
Genetic Algorithm-based Mapper to Support
Multiple Concurrent Users on Wireless Testbeds

Yaser A. Elnakieb
Electrical and Computer Eng. Dept.

Virginia Tech MENA
Email: ynakieb@vt.edu

Michael Azmy
Computer and Systems Eng. Dept.

Faculty of Engineering,
Alexandria University, Egypt

Email: michael.azmy@alexu.edu.eg

Mustafa ElNainay
Computer and Systems Eng. Dept.

Faculty of Engineering,
Alexandria University, Egypt

Email: ymustafa@alexu.edu.eg

Abstract—Communication and networking research introduces
new protocols and standards with an increasing number of
researchers relying on real experiments rather than simulations
to evaluate the performance of their new protocols. A number of
testbeds are currently available for this purpose and a growing
number of users are requesting access to those testbeds. This
motivates the need for better utilization of the testbeds by
allowing concurrent experimentations. In this work, we introduce
a novel mapping algorithm that aims to maximize wireless testbed
utilization using frequency slicing of the spectrum resources. The
mapper employs genetic algorithm to find the best combination
of requests that can be served concurrently, after getting all
possible mappings of each request via an induced sub-graph
isomorphism stage. The proposed mapper is tested on grid
testbeds and randomly generated topologies. The solution of our
mapper is compared to the optimal one, obtained through a
brute-force search, and was able to serve the same number of
requests in 82.96% of testing scenarios. Furthermore, we show
the effect of the careful design of testbed topology on enhancing
the testbed utilization by applying our mapper on a carefully
positioned 8-nodes testbed. In addition, our proposed approach
for testbed slicing and requests mapping has shown an improved
performance in terms of total served requests, about five folds,
compared to the simple allocation policy with no slicing.

Keywords—wireless testbed, genetic algorithm, frequency slic-
ing, virtualization, induced sub-graph isomorphism

I. INTRODUCTION

Developing new communication and network protocols and
standards is the focus of tremendous number of research
studies. To evaluate the performance of theses protocols
and standards, researchers have been conducting theoretical
analysis, simulation, and/or real experimentation on testbeds.
Theoretical analysis and simulations suffer in most cases from
over simplifications. Moreover, simulations are affected by the
complexity of the simulation framework. Therefore, it is more
credible for researchers to verify their ideas on real testbeds.
Many academic testbeds are currently available for this pur-
pose, such as Orbit [1], GENI [2], Emulab [3]. An increasing
number of users are demanding access to those testbeds which
necessitates the sharing of testbed resources among multiple
concurrent users [4]. While there are many techniques on
wired testbeds for resources slicing to share/isolate different
experiments efficiently, the problem is more challenging in
wireless testbeds. Therefore, there is a need for efficient
automated mapping and scheduling algorithms for wireless

testbeds that aim to maximize the number of concurrent non-
conflicting slices.
Currently, most of the mapping techniques introduced in the
literature target wired testbeds. The problem of assigning
nodes to user requests in a wired-connected testbed without
violating link constraints is known to be NP-hard [5]. Fair
sharing of overall testbed resources (bandwidth, memory, and
computational capabilities) among users is a big challenge as
well. The main difference between the mapping problem in a
wired versus a wireless environment is in the slicing of the
testbed. While wired resources can be sliced efficiently, and
interfaces can be virtualized with minimal effect, sharing a
wireless interface may affect the sharing of interfaces on other
nodes because of the wireless resources’ inter-dependencies.
To guarantee the isolation of experiments, wireless testbeds
such as Orbit allocates the entire testbed to one user per time
(until now). Other wireless testbeds that enables sharing as
NITOS [6], relies on on-demand static allocation based on fre-
quency slicing. This paper presents a novel mapping technique
based on genetic algorithm that considers the testbed topology
and utilizes spectrum slicing and resource virtualization to
map multiple concurrent users maximizing the wireless testbed
utilization. The contributions of this paper are: introducing an
automated mapping algorithm that benefits from virtualization
and spectrum slicing to maximize the number of concurrent
users on a wireless testbed, a quantitative evaluation to high-
light the advantages and performance of the algorithm, and
revealing the possible extensions of our mapper.
The rest of this paper is organized as follows. A review of
related work is discussed in Section II. The testbed network
model and the tackled problem are described in Section III.
The proposed genetic algorithm-based mapper is detailed in
Section IV. Evaluation results of the algorithm are shown on
Section V. Finally, conclusion and future work are presented
in SectionVI.

II. RELATED WORK

The wireless testbed mapping problem is similar to the pre-
vious works on Virtual Network Embedding (VNE) on shared
wired testbeds [7]–[9]. However, on a wired topology, requests
generally consists of bandwidth requirements between node
pairs and node capacity, without accounting for interference
on a wireless medium or its effect on the maximum number

ar
X

iv
:1

60
9.

05
50

3v
1

 [
cs

.N
I]

 1
8

Se
p

20
16

of allowed virtual machines on a node. Thus, those algorithms
mainly map a required virtual topology as source/destination
pairs. On the other hand, mapping multiple concurrent users
on a wireless testbed differs in how they can share the wireless
medium itself.
The standard VNE problem is known to be NP-hard because
of its constraints [5]. Many approaches were introduced in
the literature to solve this problem. Yu et al. [10] proposed a
two-stage solution in which they first map virtual nodes then
map virtual links, assuming that path splitting is supported
by the underlying network. They then employ path migration
to periodically re-optimize the utilization of the substrate net-
work. Chowdhury et al. [8] considered location requirements
as well and solved the problem using Mixed Integer Program
(MIP) formulation, offering better coordination between the
two stages.
Other approaches as vnmFlib network mapping library [9],
implemented by Lischka and Karl, used the fact that the net-
work mapping problem resembles the subgraph isomorphism
detection, and developed a backtracking algorithm based on
the VF2 algorithm [11] used in the pattern recognition com-
munity for finding subgraph isomorphisms in large graphs. We
inherit this approach to pre-find the possible mappings for each
requested topology as a first stage of our mapper algorithm.
VnmFlib maps virtual nodes and links in a single stage with
better efficiency. VF2x [12] was proposed to enhance vnmFlib
and solve some of its limitations.
The Emulab testbed mapping algorithm, Assign [7], considers
the online embedding problem, where mapping decisions are
taken for each incoming request, with bandwidth constraint
alongside constraints on exclusive use of nodes. It categorizes
resources into equivalence classes to reduce search space
and uses simulated annealing to find a good match. Singhal
thesis work [13] targets network virtualization to allow more
than one user to share the same wireless node, using a User
Mode Linux (UML) network virtualization technique, which
he described and evaluated.
In [14], Mahindra et al. provide a comparison between two
types of testbed slicing: the usage of flexible time division
versus space separation for small sets of nodes, favoring
space over time division. The spectrum slicing is introduced
in [15]and [16] in the context of wireless standard 802.11,
intending to provide each experiment a "spectrum slice"’
that minimally interferes with other slices, through the use
of orthogonal channels. The authors use a spectrum slicing
technique on Wi-Fi nodes that can be used on OMF-based
testbed [17], targeting Orbit. This spectrum sharing technique
is employed for slicing testbed resources in our CRC testbed
developed in Alexandria University, Egypt [18].
Although many works target virtualization of the wireless
interfaces [19]–[24], most algorithms add limitations to the
type of experiments that can be performed, such as de-
lay, overhead, time separation, space separation, transmission
power, synchronization, limited topologies, and many others.
Due to the difficulties of implementing general solution for
interface virtualization, we rely on assigning each of the

wireless interfaces of a node to at most one user as a basic
assumption in our testbed nodes modeling. Hence, a node,
not interface, virtualization is allowed. In addition, the testbed
spectrum resources are shared between users by assigning
different wireless channels to distinct users whenever possible.
This virtualization scheme maximizes testbed utilization while
achieving separation between various experiments with no
added limitations. Our work is the first to our knowledge
that maps users’ requests to enable concurrent experiments
on wireless testbeds, assigning their requested topology, inter-
faces, channels and other preferences with no human interven-
tion. It can be applied on existing grid or non-grid testbeds.

III. TESTBED MODEL AND PROBLEM DESCRIPTION

The target of our mapper is to maximize the testbed utiliza-
tion by determining the best subset of requests that can coexist
concurrently without interfering with each other. The problem
is to find which subset of nodes can serve a user’s requested
topology, and at the same time, fit with as many other users
as possible using the spectrum and hardware resources of the
testbed. Furthermore, a priority for each request is included in
our utility function that may favor serving one request among
others (for example, one belonging to senior researchers group
versus students).
The mapper is implemented as two consecutive stages, the first
stage is the induced subgraph isomorphism stage which finds
all the possible mappings of every requested topology to our
testbed. The second stage is a heuristic search using genetic
algorithm to find the combination of requests and mappings
that lead to the best utilization. Our algorithm is described in
more details in the next section.

A. Testbed physical model
For our mapping problem, the testbed is viewed as group

of N wireless nodes, each having i different types of wireless
interfaces (for example, if a node has one WiFi card and
two types of software defined radio interfaces, then i = 3).
A testbed reservation request specifies the number of nodes,
their specifications, and connectivity. Each node can be either
a physical node, with all its resources and network interfaces,
or a virtual node with slice of computational and memory
resources and one or more of the node’s wireless interfaces.
The developed reservation system benefits from virtualization
to allow multiple concurrent testbed users if possible. A node
can be shared between up to i virtual machines depending on
the requests details, and which interfaces are requested.
The topology of the testbed is represented as a square N ×N
binary connectivity matrix, with each element (j, k) represent-
ing the link between nodes j,k , i.e., whether nodes j and
k are within the wireless range of each or not. This can be
determined empirically through a series of transmission and
reception between the testbed nodes to identify the coverage
of each node, simplified by defining a threshold for power re-
ceived for a connected link. Another matrix is used to identify
the interfaces that satisfy this connectivity matrix. These two
matrices is used to determine which nodes/interfaces can serve
a particular request with specific topology and frequencies.

TABLE I: Request’s Mathematical Notations
Symbol Description
Nr The number of requested nodes
Typer Whether the nodes are physical or virtual
Intr Requested wireless interfaces
Chr Frequency channels requested per interface
Gr The required topology represented by Nr ×Nr connec-

tivity (adjacency) matrix
TSr Number of requested time-slot(s)
Pr Priority of the request as assigned by the system depend-

ing on the user category/priority.

Each of the i interfaces has a number of orthogonal channels
depending on its type, defined by max_chi , and the channels
requested by all requests served in a time-slot cannot exceed
that limit to avoid interference. We allow frequency slicing,
i.e. sharing the spectrum between different requests when
interference can be avoided.

B. Requests

We have a set R of n requests demanding testbed resources
in a time-slot, where n = |R|. A set of parameters are
associated with each request r to identify its details. These pa-
rameters are: requested time-slots TSr, priority of the request
Pr, requested wireless interfaces Intr, requested frequency
channels per interface Chr, the number of requested nodes Nr,
whether they are virtual or physical Typer, and the required
topology represented by another connectivity matrix Gr. A
user can request either specific fixed channels, or a number
of flexible channels, for each requested interface. Table I
summarizes those notations for use in next sections.

IV. GA-BASED MAPPER

In this section, the two stages of our proposed mapping
algorithm are described.

A. Generating Candidate Mappings

The first stage of the mapping algorithm is to generate
candidate mappings for each requested topology using induced
subgraph isomorphism techniques. The induced subgraph iso-
morphism problem can be defined as follows: given H and
G graphs, determine whether there is an isomorphic mapping
from H to G, and find such mappings if exist. The difference
of induced from general non-induced subgraph isomorphism
problem is that the absence of an edge (link) in H implies
that the analogous edge in G is also absent. In the non-
induced problem those edges in G can be present. The induced
subgraph isomorphism fits our needs in wireless testbeds as
we want to provide the requested links of the user topology
and avoid potential interference of any other links.
We use igraph [25] library to get all isomorphic induced
sub-graphs of each request. The subgraph H represents the
requested topology(Gr), while G denotes the testbed connec-
tivity. After this step, several mappings are available - if exist -
associated with each Gr. Those distinct mappings are used to
maximize the odds of coexistence between different requests.

TABLE II: Chromosome Structure
r1 r2 ... rn

1 0 ... 1
3 4 ... 6

B. Genetic Algorithm
The second stage of the mapper is the genetic algorithm-

based stage (GA-based stage). After getting all the candidate
mappings of each request, we apply genetic algorithm for
choosing the subset of requests that can run together without
conflicts while satisfying the constraints. The details of the
GA-based stage of the mapper are described in the following
subsections.

1) Chromosome Structure: A GA chromosome consists of
n genes, each representing a particular request, where n is the
total number of requests. Each gene consists of two fields:

• A bit representing whether the corresponding request
shall be allocated or not in the current solution.

• An integer representing a pointer to a mapping chosen
from the candidate mappings of this request as deter-
mined from the first stage.

For example, in Table II, r1 and rn will both be served with
their 3rd and 6th mapping respectively, while r2 with its 4th
mapping will not be served.

2) Initialization: First, we generate the population of chro-
mosomes with random values. Each gene (request) in the
chromosome is initialized randomly for both its existence and
mapping. The same gene on different chromosomes can be
linked with different mapping of its candidate mappings (if
there are many).
Then, the requested frequencies by all requests are checked for
any conflicts. If no conflict is indicated for all requests, then
this step is not needed to be done for any subgroup of the
requests later during the algorithm. If a conflict is indicated,
then only subset of the requests can be served together and
this check has to be performed for each chromosome (subset
of requests) in every iteration of the GA.

3) Selection: The fitness function in eq. 1 reflects the
priority of the request, the requested time duration, and the
penalties resulting from any conflicts. In our case, the genetic
algorithm tries to find the chromosome which minimizes that
fitness function. Two types of penalties are calculated: resource
penalties and channel penalties. If multiple requests ask for
the same resource (node or interface on a particular node),
the number of resource conflicts is increased. Moreover, if
multiple requests demand the same frequency channel, the
number of channel conflicts is increased. The penalties term
is the multiplication of these conflicts by a large number.

The fitness function is,

Fitness = Penalties+

n∑
r=1

(
w1

Pr
+ w2 × TSr) (1)

(2)
Penalties =

∑
conflicts

(Resource_conflicts

+ Channel_conflicts)× Large_number

where w1 and w2 are adjustable parameters used to indicate
the relative importance of a term over another. In order to
understand this formulation, let us consider the case when all
requests have equal priorities, have the same time preferences
and no penalties occur. In this case, the problem turns to
optimization problem that aims to maximizing the number of
requests being served on this slot. The fitness function also
allow us to serve a request which consumes larger resources
or longer duration if it has higher priority than other request(s).

4) Genetic Operations: The two primary genetic opera-
tions, mutation and crossover, are applied to chromosomes
randomly with probabilities pm and pc respectively.

• Mutation: Two types of mutations are applied, each with
probability 0.5:

– Mutation 1: randomly toggle the first field boolean
of a gene from 0 to 1 and vice versa keeping the
same mapping.

– Mutation 2: randomly change the mapping of a
request to another one of its candidate mappings.

• Crossover: Apply a single-point crossover between chro-
mosome pairs.

5) Termination: When a maximum number of generations
is reached, or no significant relative change in the fitness
over a predefined stall generations happens, the algorithm is
terminated and the best solution that corresponds to the best
chromosome of the last generation is determined.

V. EVALUATION

In the current section, the simulation framework and the
different scenarios used to evaluate the performance of the
proposed mapper are described and the results are presented.

A. Simulation Framework
In order to evaluate the performance of our GA-based map-

per, we setup a simulation environment for different testbed
sizes and parameters. We compare our mapping algorithm to
the optimal solution found using the exhaustive search. For this
purpose, a brute-force search algorithm (BF) was implemented
to find the best possible solution, optimum, given a particular
subset of requests. The algorithms are evaluated and com-
pared under multiple testbed sizes and mappings size limits.
Moreover, the revenue of applying our GA-based mapper with
enabled spectrum slicing and resources virtualization over a
simple allocation policy with no slicing is demonstrated while
using all possible mappings provided by the induced graph
isomorphism algorithm.
The performance metrics considered are:

i) Number of served requests, the average number of ac-
cepted requests by the mapper to be served.

ii) Optimality, the percentage of solutions obtained by our
mapper that were identical to those found through brute-
force search for the optimal solutions.

iii) Slicing revenue, the increased testbed utilization, in terms
of the number of concurrent users that our mapper can
allocate relative to the simple allocation policy with no
slicing (one user).

TABLE III: Values of the parameters used for evaluation
Parameter Distribution/Value
pop− size 60
pm 0.2
pc 0.8
max− iter 500
i 3 interfaces
Max_chi 13 for i = 1, 13 for i = 2, and 40 for i = 3.
Chr ∼ N (µ, σ2) where µ = 0.25 × Max_chi, and

σ = 1/6×Max_chi. The distribution is limited to
half of Max_chi.

Pr ∼ U(1, 5).
TSr ∼ N (µ, σ2) where µ = 2, and σ = 5.
Intr ∼ U(1, 3)

B. Experimental Set-up
To evaluate our mapping algorithm, random input data

are generated to represent several users with variable request
preferences. This subsection describes the experimental setup
and the statistics of the parameters used.
A wireless testbed physical topology is expressed as graph
with nodes represent the testbed nodes and links represent
the connectivity of nodes. This information is embedded as
a connectivity/adjacency matrix. For the experiments, testbed
nodes were assumed to assemble either a grid topology or
an arbitrary randomly generated topology. In grid testbeds,
each node can only see one neighbor in each direction, and
in random topology, the number of connections are random.
Different testbed sizes have been used of 3×3 grid (9 nodes),
4×4 grid (16 nodes), 5×5 grid (25 nodes), and 6×6 grid (36
nodes).
The number of nodes of each request Nr were picked from a
uniform distribution with mean roughly equals to half of the
available nodes on smallest testbed (between three and five
nodes). For each request, we generate a random adjacency
matrix Gr representing its requested topology. This range of
number of nodes per request is selected as when the number of
nodes exceeds five, most of the randomly generated topologies
does not fit on the testbed as indicated from the sub-graph
isomorphism stage.
The requests parameters Chr, Pr, and TSr where randomly
generated for each request to exhibit different users’ cate-
gories. The number of requested channels Chr were selected
from a normal distribution limited to half of the maximum
number of channels available at most. Five different categories
of users were assumed, and hence five uniformly distributed
priorities. Moreover, each request demands a random number
of time-slots distributed normally around two slots with a high
standard deviation of five. The population size of the GA is
60 and the crossover rate pc and mutations rate pm were set
to 0.8 and 0.2 respectively. This relatively high mutation rate
was used to avoid being trapped in local optima. The GA is
terminated after 500 iterations (no further improvement has
been found for using more iterations). Table III summarizes
the parameters values and distributions used for evaluation.
For the first scenario, comparison between our mapper solution
and the optimal obtained by brute force search, the number of

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(a) Physical requests, 10 Mappings.

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(b) Virtual requests enabled, 10 Mappings.

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(c) Physical requests, 15 Mappings.

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(d) Virtual requests enabled, 15 Mappings.

Fig. 1: 1st scenario I: Average number of served requests for grid topologies. Mapping limits of 10 and 15, results, for requests
of both virtualization enabled and of only physical nodes.

mappings of a topology Gr produced by the first stage of
the mapper will be limited. We tried limiting the solutions to
ten and fifteen mappings only, for each incoming request. In
addition, the number of users demanding testbed resources |R|
is fixed to five. These were done to shrink the search space as
increasing it would require enormous computation resources
and large amount of time for a single run of the brute-
force implementation. Two settings were tested: first, with
no virtualization enabled, i.e. Type = 0. Second, enabling
requests demanding virtual nodes, Type = 1. Each experiment
is repeated 10 times, with different random inputs, and the
average value and variance of these repetitions are presented
in the simulation results of the following figures.
Then, we do the simulations for the second scenario, con-
sidering all possible mappings for each incoming request
and running the GA-based mapper. The effect of varying
testbed sizes will be shown, as well as varying the number of
requests on the slicing revenue. Similarly, each experiment is
repeated 10 times, and the average value of these repetitions is
presented in the simulation results. Furthermore, the execution
time of both GA and BF algorithms are depicted.

C. Performance results
Fig.1 shows the average number of requests to be served

for different mapping limits of 10 and 15, for both Type = 1
(virtualization-enabled) and Type = 0 (only physical) on
the grid testbeds. In addition, Fig.2 presents the results for
randomly generated topologies of the same-sizes testbeds.
We notice three bars on Fig.1(a), 1(c) and Fig.2(c), with
no error bars, where the results over ten runs exhibits no
variations. As seen from the sub-figures, our mapper (GA)
serves almost exactly the same number of requests compared

TestbedSize

9 16 25 36

%
 O

p
ti
m

a
lit

y

0

20

40

60

80

100

Grid

Random

Fig. 3: Percentage of optimal solutions found by GA-mapper
on grid and random topologies.

to the brute force (BF) solution. In total, for about 82.96%
of runs, the GA-based mapper serves the same number of
requests as the BF. Besides, it is noticeable that the average
number of served requests is not strictly increasing with the
increase of testbed sizes, which can be attributed to the grid
topology limited network connectivity as well as the high
average number of requested channels per user. Furthermore,
the number of successfully allocated requests increase with the
mapping limits, which is intuitive. The more possible different
mappings that are fed to the system, the more probable it could
find a better solution and allocate more users concurrently.
Moreover, the average number of allocated requests on the
physical case is more than one, which demonstrates the sharing
benefits of the frequency slicing technique used.
To demonstrate the effect of the testbed physical topology on

the results of the average number of allocated requests, the
same procedure is performed on carefully planned topology
similar to the one used by the CRC testbed [18]. The nodes
graph of this 8-nodes network is shown on Fig.4. The results
obtained on this topology, with five requests with the same

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(a) Physical requests, 10 Mappings.

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(b) Virtual requests enabled, 10 Mappings.

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(c) Physical requests, 15 Mappings.

TestbedSize

9 16 25 36

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

(d) Virtual requests enabled, 15 Mappings.

Fig. 2: 1st scenario II: Average number of served requests for random topologies. Mapping limits of 10 and 15, results, for
requests of both virtualization enabled and of only physical nodes.

N4

N5

N1

N6

N2

N7

N3

N8

Fig. 4: The topology of the adopted 8-nodes wireless testbed.

parameters, and mapping limits of 10 and 15 are displayed on
Fig.5. As observed from the figure, applying our mapper on
this topology results in increase in number of served requests
for a smaller sized testbed. This highlights the fact that the
grid topology is not the best way to organize testbed nodes.
Fig.3 shows the optimality metric results for both grid and
random topologies testbeds with variable number of nodes in
the testbed. The figure indicates a good steady performance
with increased testbed sizes, because of the careful design of
chromosomes embedding we used, with an average of 65%
over all runs.
We manifest the slicing revenue resulted from resources slicing
and our mapping algorithm on the testbed utilization on Fig.6
and Fig.7, using all mappings of the first stage of our approach.
The figures show the effect of varying the incoming number
of requests on the revenue, and the impact of varying the
testbed size as well for both grid and random topologies. Our
adopted frequency-based slicing scheme considered by our
mapper offers up to 490% increase in the number of concurrent

Mapping Limits

10 15

A
v
g

.
#

 o
f

S
e

rv
e

d
 R

e
q

u
e

s
ts

0

1

2

3

4

5
GA

BF

Fig. 5: Average number of served requests for mapping limits
of 10 and 15 for the 8-node testbed, virtualization enabled.

users relative to the simple allocation scheme where no slicing
supported on grid topologies, and up to 500% increase on
random topologies.
Finally and as expected, our algorithm solves this optimization
problem pretty fast relative to the exhaustive (BF) search al-
gorithm. As depicted in Fig.8, the exhaustive search execution
time increases exponentially with the increase in search space
(mappings limit) while our algorithm scales almost linearly.

VI. CONCLUSION AND FUTURE WORK

This paper presents our implementation of a mapping al-
gorithm for reservation requests on wireless testbeds, based
on induced sub-graph isomorphism and genetic algorithm.
We describe the concept and illustrate its performance us-
ing simulation for different scenarios. In almost all of the
experiments performed, our genetic algorithm-based mapper
succeeded to allocate the same number of requests allocated
by the best solution found by brute force search in 82.96%
cases. We manifested that a careful choice of nodes locations
of the testbed can enhance the number of users that can
be concurrently served. Moreover, our proposed technique

TestbedSize

9 16 25 36

%
 S

lic
in

g
 R

e
v
e

n
u

e

100

200

300

400

500

600
5 Requests

10 Requests

15 Requests

Fig. 6: Slicing Revenue for different number of requests and
different grid testbed sizes.

TestbedSize

9 16 25 36

%
 S

lic
in

g
 R

e
v
e
n
u
e

100

200

300

400

500

600
5 Requests

10 Requests

15 Requests

Fig. 7: Slicing Revenue for different number of requests and
different testbed sizes of random topologies.

achieves up to 500% revenue of testbed users by the suggested
slicing mechanism compared to no-slicing strategy.
We are working on integrating a 24 hours scheduler into
the current implementation of mapping algorithm. The fitness
function will be re-designed to include scheduling details,
therefore, performing both mapping and providing the daily
schedule of requests for each time-slot.

REFERENCES

[1] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network pro-
tocols,” in IEEE Wireless Communications and Networking Conference,
vol. 3. IEEE, 2005, pp. 1664–1669.

[2] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, “Geni: A federated testbed for innovative
network experiments,” Computer Networks, vol. 61, pp. 5–23, 2014.

[3] “UTAH Emulab website,” http://emulab.net.
[4] D. Stavropoulos, A. Dadoukis, T. Rakotoarivelo, M. Ott, T. Korakis,

and L. Tassiulas, “Design, architecture and implementation of a resource
discovery, reservation and provisioning framework for testbeds.” WiN-
MeE, 2015.

[5] D. G. Andersen, “Theoretical approaches to node assignment,” Computer
Science Department, p. 86, 2002.

[6] “UTH NITOS website,” http://nitlab.inf.uth.gr/NITlab/index.php/testbed.
[7] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed

mapping problem,” ACM SIGCOMM Computer Communication Review,
vol. 33, no. 2, pp. 65–81, 2003.

[8] N. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network em-
bedding with coordinated node and link mapping,” in IEEE INFOCOM
2009. IEEE, 2009, pp. 783–791.

[9] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proceedings of the 1st ACM work-
shop on Virtualized infrastructure systems and architectures. ACM,
2009, pp. 81–88.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

Mapping Limits

5 10 15 All

T
im

e
 o

f
a

 s
in

g
le

 r
u

n
 i
n

 s
e

c
o

n
d

s

0

200

400

600

800
GA-based

Brute-force

Fig. 8: Elapsed execution time of brute-force versus GA-based
mapper for different mapping limits.

[11] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–
1372, 2004.

[12] Q. Yin and T. Roscoe, “Vf2x: fast, efficient virtual network mapping
for real testbed workloads,” in Testbeds and Research Infrastructure.
Development of Networks and Communities. Springer, 2012, pp. 271–
286.

[13] S. Singhal, G. Hadjichristofi, I. Seskar, and D. Raychaudhri, Evaluation
of UML based wireless network virtualization. IEEE, 2008.

[14] R. Mahindra, G. Bhanage, G. Hadjichristofi, I. Seskar, D. Raychaudhuri,
and Y. Zhang, “Space versus time separation for wireless virtualization
on an indoor grid,” in Next Generation Internet Networks, 2008. NGI
2008. IEEE, 2008, pp. 215–222.

[15] A.-C. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas,
L. Rodriguez, and M. Ott, “A new slicing scheme for efficient use
of wireless testbeds,” in Proceedings of the 4th ACM international
workshop on Experimental evaluation and characterization. ACM,
2009, pp. 83–84.

[16] A.-C. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas,
L. Rodriguez, I. Seskar, and M. Ott, “Towards maximizing wireless
testbed utilization using spectrum slicing,” in Testbeds and Research
Infrastructures. Development of Networks and Communities. Springer,
2011, pp. 299–314.

[17] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “Omf: a control
and management framework for networking testbeds,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 4, pp. 54–59, 2010.

[18] “CRC testbed website,” http://smartci.alexu.edu.eg/crc/doku.php.
[19] G. Bhanage, D. Vete, I. Seskar, and D. Raychaudhuri, “Splitap: lever-

aging wireless network virtualization for flexible sharing of wlans,” in
IEEE GLOBECOM. IEEE, 2010, pp. 1–6.

[20] S. S. Hong, J. Mehlman, and S. Katti, “Picasso: flexible rf and spectrum
slicing,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 37–48, 2012.

[21] L. Wang, Z. Zhang, L. Ye, B. Gong, and W. Lou, “Fully reconfigurable
cognitive ofdma testbed,” in Communications and Networking in China
(CHINACOM), 2011 6th International ICST Conference on. IEEE,
2011, pp. 933–938.

[22] A. J. Nicholson, S. Wolchok, and B. D. Noble, “Juggler: Virtual
networks for fun and profit,” IEEE Transactions on Mobile Computing,
vol. 9, no. 1, pp. 31–43, 2010.

[23] A. D. Rivera and W. Zucci, “Virtualization of wireless network interfaces
wi-fi ieee 802.11,” in Proceedings of the 9th WSEAS International
Conference on Telecommunications and Informatics, 2010, pp. 46–51.

[24] C. Liang and F. R. Yu, “Wireless network virtualization: A survey,
some research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 1, pp. 358–380, 2015.

[25] “igraph - the network analysis package,” http://igraph.org.

http://emulab.net
http://nitlab.inf.uth.gr/NITlab/index.php/testbed
http://smartci.alexu.edu.eg/crc/doku.php
http://igraph.org

	I Introduction
	II Related Work
	III Testbed Model And Problem Description
	III-A Testbed physical model
	III-B Requests

	IV GA-based Mapper
	IV-A Generating Candidate Mappings
	IV-B Genetic Algorithm
	IV-B1 Chromosome Structure
	IV-B2 Initialization
	IV-B3 Selection
	IV-B4 Genetic Operations
	IV-B5 Termination

	V Evaluation
	V-A Simulation Framework
	V-B Experimental Set-up
	V-C Performance results

	VI Conclusion and Future Work
	References

