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Abstract—Rising numbers of mobile devices and wireless
access technologies motivate network operators to leverage
spectrum across multiple radio access networks, in order to
significantly enhance quality of service as well as network
capacity. However, there is a substantial need to develop in-
novative network selection mechanisms that consider energy
efficiency while meeting application quality requirements. In
this context, this paper proposes an efficient network selec-
tion mechanism over heterogeneous wireless networks. We
consider different performance aspects, as well as network
characteristics and application requirements, so as to obtain
an efficient solution that grasps the conflicting nature of
the various objectives and addresses this ultimate tradeoff.
The proposed methodology advocates a user-centric approach
toward the utilization of heterogeneous wireless networks to
enhance system performance and support reliable connectiv-
ity.

Index Terms—Heterogeneous wireless environment, net-
work selection, multi-RAT architectures, vertical handover.

I. INTRODUCTION

Utilization of multi-Radio Access Technology (RAT)
in conjunction with device/infrastructure intelligence is
expected to be a fundamental characteristic of future 5G
technologies [1]. In these deployments, each user device
may employ multi-RAT to communicate with the network
infrastructure. Thus, it is crucial to develop techniques
that can efficiently utilize the available radio resources
across different spectral bands using various RATs [2]. In
this context, vertical handover becomes a key feature of
future mobile networks, and due to mobility and mobile
node’s requirements, the connections with other hosts may
be switched from one access point to another within the
same Radio Access Network (RAN) using multi-RAT,
or between different RANs. This switching and selection
between different RANs needs to be done taking into con-
sideration different network characteristics and application
requirements [3].

In future wireless networks, both short- and long-range
technologies can cooperate and exploit the interactions
between various devices and networks, as well as between
the devices themselves, to enhance system performance
and user experience [4]. For instance, several studies
have recently emerged to develop specifications enabling
integration of WLAN with cellular networks. The WLAN
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community has also coped with this trend with new
initiatives, such as Hot Spot 2.0 and novel high-efficiency
WLAN standardization, to investigate RAN-based integra-
tion solutions [1]. These studies target increasing coop-
eration between 3GPP Long Term Evolution (LTE) and
WiFi radio technologies. In this context, the authors in
[1] consider convergence of WLAN-based small cells with
operator-managed cellular deployment, where they explain
different feasible architectural options for integration and
their associated performance benefits. The work in [5],
instead, solves the network selection problem for real-time
businesses using auction mechanism and leveraging the
concept of upset price in order to maximize the online
profits.

Several studies have also investigated a cost-function-
based network selection approach, where the decision is
based on monetary cost, power consumption, network con-
ditions, and user preferences [6][7][8]. Other studies have
considered the resource allocation problem for parallel
transmission utilizing multiple RATs [9][10]. However, the
formulated problem in [9] is NP-hard, and a suboptimal
allocation strategy is developed by exploiting the intrinsic
quasiconcavity of the problem. In [10], the authors present
a framework of Multi-RAT system, where a small cell
serves a number of mobile users via IEEE 802.11 WLAN
and 3GPP LTE access technologies. A scheduler at the
small cell is proposed to minimize the total transmission
power subject to quality of service constraints on the users
transmission rates. In [11], an urban deployment scenario
is investigated, where WiFi small cells are overlaid on
top of the 3GPP LTE network. The authors propose user-
centric network selection algorithms to minimize feedback
overhead taking into account user preferences.

In this paper, we address the important issue of selecting
the best network connection among multiple RANs. In
the proposed approach, a user takes the responsibility of
network selection decision (user-centric approach) [12].
However, we integrate networks particularities and ap-
plication characteristics to find the optimal RAN(s) that
allows all users to meet the system constraints. Specifi-
cally, our model supports multi-RAN selection with the
aid of a Multi-objective Optimization Problem (MOP)
that accounts for (i) QoS (in particular, data latency), (ii)
monetary cost, and (ii) energy consumption. Our main
contributions of this work can be summarized as follows:

1) We formulate a network selection multi-objective



optimization problem that aims at selecting the
RAN(s) that optimize the overall user objective. This
optimization is formulated as a linear programming
problem, considering that the available RANs for
each user are changing dynamically over time.

2) We propose an iterative, user-centric scheme for ac-
cess network selection that is distributed and quickly
converges to the optimal solution.

3) The convergence behavior of the proposed algorithm
is analyzed and proved analytically.

4) The proposed scheme is evaluated through simula-
tion and compared to an existing network selection
algorithm. Our results show the gain provided by our
solution, and its ability to adapt to varying network
conditions.

The rest of the paper is organized as follows. Section
II introduces the system model under study. Section III
presents the proposed network selection optimization prob-
lem. While Section IV describes our network selection
algorithm. Section V shows simulation results. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

We consider a wireless network, where there are mul-
tiple RANs available to which users can connect and
transmit their data. Without loss of generality, we focus
on a heterogeneous m-health system, as shown in Figure
1; however, the proposed scheme can be applied to a wide
range of applications with different characteristics.

In the scenario under study, a PDA (Personal/Patient
Data Aggregator) transfers its EEG data to a M-Health
Cloud (MHC) via wireless transmission [13]. The multiple
RANs that are available share the same system control
plane. Such heterogeneous wireless environment allows the
PDA to be always best connected anywhere and anytime
[12]. It is assumed that the EEG data is collected from
the patient using EEG Headset [14], then it is sent to the
PDA (i.e., smartphone) that compresses the gathered data
using adaptive compression techniques [13], and forwards
it to the MHC. Each RAN has different characteristics,
such as energy consumption, monetary cost (i.e., requested
payment for using network services), and transmission
delay. Also, the RANs characteristics may continuously
change over time, due to mobility, varying propagation
conditions or data traffic dynamics.

PDA

EEG

ECG

Accelerometer

RAN 3RAN 2

RAN 1

M-Health Cloud

Fig. 1. System scenario under study.

III. NETWORK SELECTION OPTIMIZATION

We first introduce the application and network require-
ments, which will be addressed in our problem. We then
formulate a multi-objective optimization problem that each
PDA should solve, subject to the system constraints.

A. Performance metrics

The objective of the proposed optimization problem is
threefold: (i) minimizing transmission energy consump-
tion, (ii) minimizing monetary cost, and (iii) meeting
the medical data QoS requirements. Following [15], the
estimated energy consumption for PDA i to send data of
size li bits over RAN j, with bandwidth wj and data rate
rij , is

eEij = �j

✓
li ·N0 · wj

rij · gij
(2

rij
wj � 1)

◆
+ cj . (1)

In the above expression, N0 is the noise spectral density,
while the channel gain gij is defined as

gij = k · ↵ · |hij |2 (2)

where k = �1.5/(log(5BER)), ↵ is the path loss, and |hij |
is the fading channel magnitude for PDA i over RAN j.
In (1), �j and cj are specific parameters that differ for
each network interface [16]. They can be found in the
radio interface specifications, or they can be obtained by
running simulations for various amounts of data to define
a power consumption pattern for each interface [12].

The efficient network selection mechanism should also
meet the application demands and users’ requirements in
terms of QoS. There is a natural human tendency to reduce
the monetary cost, hence it is worthy to consider it as one
of the objectives that need to be optimized. The monetary
cost resulting from using a RAN j by PDA i to send li
bits is expressed in Euro and defined as:

eCij = li · "j (3)

where "j is the monetary cost per bit for RAN j. This
monetary cost can be acquired through the use of the IEEE
802.21 standard [17], which allows a user device to gather
information about the available wireless networks [12].
Such value can also be stored on each PDA in advance
and updated if there are any changes in pricing.

Looking at the application’s QoS requirements, it is of
paramount importance to ensure a swift transfer of medical
data toward the MHC. We therefore consider as additional
performance metric the latency experienced by data when
PDA i uses RAN j, i.e.,

e⌧ij =
li
rij

. (4)

Note that, another critical QoS parameter in healthcare
applications is signal distortion, which needs to be kept
at an acceptable level: Di  Dth, 8i 2 N , where
Di is the distortion for the data transferred by PDA i
and Dth is the maximum distortion threshold [13]. Thus,
given the number ls of raw bits as input to the encoder of
PDA i, the number of output bits to be transmitted over a
radio channel is given by li = ls(1 � i), with i being
the data compression ratio adopted by PDA i. Since the



distortion constraint is only a function of the compression
ratio i, which does not depend on the chosen RAN, in
the following we will consider the value of i as equal to
the maximum value that allows a PDA not to exceed the
target distortion threshold.

Looking at the above expressions, it can be seen that
there is a tradeoff between different objectives. As the data
rate over RAN j increases, the latency ⌧ij decreases, while
the energy consumption increases. Also, it is often the case
that RANs providing higher data rates have a higher mon-
etary cost. Thus, in order to achieve the aforementioned
system goals, it is necessary to find the optimal tradeoff
between different conflicting objectives with the aid of
Multi-objective Optimization Problem (MOP). We take
this challenge in the next section, where our optimization
problem is formulated.

B. Optimization Problem

We consider a weighted-sum approach to formulate our
MOP. Generally, we define a single Aggregate Objective
Function (AOF) which turns the multiple objectives into
a single objective function including transmission energy
consumption, monetary cost, and data transfer delay from
the PDA to the MHC. However, each objective presents
different ranges and units of measurement, hence we
need first to normalize these quantities in order to make
them adimensional and comparable. We will denote the
normalized energy, monetary cost (hereinafter referred to
as cost for brevity), and latency by Eij , Cij and ⌧ij ,
respectively.

Given the generic PDA i and denoted by M the number
of RANs to available i, the objective of our optimization
problem is to assign the PDA to the optimal RAN(s)
that minimize the transmission energy consumption Eij ,
monetary cost Cij , and transmission delay ⌧ij in the
system, while meeting application’s QoS requirements:

z = min

Pij

MX

j=1

Pij · Uij (5)

s.t.
Pij · li
rij

 Tij , 8j 2 M (6)

MX

j=1

Pij � 1, (7)

0  Pij  1, 8j 2 M (8)

where Uij = ↵i ·Eij+�i ·Cij+�i ·⌧ij is the utility function
of PDA i over RAN j. The weighting coefficients represent
the relative importance of the three objective functions in
the problem; it is assumed that ↵i+�i+�i = 1. Moreover,
in (5) we consider a network indicator Pij that represents
the fraction of data that should be transmitted through
RAN j by PDA i.

The network capacity constraint is represented by (6),
where Tij is the maximum throughput that RAN j can
provide to PDA i (resource share); we remark that Tij

depends on the number of PDAs accessing the RAN.
We assume that the network can notify the PDA about
the data rate rij as well as Tj , which is the aggregate

throughput that network j can support. Clearly, rij is
highly dependent on channel radio propagation conditions
and on the network access technology. The highest data
rate can be provided by each network (e.g., 11Mbps for
IEEE 802.11b and 54Mbps for IEEE 802.11g) [12]. The
unknowns in this problem are the Pij’s, i.e., each PDA
needs to determine on which RAN(s) it will transmit and
the amount of data that the PDA should transfer through
each RAN. The problem is a Linear Programming (LP)
problem.

IV. AUTONOMOUS ACCESS NETWORK SELECTION

In this section, we propose a distributed, iterative al-
gorithm for optimal network selection, which we name
Autonomous Access Network Selection (AANS) scheme.
According to AANS, once obtained a list of the available
RANs, each PDA i solves the problem in (5) locally and
sets the values of Pij for each RAN so that its obejctive
function is minimized while the system constraints are met.
In order to solve the problem, the weights ↵i, �i and �i
are assumed to be pre-defined and specified according to
application requirements and/or PDAs’ preference. Also,
the value Tij is initially set to Tij = Tj/Nj , 8j, where
Nj is the number of PDAs using RAN j, assuming that
all users receive the same resource share on RAN j. As
foreseen by several standards, the RAN can notify users
about the value of Nj . However, the value of Tij can also
be set initially to any arbitrary value.

After having solved the optimization problem under the
above conditions, the PDA broadcasts the actual value
of Tij’s it has computed and intends to “consume” over
RAN j (i.e., eTij =

Pij ·li
rij

). At the RAN level, the actual
demand from all users is calculated, and each RAN j can
use whatever mechanism to allocate free resources among
competing users (e.g., using proportional fairness, equal
allocation, etc.) [18][19]. Thus, each RAN can update and
return to the PDA the value of its new resource share.
Accordingly, the PDA solves the optimization problem
again, obtaining the new optimal values of Pij’s. The
procedure can be repeated until convergence is reached,
or a maximum number of iterations has been reached.
The main steps of the AANS algorithm are illustrated in
Algorithm 1.

Below, we prove that the convergence of AASN scheme
is guaranteed.

Theorem: Regardless of the scheduling mechanisms
implemented at the available RANs, the proposed AANS
scheme converges to the optimal solution of the LP formu-
lation in (5).

Proof: The AANS algorithm initially starts assuming
an equal resource share among PDAs. However, as long
as no new users are added to the RANs (i.e., Nj is fixed),
and according to the constraint in (6), the actual resource
share for any PDA can be less than or equal to this initial
arbitrary value. Therefore, after the first iteration, there
may be an additional free resource shares on certain RANs
that were not available at the previous iteration. Thus,
these RANs can update the PDA with the new value of its
resource share Tij(t+1). It is worth mentioning here that
whatever the re-assignation mechanism used at the RANs



Algorithm 1 Autonomous Access Network Selection
(AANS) algorithm at PDA i

1: Initialization:
↵i: energy weight, �i: cost weight, �i: latency weight
Tij : initial resource share on RAN j
rij : data rate on RAN j
"j : monetary cost of RAN j
t = 0.

2: Determine the list of available RANs
3: Solve optimization problem in (5)-(8)
4: Obtain optimal Pij’s
5: Broadcast requested eTij’s
6: Get updated Tij(t+ 1) from RAN j
7: t++
8: if z(t+ 1) 6= z(t) ^ t < niter then
9: Go to step 3

10: else
11: Break % The saturation has been reached.
12: end if
13: Output:

Selected RAN(s) and corresponding optimal Pij’s

to reallocate the freed resources and update the PDA with
Tij(t+ 1), it always follows that

Tij(t+ 1) � Tij(t), 8t, j. (9)

As a result, the constraint in (6) will always become
looser, which will be reflected directly to the values of Pij .
Looking at (5), it is evident that the objective function can
be decreased at each iteration if the value of Pij’s corre-
sponding to the lowest values of Uij’s can be increased,
which means transmitting more data on RANs with lower
utility. While, according to the constraint in (7), the value
of Pij’s corresponding to the highest values of Uij’s
will be decreased. Thus, from (9) we can conclude that
the objective function will always decay with increasing
number of iterations until it saturates at z(t+1) = z(t), and
this will happen regardless of the scheduling mechanisms
implemented at the available RANs.

It is also worth mentioning that the objective function
will always saturate at eTij(t + 1) =

eTij(t), which means
that the PDAs are not willing to give away any of the
resources assigned to them by the RANs. However, due
to network dynamics, the available RANs can change the
assigned resource shares of PDAs (i.e., Tij’s) to any other
arbitrary values. This should trigger the PDAs to run the
AANS algorithm again and update their allocation.

V. SIMULATION RESULTS

We now show the convergence time and evaluate the
system performance via simulation. To this end, we con-
sider the network topology shown in Figure 1, where each
PDA can connect to four RANs with different charac-
teristics. We have: RAN1 with a monetary cost per bit
"1 = 610

�6 Euro/bit and data rate r1 = 4 Mbps; RAN2

with "2 = 310

�6 Euro/bit and r2 = 2.5 Mbps, RAN3

with "3 = 0 Euro/bit, r3 = 1.5 Mbps; RAN4 with
"4 = 110

�6 Euro/bit and r4 = 2 Mbps. A PDA can

capture 4096 samples of epileptic EEG data [20]. Each
raw sample is represented using 12 bits. Thus, after the
compression, the length of data to be transmitted will be
li = 46 KB. Moreover, to model small scale channel
variations, flat Rayleigh fading is assumed, with Doppler
frequency of 0.1 Hz. The other physical layer parameters
over the available RANs are set to: noise spectrum density
N0 = �174 dBm, bandwidth w = 0.5 MHz, and path loss
↵ = 3.6 ⇤ 10�6.

We first compare the performance of the proposed
AANS algorithm against a baseline algorithm in which
we consider the same idea of Enhanced Power-Friendly
Access Network Selection solution (E-PoFANS) presented
in [12]. In the algorithm in [12], a score for each of
the candidate RANs is computed using the same utility
function as Uij . Then, the outcome is ranked and the
network with the lowest score is selected as a target
network.

T

Fig. 2. A comparison between proposed AANS algorithm and the E-
PoFANS algorithm.
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Fig. 3. Obtained network indicators (Pij ) using (a) AANS and (b)
E-PoFANS.

Figure 2 and Figure 3 depict the value of objective



function in (5) for a generic user PDA, and the values of
its obtained network indicators Pij’s over different RANs,
respectively, when AANS and E-PoFANS are adopted.
Here we consider the resource share to be Tij = Tj/Nj

8i, j. We remark that E-PoFANS selects only the candidate
network with lowest score, thus in this case Pij takes
a value equal to either 0 or 1. Our scheme instead
takes different candidate networks into account and selects
the optimal RAN(s) that minimize the PDA’s aggregate
objective, i.e., Pij can take any value between 0 and 1.
PDAs are therefore allowed to transmit using different
RANs simultaneously instead of being limited to one fixed-
assigned RAN (see Figure 3). This leads to a reduced cost
function compared to when E-PoFANS is used, as shown
in Figure 2.

Figure 4 illustrates the convergence behavior of our
AANS algorithm. Recall that initially all PDAs are as-
sumed to get the same resource share on a RAN. Each
PDA solves its optimization problem in (5) and obtains a
“worst-case” value for its objective function (at the first
time step). After that, the PDAs exchange the computed
Pij’s and solve the problem again using the values of
resource share Tij that have been updated according to
the actual PDAs’ allocation (at the second time step). As
a result, PDAs obtain a reduced value of objective function.
The mechanism is iterated, however we observe that very
few iterations are needed in order to reach convergence.
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Fig. 4. Convergence behavior of the proposed AANS algorithm.

Finally, Figure 5 assesses the ability of our scheme to
adapt to network dynamics. In particular, we assume that
the number of PDAs that can access the available RANs
varies over time, as shown in Figure 5-(b). As expected,
when the number of PDAs decreases, the resource share
for each PDA grows and the value of the aggregate
objective functions drops; the opposite occurs when new
PDAs join the network. Interestingly, however, the network
quickly adapts to any change in the scenario by assigning
more or less resources to the PDAs and swiftly reaching
convergence to the optimum (see Figure 5-(a)).

VI. CONCLUSION

Given the increasing tendency to deploy dense hetero-
geneous networks, in this paper we addressed a network
scenario where multiple radio access technologies can
be simultaneously exploited by users so as to improve
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Fig. 5. Temporal evolution of the system performance: (a) aggregate
objective function, with varying (b) number of admitted PDAs.

their wireless connectivity. We proposed a dynamic net-
work selection mechanism that enables energy efficient
and high quality patient health monitoring by targeting
jointly RAN selection and traffic load adaptation. In the
proposed scheme, transmission energy, application quality
of service requirements, and monetary cost are considered
as main performance metrics and integrated into a multi-
objectove optimization problem. Simulation results show
the efficiency of our scheme compared to an existing
network selection algorithm, as well as its ability to adapt
to varying network conditions.
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