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Abstract—We investigate the cooperative transmission design
for the cloud radio access network (C-RAN) considering fron-
thaul capacity and cloud processing constraints. Specifically,
we consider the joint transmission scheme where the baseband
signals and precoding vectors are processed and calculated by
the cloud, which are delivered over the fronthaul links to the
remote radio heads (RRHs) to form the RF signals for being
transmitted to the users. We formulate the joint optimization
problem for precoding design and allocation of RRHs, fronthaul
capacity, and BBU processing resources to minimize the total
transmission power subject to QoS constraints of the users. We
present both optimal exhaustive search algorithm and two low-
complexity algorithms to solve the resource allocation problem
where the first one can achieve the Pareto optimality and the
second one can determine an efficient solution with pretty low
complexity. Numerical results confirm the excellent performance
of the proposed low-complexity algorithms.

Index Terms—Cloud radio access network (C-RAN), beam-
forming, power minimization, resource allocation.

I. INTRODUCTION

The next generation wireless cellular network is expected to
provide significant enhancement in capacity to support emerg-
ing broadband applications. Coordinated multipoint (CoMP)
transmission and reception techniques have been proposed
as one of the most important solutions along this line for
(LTE)-Advanced systems [1]. In a CoMP scheme, several
base stations (BSs) cooperate their transmissions to mitigate
the intra- and inter-cell interference. However, deployment
of CoMP in cellular networks typically requires costly high-
speed backhauls connecting different BSs for various CSI
and information exchanges [2, 3]. C-RAN has been recently
proposed as an alternative way to achieve the advantages of
CoMP where we exploit the computation power of the cloud to
compute and realize most base-band processing functionalities
[4, 5]. C-RAN can also enable us to deploy small-cells in
existing wireless systems to improve the network coverage
and capacity [6, 7].

In the C-RAN, main signal processing functions are per-
formed by the digital baseband processing units (BBUs) in
the cloud and the transmissions of radio signals to users
are realized by remote radio heads (RRHs), which up-covert
the received baseband signals from the cloud and transmit
them in the RF frequency bands. There are various challenges

in deploying the C-RAN including optimally utilizing the
processing resource, efficiently using the fronthaul links con-
necting BBUs with distributed RRHs, and centralized control
of the propagation signal. Some of these problems have been
studied in recent works. In [8, 9], the compression technique
has been considered to reduce the amount of data transmitted
over the backhaul links. [10] demonstrates the benefits of
C-RAN in the small-cell network. However, optimization of
the joint transmission and allocation of the resources of C-
RAN (processing power and fronthaul capacity) has not been
considered in the literature.

In this paper, we consider the design of joint transmission
for transmission power minimization in C-RAN considering
the constraints in the processing power and the fronthaul
capacity as well as quality of services (QoS) for users. In
particular, we investigate how to optimize the set of RRHs
serving each user as well as their associated precoding vectors
subject to all system and QoS constraints. Toward this end, we
present an optimal resource allocation problem, which turns
out to be an NP-hard non-linear mixed integer program. We
then describe an optimal exhaustive search method to deter-
mine the optimal solution. In addition, we propose two low-
complexity algorithms to obtain efficient solutions. Finally,
numerical results are presented to illustrate the performance
of the proposed algorithms.

The remaining of this paper is organized as follows. We
describe the system model and problem formulation in Section
I. In Section III, we present the feasibility and an optimal
exhaustive search algorithm. Low-complexity algorithms are
described in section IV. Numerical results are presented in
Section V followed by conclusion in Section VI. For notation,
we use X7, XH, Tr(X) and rank(X) to denote the normal
transpose, Hermitian transpose, trace and rank of matrix X,
respectively. 1,4, 0;xy and Iy, denote the matrix of ones,
matrix of zeros, and an identify matrix whose dimension are
T X y, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Overview of C-RAN

The general architecture of C-RAN is illustrated in Fig. 1,
which consist of three main components, namely (i) central-
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Fig. 1. The Cloud-RAN architecture.

ized processors or BBUs pool, (ii) the optical transport net-
work (i.e., fronthaul links), and (iii) remote radio head (RRH)
access units with antennas located at the remote sites. The
processing center comprising a large number of BBUs is the
heart of this architecture where BBUs operate as virtual base
stations to process baseband signals for users and optimize the
network resource allocation tasks for the system.

The transport network connects the central processing pool
and the distributed RRH units. Optical fiber using wavelength
division multiple access (WDM) and/or time division mul-
tiplexing (TDM) are typically employed to carry baseband
signals from the BBUs to the RRHs. The RRHs transmit the
RF signals formed by using baseband signals received from
BBUs to user equipments (UEs) in the downlink or forward
the baseband signals from UEs to the BBU pool for further
processing in the uplink. By conducting most signal processing
functions in the cloud (i.e., by BBU pool), RRHs can be
relatively simple, which can be distributed in the large network
in a cost-efficient manner.

B. System Model and Transmission Strategy

We consider the C-RAN where there are B BBUs in
the cloud connecting with K RRHs to support downlink
communications for M UEs. Each BBU processes baseband
signals for a separate set of UEs and RRHs up-convert these
baseband signals to the RF band to transmit to the UEs. Denote
U® as the set of UEs whose baseband signals are processed
by BBU b (b = 1,...,B). Let A € REXM be the matrix
representing the matching among BBUs and UEs where

1 if UE u is supported by BBU b

A(bu) =ab = { }
0 otherwise.

ey

We also define the sets U® = {u|1 <u< M, az = 1}. Due

to the limited processing capacity of BBUs [4], we assume

that each BBU can only support at most o’ UEs. In addition,

each UE is assumed to be served by only one BBU in the

BBU pool. Then, we have the following constraints.

M B
»ab <o b=1,.,B, and Y b =1,u=1,.,M.
u=1 b=1

2

We assume that each UE receives signals from a specific
group of RRHs, which process the data from the corresponding
supporting BBU. This joint transmission scheme aims to
exploit the degree of freedoms available at different RRHs to

mitigate the interference [1], [2]. This helps improve the per-
formance of the whole network, i.e., increasing the throughput
and/or reducing the transmission power. Let T € RE*M be
the matrix that represents the matching of serving RRHs for
UEs where

T(k, u) ik { 1 if RRH k forwards signal to UE u
,U) = w =

0 otherwise.

(3)
It can be observed that the fronthaul link between RRH &k and
BBU b will carry the baseband signal for UE w if and only if
a’tk = 1. Denote R, as the set of RRHs who serve UE u.
This set can be determined as

R. = {klk e R, th =1}, )

where R represents the set of all RRHs. To model the limited
capacity of the fronthaul links in C-RAN, we assume that the
fronthaul link between BBU b and RRH £ can carry at most
cz baseband signals. Then, we have another set of constraints
capturing this limited fronthaul capacity as

M
Zagt’;gcg, k=1,.,K;b=1,..,B. 5)
u=1

The transmission strategy in C-RAN can be summarized as
follows. After allocating the BBUs and RRHs to serve UEs,
the BBU b collects the data of UE u in set {* from the
core network, process baseband signals for these UEs, and
determine the precoding vectors for the corresponding RRHs.
Then, it sends the baseband signals and precoding vectors of
UE u to the serving RRHs in the set R, over the fronthaul
link. Finally, each RRH will up-convert the received signals to
the RF band and transmit to UEs using the received precoding
vectors.

Remark 1. We have not considered thefeedback of channel
state information (CSI) from RRH to BBU pool for processing
the baseband signals. In practice, a small fraction of the
fronthaul capacity can be allocated for this CSI feedback,
whose optimization is outside of scope of the current work.

C. Problem Formulation

In this paper, we consider the MISO transmission from
RRHs to UEs where RRH k is equipped with N antennas
and each UE has a single antenna. We assume that UE v will
receive a symbol sequence z,, € C of unit power, which is
transmitted from RRHs in set R, upon receiving the processed
baseband signals from BBU b,,. For BBU and RRH allocation
solutions represented by A and T, the corresponding baseband
signal y,, received at UE u can be expressed as

M
yu=Y_ WFvEz,+ > > hifvizi+z, (6)

kER i=1,7ZuleR;

desired signal interference

where h® € CNex1 denote the channel coefficients between
RRH k and UE u, vF € CVi*! is the precoding vector at RRH
k corresponding to the signal transmitted to UE u, and z,
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describes the noise at UE w. Then, the signal-to-interference-
plus-noise-ratio (SINR) achieved by UE u for a given matrix
T can be written as

2

> hifvi
kERY
L,(T, V) = "y 3 . (7
> | T w402
i=1,2u |lER;

where V = [vi, ..., vi,,vi, .., v3, -, v, vE] and o2
is the noise power. We assume that each UE u in the network
aims to maintain its required quality-of-service (QoS) which
is represented by the corresponding target SINR #,,. This QoS
requirement can be described by the following constraints

LW(T,V)>%, u=1,.,M. 8)

We are interested in determining the matching of BBUs, RRHs
with UEs (i.e., represented by matrices A and T, respectively)
and the precoding vectors for all RRHs to minimize the total
transmission power while supporting the QoS for all UEs.
This design can be formulated into the following optimization
problem

K M
: ko kH Kk
i DY ®
k=1u=1
s.t. constraints (2), (5), (8).

The optimization problem (9) is indeed a non-linear mixed
integer quadratic program, which is an NP-hard problem.
In the following, we propose an optimal exhaustive search
method as well as low-complexity algorithms to solve this
problem.

ITI. OPTIMAL SOLUTION
A. Precoding Design and BBU Allocation Given T

1) Precoding Design: To gain insight into the optimal
structure of the optimization problem (9), we investigate the
precoding design for the given RRH allocation (i.e., matrix
T). We first discuss how to capture the constraint imposed
by the chosen T in the precoding design problem. To rep-
resent the g(recoding solution for any T, let v, € CN*!
(N = r—1 Vi) denote the precoding over all RRHs,
which is defined as v, = [viHv2H  vEHH where viH =
O, x1) if t® = 0. This basically means that the precoding
vector is equal to zero for any RRH that does not serve the
underlying UE.

Let us define e, =
diag ([ti X 1(1><N1) tﬁ( X 1(1><NK)
impose the constraints eZe,, = 0 so that only serving RRHs
set non-zero precoding vectors for the underlying UE. Now,
we define W, = v,v where W, € CN*VN, Using the
fact that x'x, = Tr(x,x) and the definition of W, the
efle, = 0 is then equivalent to

Tr [(I(NXN) — Du) Wu} =0.

Vo — Dyv, and D, =
T
] ) then we need to

(10)

Moreover, W, is positive semi-definite (W, = 0) and has
rank one because it is generated from vector v, (recall that

W. = vuvf ). Instead of finding vector v,, we can first
determine matrix 'W,, which is positive semi-definite, has
rank one, and satisfies (10). Similarly, we define the channel
vector h, = [hlFh2H  hEH)H and H,, = h,hl where we
have h,, € C¥*! and H, € CV*¥_ Then, it can be verified
that the SINR constraint for UE u in (8) can be rewritten in
the matrix form as
M
Tr(HW.) — 5 Y Tr(H,W,) > Ju0”.
i=1,#u

Y

Hence, for a given matrix T, the precoding design can be
formulated as the following optimization problem
min

M
i, > TH(W)

u=1 =1
s.t. constraints (10), (11)
W, = 0,rank(W,) =1, Vu.

12)

This transformation reveals structure of the precoding design
problem. Specifically, if we remove the rank-one constraints
rank(W,) = 1 from (12) then the resulting problem is convex.
In fact, this relaxed problem is the semi-definite program
(SDP), which is convex and therefore can be solved easily
by using standard tools such as CVX solver [11]. If the
obtained solution W (T') from this relaxed problem has rank
larger than one, we can use the eigenvector approximation
technique [12] to find v (T). In particular, v} (T) will be
approximated as the eigenvector corresponding to the largest
modulus eigenvalue.

2) BBU Allocation: For a given matrix T and precoding
design, we still need to determine the BBU allocation (i.e., to
find matrix A) which satisfies the constraints (2), and (5).
Toward this end, let us define the following vectors t; =
[thth . th )T, o = [0t 0®...0P]T and ¢ = [chch...ch]T
a=a}..al;a?...d3;...aP .. a7, Then, it can be verified
that matrix A can be determined by solving the following
binary integer program

bl

min - 1axpa)a (13)
st. F-a<c,
E-a=1px1,

where F € RBHBE)XBM B ¢ RMXBM 4344 ¢ are defined

T
asc = [ofc] -+ ck]", E = Tarear T -+ T
and
T
Loarsn) - 0t .. 0 t .. O
F: . . . . . . . . .
0 o lay 0 oty 0 . tx

This problem can be solved by using the binary integer
programming algorithm [13] or solver such as function “bint-
prog” in MATLAB.

B. Optimal Exhaustive Search Method

Note that it is not always possible to find the vector V
and BBU allocation solution A from the above optimization
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problems (12) and (13) for a given T. This motivates us to
formalize the feasibility of T in the following definition.

Definition 1. A matrix T is called feasible if and only if it is
possible to determine V and A from the optimization problems
(12) and (13) for the given T, respectively.

We are now ready to describe the optimal exhaustive search
method. We first generate all possible 25 RRH allocation
solutions T. Then, for each specific RRH allocation solution,
we obtain the precoding vectors and BBU allocation solutions
by solving (12) and (13) if it is feasible to do so. Then, the
optimal solution of our problem (9) is the one that achieves
the minimum power in (9) among feasible RRH allocation
solutions T in the set of all possible 25M matrices T. It
is evident that this exhaustive search method has exponential
complexity, which would be prohibitive if the number of RRHs
and UEs are very large.

IV. LOW-COMPLEXITY ALGORITHMS

We will present two low-complexity algorithms in this
section.

A. Motivation

Denote Z(T) = {(k,u)|tf = 0} as the set of all zero
elements of T. In the following, we introduce some new
notations and concepts that help quantify the quality of a
feasible solution.

Definition 2. RRH allocation matrix T is called bigger than
T/, T T if and only if

Z(T) c Z(T"). (14)

Definition 3. RRH allocation matrix TT is called Pareto
optimal if it is feasible and there exist no feasible T such
that T > TT.

Let 7(T) be the objective value of (12) for the RRH
allocation matrix T. In the following, we say T is feasible
(infeasible) for V or for A if there exist (not exist) a feasible
solution for problems (12) and (13), respectively. We have
following results.

Lemma 1. [f T is bigger than T’ then we have
1) If T is infeasible for V then T’ is infeasible for V.
2) If T/ is infeasible for A then T is infeasible for A.
3) If T and T are both feasible for V then n(T) < n(T’).

Proof. The lemma can be proved by studying the feasible sets
of problems (12) and (13) for each case. Let (T) and ®(T)
be the feasible sets of problems (12) and (13) for the given
matrix T, respectively. For Z(T) C Z(T’), it can be verified
that Q(T’) C Q(T) and ®(T) C ®(T’). Therefore, the first
two statements of the lemma are proved. The proof for the
last statement can be completed similarly. O

This lemma implies that the bigger T results in the better
performance. This motivates us to develop an algorithm that
finds an efficient T so that each UE is served by as many
RRHs as possible.

Algorithm 1 PARETO-OPTIMUM ALGORITHM
1: Initialization:
e Set S={(u,k)|[1<u<M1<k<K}
e Set tk =1 for all (u,k) € S.
¢ Solve problems (12) and (13) with T.

a. If T is feasible, terminate (a feasible solution
is obtained).
b. Else if T is infeasible for V, terminate (there

not exist a feasible solution).
c. Else if T is feasible for V but A, calculate 65
for all (u,k) € S.

2. If S = @, terminate (no feasible solution is obtained).
Else, set t¥, = 0 for (u/,k') = argmin(mk)eséﬁ and
remove this link from S, i.e., update S = S/(u/, k').

3: Solve problems (12) and (13) with current T.

a. If T is feasible, update S, = Z(T), go to Step
4.

b. Else if T is infeasible for V, set tfjl/ =1 and go
to Step 2.

c. Else if T is feasible for V but A, update 55 for
all (u,k) € S and go to Step 2.

4: If S, = @, terminate. Else, choose each (u”, k") € S,

set t*, =1 and S, = S,/ (u", k").
a. If T is feasible for A, update T.
b. Else if T is infeasible for A, set tf;,,,, =0 and go
to Step 4.

B. Pareto-optimum Algorithm

The key idea behind this algorithm is that we start with
largest possible T where each UE is served by all RRHs. If
this RRH allocation is infeasible for V and/or A, we greedily
drop one weak link due to the current T in each step to obtain
a feasible solution. For a given matrix T, which is feasible for
V, let v¥*(T) be the optimal precoding vector at RRH k by
solving problem (12). Then, we propose the following metric
that quantifies that the relative contribution of a link from RRH
k for UE u to SINR achieved by UE u as follows:

kH  kx*
k __ ’hu Vu
u

‘2
=—. 15

‘Zzgn hif vl ’ )

The low-complexity Pareto-optimum algorithm is presented
in Algorithm 1. Initially, we set T = 1 g ar)- If it is feasible
to find both V and A, we obtain the optimal solution. If T is
infeasible for finding V, there is no feasible solution for our
problem (9). This can be concluded by the result in the first
statement of Lemma 1. Otherwise, if T is feasible for finding
V but A, we seek to drop some weak links from RRHs to
UEs to obtain a feasible solution. Dropping a particular link
is achieved by turning the corresponding “1” element of T to
zero (in Step 2 and Step 3 of Algorithm 1).

In this algorithm, S presents the set of links (i.e., elements
of T that have not been considered for being dropped yet.
In each iteration, we solve problems (12) and (13) again after
updating T. The algorithm terminates in Step 1.a and 1.b since
we can conclude that the (9) is feasible or infeasible with the
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initial RRH allocation T, respectively. If T is feasible for V
but A in Step 1.c, we proceed to drop one weakest link with
minimum metric given in (15) in Step 2. If the resulting T
is feasible, we update S, = Z(T), which represent the set
of off links; then we go to Step 4. In Step 4, we attempt to
turn on one link (u”, k") € S, that has been turned off in the
previous step. This is required to achieve the Pareto-optimum
solution as presented in the following Lemma.

In Step 3.b, if T is infeasible for V, we turn on back the link
since it does not help resolve the infeasibility. Otherwise, if T
is feasible for V but A, we will go back Step 2 and attempt
to turn off more link. The algorithm terminates finally as a
feasible solution is obtained or there is no link remaining in
the set S. After step 2 or step 4 of each iteration, the number of
elements in sets S and S, decreases by one, respectively. It can
be verified that the algorithm will terminate in at most 2K M
iterations. Therefore, our proposed algorithm has much lower
complexity in comparison with the optimal exhaustive search
method. We show that the obtained solution by Algorithm 1
is Pareto optimum in the following lemma.

Lemma 2. The feasible solution T returned by Algorithm 1
(if exist) is Pareto optimum.

Proof. A feasible solution T* is obtained if T* = 1(xxar)
or T* in step 3a is feasible. If T* = 1 (g, ), it is obviously
a Pareto optimum solution. If T* # 1 (g ar), let T© be the
feasible T obtained in step 3a before we proceed to Step 4.
Let T be the feasible T obtained after performing the [*"
sub-iteration in Step 4 and (k,u)") be element processed in
that sub-iteration where [ = 1,..., L and L is the number of
elements in set Z(T(?)). We have T(*) = T* and Z(T(") C
Z(TO) if n > 1.

If T* is not a Pareto optimum solution, there will be a
feasible TT which is bigger than T* (T >T*). We will prove
Lemma 2 by showing that this IF results in a contradiction.
Since Z(TT) C Z(T*), an element (k',u’) which satisfies
(K',u') € Z(T*) and (K',u') ¢ Z(TT) can be determined.
Then, (k’,/) must be a member in the sets Z(T®) (I =
0, ..., L) and it must have been processed in one sub-iteration
of Step 4. Assume (k’,u) = (k,u)). According to Step 4 of
Algorithm 2, we have T’ where Z(T') = Z(T")) /(K u') is
not feasible. However, T’ is feasible for A because Z(TT) C
Z(TW) and (K',u') ¢ Z(T1) result in Z(TT) C Z(T’) (the
statement 2 of Lemma 1). Moreover, T’ is also feasible for V
because Z(T') C Z(T@)); hence, T’ is feasible. This results
in a contradiction; therefore, T* must be a Pareto optimum
solution. O

C. Fast Algorithm

We propose an even faster algorithm in this section where
we determine a potential BBUs allocation first then start drop-
ping links connecting RRHs with UEs to meet the capacity
constraints of fronthaul links between BBUs and RRHs. Let
uk describe the weight of the link from RRH k to UE wu
representing the quality of this connection. For example, this
weight can be the proposed metric in (15) or the average
channel gain (ij) of this link. In the numerical studies, we

Algorithm 2 FAST ALGORITHM

1: Solve (12) where T = 1(x ) and calculate all 65.

2: Calculate {w?, } and find A by using Hungarian algorithm.
3. If 23{:1 al < cb, set th =1, Vu e U°.

1Y M e > c?, drop (23{:1 al — C’,i’) weakest links
from RRH k to UEs in U° using metric z~.

u=1""u

employ the metric in (15) as the assignment weight. Then,
we express the weight corresponding the case where BBU b
processes the baseband signal for UE u as

b __ E b § bk
Wy, = wk,u - Ci ooy

kER kER

(16)

Then, the matching between BBUs and UEs can be determined
to maximize the total weights, i.e., we need to solve the
following optimization problem
B M
b, b
) ST
b=1u=1
s.t. constraint (2).

a7

This optimization problem can be transformed into the
standard matching problem as follows. Suppose we create
o® virtual BBUs ({b1,...,b,s}) for each BBU b where the
weight wP» (n = 1, ..., o®) representing the matching between
BBU b,, and UE u is equal to w’. We can view the problem
(17) as the one-to-one matching problem between Zle o®
virtual BBUs and M UEs. The solution of this transformed
matching problem can be obtained by using the well-known
Hungarian algorithm (Algorithm 14.2.3 given in [14]). After
running the Hungarian algorithm, if there is a virtual BBU
bn, n € {1,...,0°} which is matched with UE u then UE
u will be served by BBU b, i.e., az = 1; otherwise, we set
a’ = 0. Based on the achieved A, we may need to turn off
some weak links to meet the fronthaul capacity constraints,
which is described in Algorithm 2.

V. NUMERICAL RESULTS

The small network is employed to evaluate the efficacy
of the low-complexity algorithms where UEs are randomly
located inside a square and the four RRHs are in the centers
of these squares whose edge length is 50 m. The channel
gains are generated by considering both Rayleigh fading and
path loss which is modeled as L* = 36.8log;,(d¥) + 43.8 +
20Iog10(%), where d” is the distance from UE k to RRH k;
fo = 2.5 GHz. The noise power is set equal o2 = 10~ .
The number of BBUs is 3 and number of antennas at each
RRH is 3. The values of o; and cZ are randomly chosen in
sets {1,...,Omax} and {1, ..., Ciax}, respectively.

In Fig. 2, we show the total transmission power of all RRHs
versus the target SINR of UEs #,, for all three algorithms. The
number of UEs in this simulation is 6 and the largest number
of links from RRH to BBU can be supported is 5. As 7,
increases, the required power and interference also increase,
which results in the fast increase in the total transmission
power. In addition, this figure confirms that our proposed
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Fig. 2. Total transmission power versus expected SNRs of UEs for Omax = 5,
Cmax =5, M = 6.
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Fig. 4. Total transmission power versus the number of UEs in the large
network where K = 16, Omax = 10, Crax = 5.

Algorithm 1 results in just slightly higher power than that due
to the optimal solution. Moreover, for low values of target
SINR, the total power transmission of all schemes are almost
the same.

In Fig. 3, we present the total transmission power of
all RRHs versus the largest capacity of link from RRH to
BBU C'ax for different schemes. This figure confirms that

Algorithm 1 and Algorithm 2 perform well when the capacity
of the fronthaul link is high. In addition, Algorithm 1 out-
performs to Algorithm 2 and achieves the total transmission
power close to that due to the optimum.

Finally, Fig. 4 illustrates the total transmission power of
our proposed algorithms versus the number of UEs in a larger
network where 16 RRHs are deployed as a square grid; the
distance between two nearest RRHs is 50 m; and the number
of BBUs is 8. In order to obtain each result, additional 5 UEs
are randomly located inside a 150 m x 150 m square of the
RRH grid while the locations of the previously located ones
are fixed. In this scenario, the exhaustive-search results cannot
be obtained due to very large numbers of computations. As can
be observed, the required transmission powers due to both low-
complexity algorithms become higher with a larger number of
UEs as expected. However, Algorithm 1 results in much lower
transmission power compared to that due to Algorithm 2 as
the number of UEs is large.

VI. CONCLUSION

We have presented both optimal and low-complexity al-
gorithms to minimize the total transmission power in C-
RAN subject to constraints on processing power at BBUs,
the fronthaul capacity, and required QoS of users. Numerical
results have illustrated the efficacy of our proposed low-
complexity algorithms and the impacts of different parameters
on the network performance.
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