transmission
with probability P out,isk if the PU operating onBi has no
packets to send and if any secondary terminal assigned to the
same band has an empty queue. The mean service rate of user
sk is thus given by

µsk =

Mp
∑

m1=1

Mp
∑

m2=1

...

Mp
∑

mMs=1

[

Γm11Γm22...ΓmMsMs
Pmkk

× Pr

{

Ms
⋂

v=1
v 6=k

mv=mk

Qsv = 0

}]

(24)

where the sums in (24) are over the possible assignments of
each SU.

Proposition 1: For any network withMs SUs andMp

orthogonal primary bands, the stability region of systemS,
R(S), contains that ofŜ, R(Ŝ). That is,R(Ŝ) ⊆ R(S).

Proof: We investigate the system withMp ≥ Ms first.
Assume the same pattern of queue occupancy in both systems.
The mean service rate of usersk with a nonempty queue is

µ
(Ŝ)
sk =

Mp
∑

mk=1

Pmkk Γmkk

∏

v∈N
v 6=k

(1− Γmkv) (25)

whereN is the set of SUs with nonempty queues. Note that
we use the superscript̂S to make it clear that expression (25)
is for systemŜ. On the other hand, for systemS,

µ(S)
sk

=
∑

(m1,m2,...,mMs )

q(m1,m2, . . . ,mMs
) Pmkk

=

Mp
∑

mk=1

ωmkk Pmkk

(26)

Subtracting (25) from (26), we get

µ(S)
sk

− µ
(Ŝ)
sk =

Mp
∑

mk=1

Pmkk

(

ωmkk − Γmkk

∏

v∈N
v 6=k

(1− Γmkv)

)

(27)

Note that
∑Mp

mk=1 Γmkk

∏

v∈N
v 6=k

(1−Γmkv) represents the prob-

ability of one user being assigned a certain band with all
other users with nonempty queues being assigned to another
band. This configuration is a subset of all possible users’
assignments which additionally include a situation with two
or more users with nonempty queues assigned to a band and
the rest of users assigned to another band. This means that

the sum given by
∑Mp

mk=1 Γmkk

∏

v∈N
v 6=k

(1−Γmkv) is less than

or equal to1. Since
∑Mp

mk=1 ωmkk = 1, we can always find
ωmkk ≥ Γmkk

∏

v∈N
v 6=k

(1− Γmkv).

Now if Mp ≤ Ms, this case can be seen as a system with
Mp = Ms with Ms −Mp zero-bandwidth bands. Thus, we
can infer thatR(S) containsR(Ŝ) in all cases. This completes
the proof.

The second system that we compare with is the deterministic
(fixed) assignment system in which the SUs are determinis-
tically assigned to the primary bands. That is, each SU is
assigned to one of the primary bands for all time. Hence, this
system requires thatMp≥Ms.

Proposition 2: For Ms SUs andMp ≥ Ms bands, the
stability regions of systemS and Ŝ contain that of a fixed
assignment.

Proof: The fixed assignment system is a special case
of systemS corresponding to the case where the probability
q(m1,m2,m3, . . . ,mMs

) of the assignment is unity and all
the other probabilities are zero. In addition, the fixed assign-
ment system is a special case of systemŜ with Γik set to unity
when bandi is allocated tosk and zero otherwise. Therefore,
both systemsS and Ŝ are superior to a fixed assignment.

V. NUMERICAL RESULTS

We provide here some numerical results for the optimization
problems presented in this paper. Letd(m1,m2) denote the
fixed allocation of users1 to bandm1 and users2 to band
m2 in a system withMs =Mp =2. Fig. 1 provides a com-
parison between the stability regions of systemsS, Ŝ, d(1, 2)
and d(2, 1). The parameters used to generate the figure are:
P out,2s1 =0.8, P out,2s2 =0.9, P out,1s1 =0.7, P out,1s2 =0.85,
and the bands availability areπ1 = 1−

λp1

P out,1p1

= 0.25 and

π2 = 1−
λp2

P out,2p2

= 0.875. From the figure, the advantage

of systemsS and Ŝ over the deterministic assignment is
noted. Also, the advantage of systemS over all the considered
systems is noted.

Fig. 2 shows the stability region of systemS in case of
Ms = Mp = 4. The figure reveals the impact of increasing
the mean arrival rate of userss3 ands4 on the stability region
of userss1 and s2. As shown in the figure, the increase in
the mean arrival rates of userss3 ands4 reduces the stability
region of userss1 ands2. The parameters used to generate the
figure are depicted in the figure’s caption and Table I. Fig. 3
presents the optimal assignment probabilities for systemS for
the given parameters in the figure’s caption. The parameters
used to generate the figure are:Ms =Mp = 3, λs3 = λs4 =
0.35 packets per time slot and the first three rows and columns
of userss1, s2 and s3 in Table I. It can be noted that as the
mean arrival rate of the second user,s2, increases,q∗(1, 3, 2)
andq∗(2, 3, 1) increase as well, which denote the probability
that users2 is allocated to the third band. This is because the
third band provides the highestPjk for users2, i.e.,P32 > Pj2

for j = 1, 2, and users2 needs to increase its service rate to
maintain its queue stability. Similarly, as the mean service rate
of users1 increases, the probabilitiesq∗(3, 2, 1) andq∗(3, 1, 2)
increase for the same reason mentioned before for users2.



TABLE I
THE COMPLEMENT OF CHANNELS OUTAGE FOR THE SECONDARY NODES ANDTHE BANDS AVAILABILITY OF THE PRIMARY BANDS USED TO GENERATE

FIGS. 2 AND 3.

Users1 Users2 Users3 Users4 Band Availability

P out,1s1 = 0.6 P out,1s2 = 0.7 P out,1s3 = 0.6 P out,1s4 = 0.7 π1 = 1−
λp1

P out,1p1

= 0.45

P out,2s1 = 0.8 P out,2s2 = 0.6 P out,2s3 = 0.8 P out,2s4 = 0.5 π2 = 1−
λp2

P out,2p2

= 0.2

P out,3s1 = 0.7 P out,3s2 = 0.8 P out,3s3 = 0.7 P out,3s4 = 0.6 π3 = 1−
λp3

P out,3p3

= 0.6

P out,4s1 = 0.85 P out,4s2 = 0.9 P out,4s3 = 0.5 P out,4s4 = 0.95 π4 = 1−
λp4

P out,4p4

= 0.4
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Fig. 1. Stability regions of the considered systems.
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Fig. 2. Stability region of systemS. The parameters used to generate the
figure are:Ms=Mp=4 and Table I.

VI. CONCLUSIONS

We have proposed a band allocation scheme for buffered
cognitive radio users in presence of orthogonal licensed pri-
mary bands each of which assigned to a PU. The cognitive
radio users are allocated to bands based on their queue stability
requirements. We have proved the advantage of the proposed
scheme over some well-known schemes. Future research for
systemS can be directed at one of the following points. 1)
Considering systems with multiple assignment within one slot.
More specifically, the assignment of users happens multiple
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Fig. 3. The optimal SUs’ allocation probabilities for system S in case of
Ms=Mp=3. The parameters used to generate the figure areλs3 =λs4 =
0.35 packets per time slot and the first three rows and the columns of users
s1, s2 ands3 in Table I.

time per slot to satisfy all users. The knowledge of the transmit
CSI can enhance the system performance and allow bands
exchange among users; 2) allowing priority among SUs such
that multiple users can be assigned to the same band with dif-
ferent priority in band accessing. The priority of transmission
can be established by making the lower priority user sense the
higher priority user activity for certain time duration within the
slot; or 3) another possible extension is to study the impactof
sensing errors on the system’s performance. For systemŜ, the
extension can be directed in terms of 1) adding multipacket
reception to the receiving node; or 2) allowing band selection
at different time instants per slot followed by sensing duration
to avoid perturbing the current transmission.
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