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Abstract—This paper considers the joint processing design for
the cloud radio access network (C-RAN) with limited cloud
computation capacity. This amounts to determine the set of
remote radio heads (RRHs) serving each user and the corre-
sponding precoding vectors whose corresponding computation
effort (CE) is a non-linear function of the number of anten-
nas pooled from all serving RRHs and the modulation bits.
Toward this end, we propose a novel three-step approach to
solve the underlying mixed non-linear integer program. First,
we transform this problem into a group association problem
(GAP) with additional association constraints where each user
must be associated with exactly one particular group of RRHs.
Second, we study the relaxed power minimization problem (PMP)
where the group association integer variables are relaxed and
the computational constraint functions are approximated by
weighted linear functions of transmission powers. We prove that
this relaxed PMP can be solved optimally and the obtained
optimal solution satisfies all association constraints of the original
GAP problem. Third, we develop an iterative procedure to
update the weight parameters of the approximated computational
constraint functions to drive the achieved solution to an efficient
and feasible solution of the original problem. Finally, we present
numerical results to demonstrate the significant gains of our
proposed design compared to that due to a fast greedy algorithm.

I. INTRODUCTION

C-RANs have been recently considered as an alternative

architecture for next-generation wireless cellular networks.

By realizing various processing functions in the cloud, this

network architecture allows more efficient utilization of com-

putational and radio resources to provide better network ca-

pacity and reduce both the network expenditure and operating

expense. To realize these benefits, one has to address many

technical challenges, such as, to efficiently utilize the compu-

tational resource in the cloud, fronthaul capacity, and design

suitable communication schemes in the access network [1].

Recent literature on C-RANs has tackled some technical

problems which are described in the following. The work in [2,

3] proposed different design approaches to utilize the fronthaul

network capacity efficiently. The energy efficiency benefits of

C-RAN is discussed in [4]. Moreover, the joint transmission

for RRHs is studied in [5–7] through designing beamforming

for all RRHs to minimize the total network power consumption

or to maximize the network rate. However, there is very limited

literature on the optimization of computational resources of C-

RANs which is a major challenge for the large-scale network

where the cloud must support a large number of users.

In [8], we studied the MIMO beamforming for C-RANs

assuming that the required CE for any user is the same

regardless of the number of serving RRHs and required QoS,

which is an over-simplified model. In [9], the computation

model considering turbo decoding of users’ data is adopted

for C-RAN uplink design. In general, this CE model for

uplink transmission cannot be applied to the downlink since

the cloud must perform different tasks in the encoding process

for the downlink, which are very different from the decoding

process in the uplink. In fact, the authors of [10] have shown

that the required CE to support a particular user’s downlink

communication is a non-linear function of different parameters

including number of antennas, number of modulation bits,

coding rate.This computation model has motivated us to fill the

gap of the literature where we consider the joint transmission

design for C-RANs considering limited cloud computation

capacity and more realistic CE model.

Specifically, we consider downlink joint processing for

transmission power minimization in C-RANs subject to the

practical constraints on users’ quality-of-service (QoS) and

cloud computational capacity. We propose a novel solution

approach to deal with this complex problem. We first transform

this problem into an equivalent group association problem

(GAP) where each user must be associated with exactly one

of all possible groups of RRHs. This transformation enables

us to express the computational constraint in the linear form.

Then, we relax GAP to obtain a new PMP by relaxing the

user and RRH group association variables into real vari-

ables and approximating computational constraint functions

by corresponding weighted linear functions. By applying the

duality approach, we prove that the global optimal solution of

this PMP can be obtained and this optimal solution satisfies

all association constraints of GAP. Finally, we propose to

iteratively update the weights of the approximated computa-

tional constraint functions and solve the corresponding PMP

to obtain a good and feasible solution for the original problem.

We demonstrate through numerical studies that our proposed

design significantly outperforms the fast greedy algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the multiuser downlink transmission in C-RAN

system consisting three main parts as in [8]: base-band units

(BBU) pool, fronthaul network, and K RRHs which serve M
users on the same frequency band. In this system, the joint

processing scheme is employed to efficiently exploit available

antennas at different RRHs for the interference mitigation.

Specifically, it is assumed that each user is served by a specific

group of RRHs. Let us define K and U as the sets of RRHs

and UEs in the network, respectively. Denote Ku (Ku ⊆ K) as

the set of nearby RRHs which can be chosen to serve user u.
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We now define binary variables tu,k where tu,k = 1 if RRH k
serves user u and tu,k = 0 otherwise. Then, we have tu,k = 0
for all k /∈ Ku. In addition, the set of RRHs that serve user u
can also be expressed as Ru = {k|k ∈ R, tu,k = 1}.

In this paper, we consider multiple-inputs single-output

transmissions where RRH k is equipped with Nk antennas

(k ∈ K) and each user has a single antenna. We assume that

each user (e.g., user u) has a single data stream which is

represented by symbol sequence xu ∈ C of unit power. Let

vu,k ∈ CNk×1 be the precoding vector at RRH k applied to

signal of UE u. For a certain RRH-user allocation, the BB

signal yu received at user u can be written as

yu =
∑

k∈Ku

tu,kh
H
u,kvu,kxu+

∑

i∈U/u

∑

l∈Ki

ti,lh
H
u,lvi,lxi+zu, (1)

where hu,k ∈ CNk×1 denotes the channel coefficient vector

between RRH k and user u, and zu describes the noise at user

u. Also, the SINR achieved by user u can be expressed as

Γu =

∣

∣

∣

∣

∣
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∣

∣
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i∈U/u
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∣

∣

∣

∣
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u,lvi,l

∣

∣

∣

∣

∣

2

+ σ2

, (2)

where σ2 is the noise power.

A. Cloud Computation Effort

In this section, we first describe the model that quantifies

the CE required for processing the baseband signal for a user.

Practically, the CE (in Giga Operations Per Second - GOPS)

required by physical layer can be determined based on the

Frequency Domain processing (FDP) and Coding processing

(CP) [10]. The CE for FDP scales with the number of antennas

supporting a user. While the CE for CP depends on the number

of bits, the type of coding, and encoding side or decoding side.

For example, in uplink system, the base station has to perform

decoding and if the turbo code is employed, then the CE for

CP can be calculated as in equation (3) of [9]. In the downlink,

the CE for CP scales with the number of bits at a coding rate

C [10]. Generally, CE required to serve a specific user is a

function of number of utilized antennas, the modulation bits,

coding rate, number of data streams, and number of allocated

resource blocks [4]. The CE required for each user u can be

expressed in a general form as follows:

Xu = f(Nu, bu), (3)

where f(·, ·) is a non-linear increasing function with its

variables, Nu denotes the total number of antennas serving

user u, and bu is the modulation bits per symbol in the data

stream xu. Here, the number of antennas serving user u is the

total antennas of all RRHs in set Ru, which can be written as

Nu =
∑

k∈Ru

Nk =
∑

k∈Ku

tu,kNk. (4)

One particular model for f(·, ·) proposed in [10] is

fex(Nu, bu) =
(

27Nu + 9N2

u + 3Cbu
)

/5, (5)

Our design in this paper is, however, applicable for any other

CE models (i.e., any other models for the CE function f(.)).
From (3), the total CE required by the BBU pool to process

all users’ signals can be expressed as

Xtotal =
∑

u∈U

Xu =
∑

u∈U

f(Nu, bu). (6)

Studies from the literature [5, 6] have shown that allowing

bigger group of RRHs to serve each user results in better

network performance in term of total transmission power or

transmission rate. However, enabling bigger group of RRHs to

serve each user consumes more computation resource in the

cloud. This observation motivates us to investigate the joint

transmission design for C-RAN considering limited computa-

tional capacity of the BBU pool.

B. Computation Constrained Power Minimization Problem

Our design aims to determine the set of RRHs serving each

UE and the corresponding precoders for RRHs to minimize

the total transmission power under the constraints on the

computational capacity in the cloud and users’ QoS. Here,

the required QoS of UE u is described as

(C1) : Γu ≥ γu, ∀u ∈ U . (7)

We assume that the cloud has computation capacity of Xmax

(GOPS). The cloud computational constraint is captured as

(C2) : Xtotal =
∑

u∈U

f

(

∑

k∈Ku

tu,kNk, bu

)

≤ Xmax. (8)

Then, the Computation Constrained Power Minimization prob-

lem (CCPMP) can be stated as

min
{vu,k},{tu,k}

∑

u∈U

∑

k∈K

v
H
u,kvu,k (9)

s. t. (C1), (C2),

(C3) : tu,k ∈ {0, 1}, ∀(u, k) ∈ U × K.

The optimization problem (9) is indeed a non-linear mixed

integer program (MIP), which is very hard to solve. In the

following, we propose a novel low-complexity algorithm to

solve this problem.

III. ALGORITHM DESIGN

A. Group Association Reformulation

It can be observed that the required CE for user u can be

calculated if the set of serving RRHs Ru is given. Let Gu

denote the set of all possible groups of RRHs serving user u
each of which is a sub-set of Ku and Au = |Gu|. Then, any

specific RRH group in Gu, denoted as Ra
u (1 ≤ a ≤ Au), can

be chosen to serve user u. Let us define Ra
u = {k1, ..., keau}

where eau = |Ra
u| and {k1, ..., keau} ⊂ Ku, represent the

indices of serving RRHs for user u in Ra
u. If user u is

associated with Ra
u, CE for user u can be given as

Xa′
u = f





∑

k∈Ra
u

Nk, bu



 . (10)
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Let w
a
u denote a vector, which is formed by concatenating

precoding vectors of all RRHs in group Ra
u for user u. Then,

we can write w
a
u = [vT

u,k1
, ...,vT

u,keau

]T . We also denote

h
a
i = [hT

i,k1
, ...,hT

i,keau

]T as the concatenated channel vector

for RRHs in Ra
u and user i. Then, the SINR of user u if it is

served by RRH group Ra
u can be rewritten as

Γa′
u =

∣

∣h
aH
u w

a
u

∣

∣

2

∑

i∈U/u

Ai
∑

m=1

|hmH
u wm

i |
2
+ σ2

. (11)

Then, we can define GAP as

min
{wa

u},{r
a
u}

∑

u∈U

Au
∑

a=1

w
aH
u w

a
u (12)

s. t. (C4) :

Au
∑

a=1

rauΓ
a′
u ≥ γu, ∀u ∈ U ,

(C5) :
∑

u∈U

Au
∑

a=1

rauX
a′
u ≤ Xmax,

(C6) :

Au
∑

a=1

rau = 1, ∀u ∈ U ,

(C7) : rau ∈ {0, 1}, ∀u ∈ U , 1 ≤ a ≤ Au,

where binary variable {rau}, (u ∈ U , 1 ≤ a ≤ Au), represents

the association between user u and RRH group Ra
u ∈ Gu, and

the constraint (C6, C7) ensure that each user is associated with

only one group of RRHs. Let {wa∗
u }, {ra∗u } denote the optimal

precoding vectors and group association variables obtained

by solving GAP (12). Then, the optimal precoding vectors

solution for CCPMP (9) can be determined by decomposing

w
a∗
u into corresponding precoding vectors for RRHs in Ra

u

with ra∗u = 1. Unfortunately, GAP is still a non-convex MIP.

It needs to be noticed that the case of that rau = 1 but

w
aH
u w

a
u = 0 is equivalent to that of rau = 0. Based on this,

we propose an algorithm for solving GAP in the next section.

B. Group Association based Algorithm

We now present a novel method based on which we can

achieve the solution for GAP. In this method, two different

relaxation approaches are applied to address the two con-

straints (C4) and (C5), respectively. In particular, a three-

step solution approach is employed as follows. In the first

step, we tackle constraints (C4) by transforming GAP into

a general form where we set all variables {rau} equal to one.

Interestingly, if solution of the new problem satisfies the some

special condition for each user then there is only one group of

RRHs having transmission power greater than zero for each

user, and this solution is also a feasible solution of GAP. In

the second step, we approximate the constraint (C5) in the

new problem to obtain an approximated weight-based PMP

from which we can determine a feasible solution for GAP. In

the last step, we propose a method to update the weights to

drive the obtained solution of PMP to an efficient solution of

the CCPMP. These design steps are presented in details in the

following.

1) Transformation of GAP: In the first step, we describe

how to transform GAP into the PMP with discontinuous

constraint. To deal with (C4), we set all {rau} equal to 1’s

while for constraint (C5), we replace {rau} by the step function

δ(waH
u w

a
u) (δ(x) = 1 if x > 0 and δ(x) = 0 if x = 0), which

will be further approximated in next step. In particular, GAP

is relaxed to the following problem

min
{wu,k},{rau}

∑

u∈U

Au
∑

a=1

w
aH
u w

a
u (13)

s. t. (C8) :

Au
∑

a=1

Γa′
u ≥ γu, ∀u ∈ U ,

(C9) :
∑

u∈U

Au
∑

a=1

δ(waH
u w

a
u)X

a′
u ≤ Xmax.

The relationship between this problem and GAP is character-

ized in the following Proposition 1.

Proposition 1. Let {wa∗
u } denote the optimal precoding

vectors obtained by solving problem (13). For this solution,

if there is only one au, 1 ≤ au ≤ Au for each user u such

that w
au∗H
u w

au∗
u > 0 and w

a∗H
u w

a∗
u = 0, ∀a 6= au then

{wa∗
u } and {ra∗u } where ra∗u = δ(wa∗H

u w
a∗
u ), ∀(u, a) are the

optimal precoding and RRH allocation solutions for GAP.

Proof. We can see that (C8) is expanding version of (C4), and

(C9) is equivalent to (C5). Thus, the optimal objective value

of (13) is upper bounded by that of GAP. On the other hand,

if {wa∗
u } satisfies the condition in this proposition, {wa∗

u } is

also a feasible solution for GAP; hence, it must be the optimal

solution for GAP.

2) Approximation for problem (13): Problem (13) is diffi-

cult to solve because of the non-smooth step functions in con-

straint (C9). In this step, we apply the approximation method

in [6] to deal with this constraint. Specifically, constraint (C9)

can be relaxed into the following form

(C10) :
∑

u∈U

Au
∑

a=1

βa
uw

aH
u w

a
uX

a′
u ≤ Xmax, (14)

where βa
u is a weight parameter, which can be updated to

achieve good approximation. Let us introduce vector β to

represent all {βa
u}. Then, we study the following problem

min
{wa

u},{r
a
u}

∑

u∈U

Au
∑

a=1

w
aH
u w

a
u (15)

s. t. (C8) and (C10).

In the following, we show how to obtain the optimal solution

of problem (15).

3) Optimal Solution of (15): We now apply the Lagrangian

method to solve problem (15). In addition, we will show that

the strong duality holds for problem (15). Interestingly, the

optimal solution of the problem (15) satisfies the condition in

Proposition 1; hence, it is a feasible solution of GAP.

a. Dual Problem of (15): The Lagrangian of problem (15) is

expressed in (16) on the top of the page 4 where αa
u = βa

uX
a′
u ,
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L({wa
u},λ, µ) =

∑

u∈U

Au
∑

a=1

w
aH
u w

a
u −

∑

u∈U

λu





1

γu

Au
∑

a=1

∣

∣h
aH
u w

a
u

∣

∣

2

−
∑

i∈U/u

Ai
∑

m=1

∣

∣h
mH
u w

m
i

∣

∣

2

− σ2



 (16)

+ µ

(

∑

u∈U

Au
∑

a=1

βa
uw

aH
u w

a
uX

a′
u −Xmax

)

=
∑

u∈U

λuσ
2 − µXmax +

∑

u∈U

Au
∑

a=1

w
aH
u



(1 + µαa
u)I

a
u −

λu

γu
h
a
uh

aH
u +

∑

i∈U/u

λih
a
i h

aH
i



w
a
u.

∀(u, a) and λ denotes a vector whose elements represent

Lagrange multipliers {λu} of constraints (C8). Similarly, µ
denotes the Lagrange multiplier of the constraint (C10). The

dual function is then

g(λ, µ) = min
{wa

u}
L({wa

u},λ, µ). (17)

It can be verified from (16) that if any matrix Ωa
u(λ, µ) = (1+

µαa
u)I

a
u −

λu

γu
h
a
uh

aH
u +

∑

i∈U/u

λih
a
i h

aH
i is not positive semi–

definite, there will exist w
a
u that makes g(λ, µ) unbounded

below. For notations, we use A ≻ 0, A � 0, and A ⊁ 0 to

indicate that A is positive definite, positive semi–definite, and

positive semi–definite but not positive definite, respectively.

Then, the dual problem can be written as

max
λ,µ≥0

∑

u∈U

λuσ
2 − µXmax (18)

s. t. (C11) : Ωa
u(λ, µ) � 0, ∀(u, a).

Note that if the dual problem (18) is unbounded above, i.e.,

λu → ∞, then the problem (15) is infeasible due to the weak

duality. Thus, we assume that the optimal objective value

of the dual problem (18) is finite. Denote (λ⋆, µ⋆) as the

optimal solution of the dual problem. Note that problem (18)

is convex in respect to λ, µ where the objective function and

all constraints are linear. Hence, the optimal solution of λ, µ
can be achieved by the following searching method [12].

First, we start with any feasible point, i.e., Ωau
u (λ, µ) �

0, ∀(u, a). Then, we iteratively perform the following steps:

• We decrease µ until there appears (u, a) such that

Ωau
u (λ, µ) = 0.

• We increase λ so that (C11) is not violated.

This searching method not only helps us find the optimal solu-

tion of (λ⋆, µ⋆) but it also finds the optimal precoding solution

{wa⋆
u } = argmin{wa

u}
L({wa

u},λ
⋆, µ⋆), which satisfies the

following properties.

b. Strong Duality and Properties of Optimal Solution: The

following proposition implies that with the optimal solu-

tion of the dual problem, (λ⋆, µ⋆), we can find {wa⋆
u } =

argmin{wa
u}

L({wa
u},λ

⋆, µ⋆), which is the optimal solution

of (15) due to the strong duality, and {wa⋆
u } is also a feasible

solution of GAP.

Proposition 2. Consider the set of constraints corresponding

to ∀a ∈ {1, ..., Au} with optimal (λ⋆, µ⋆) for (18). Then,

i. There exists au such that Ωau
u (λ⋆, µ) ⊁ 0.

ii. It almost surely happens that all other matrix inequalities

are strict, i.e., Ωa
u(λ

⋆, µ) ≻ 0, ∀a 6= au.

iii. We can obtain the optimal solution ({wa⋆
u },λ⋆, µ⋆).

Proof. The proof sketch is described briefly as follows:

i. We apply the searching method above to update λ.

Assume there exists u ∈ U such that Ωa
u(λ

⋆, µ⋆) ≻ 0 for

all a. Then, we can keep all λ⋆
i (i 6= u) and µ⋆ unchanged,

and increase λ⋆
u to a value λ′

u so that there is one au with

Ωau
u (λ⋆|λ⋆

u=λ′

u
, µ⋆) ⊁ 0. Hence, we can find another λ

satisfying constraint (C11) and
∑

u∈U λu >
∑

u∈U λ⋆
u,

which is a contradiction. Hence, the first statement of

Proposition 2 must hold.

ii. The way to update λu suggests that the probability to have

two or more au at a specific value of λu satisfying the

condition in i. is almost zero for most practical systems,

except for the cases where the channels from two groups

are exactly symmetric.

iii. When i. and ii. hold, for every a that the strict inequality

in statement ii. holds, we can set w
a⋆
u to all-0 vector.

For each user u, we can find only one au so that

Ωau
u (λ⋆, µ⋆) ⊁ 0. Hence, there exists ŵ

au
u , ‖ŵau

u ‖ = 1,

such that ŵauH
u Ωau

u ŵ
au
u = 0. Then, {wau⋆

u } can be found

via the matrix inversion method (see for example [13]).

The proposition states that {wa⋆
u } can be determined when

(λ⋆, µ⋆) are finite. According to Theorem 7 in [11] about

the strong duality of the non-convex quadratic programming,

it is implied that problems (15) and (18) satisfy the strong

duality. Therefore, {wa⋆
u } must be the optimal solution of

problem (15). Moreover, the optimal solution of (15) satisfied

the condition stated in Proposition 1; hence, it is a feasible

solution of GAP (12) which would be close to the optimal

solution of GAP if the relaxed constraint (C10) is sufficiently

close to the original constraint (C5). Based on these interesting

results, we devise an algorithm to solve GAP in the following.

4) Group Association Based Algorithm to Solve (12): We

propose an efficient iterative algorithm to solve GAP by iter-

atively solving problem (15) and updating weight parameters

β, which is summarized in Algorithm 1. Specifically, for a

given β, the optimal solution of (15) satisfies that each user

u is associated with only one group in Gu. In each iteration,

we update the weights βa
u corresponding to RRH groups that
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Algorithm 1 GROUP ASSOCIATION BASED ALGORITHM

1: Set Φ = {(u, a)|u ∈ U , 1 ≤ a ≤ Au}, βa
u = 0, ∀(u, a).

2: repeat

3: Solve problem (15) with current {βa
u}.

4: for all (u, a) do

5: if waH
u w

a
u > 0 then

6: Set Φ = Φ/(u, a) and βa
u =

1

waH
u wa

u + τ
.

7: else if (u, a) /∈ Φ then Set βa
u = 1/τ end if

8: end if

9: end for

10: until Convergence

have been chosen in the current or previous iterations. These

weights are updated by the well-known re-weighted method

[6] βa
u = 1/

(

w
aH
u w

a
u + τ

)

(τ ≪ 1), while other weights are

remained to be zero. In fact, the weights of not-chosen-yet

RRH groups are maintained at zero so that the “best” of these

remaining RRH groups can be selected if current user-RRH

group associations cannot maintain the cloud computational

constraint. Then, user-RRH group associations can be deter-

mined through solving the power minimization problem (15)

with the updated weights. The convergence of this proposed

algorithm is stated in the following proposition.

Proposition 3. Algorithm 1 converges to a feasible solution

satisfying all constraints in GAP.

Proof. The proof is given briefly as follows. First, when an

RRH group, which had been chosen for user association,

is dropped, its weight is set to a very large value (τ can

be very small). This RRH group will not be chosen in all

future iterations since it will lead to violation of constraint

(C10), otherwise. Hence, if one RRH group are dropped

for a particular user, a new group in Φ will be selected in

that iteration. This implies that the number of potential RRH

groups in Φ decreases over iterations. Because the number

of RRH groups for all users is finite, there must exist an

iteration from which the RRH group-user association for every

user remains unchanged. It can be verified that the employed

weight update guarantees that the achieved solution satisfies

all constraints in GAP.

C. Fast Greedy Algorithm

For comparison purposes, we describe another fast greedy

algorithm in Algorithm 2. It can be seen that for a given

association solution between RRH groups and users, our

CCPMP becomes the power minimization problem with QoS

constraints which can be solved optimally [8]. Moreover, we

should associate each user with RRHs as possible to improve

the objective value. Here, the link between RRH k and user u
is called “activated” if tu,k is set to 1, and vice versa. Assume

all links are inactivated at the beginning and the algorithm

comprises three steps. First, for each user, we activate one

link with the RRH having the strongest channel gain. This is

to ensure that each user is served by at least one RRH. Second,

we sort all remaining RRH-user links based on their channel

Algorithm 2 FAST GREEDY ALGORITHM

1: Set tu,k = 0 for all u ∈ U and k ∈ K.

2: Let Θ = {(u, k)|u ∈ U , k ∈ Ku}
3: for u = 1 to M do

4: Set tu,k∗ = 1 if k∗ = argmaxk∈Ku
h
H
u,khu,k.

5: Set Θ = Θ/(u, k∗).
6: end for

7: Sort Θ based on channel gains from strongest to lowest.

8: Let (n) indicates index n in sorted Θ. Find m̄ = maxm
s.t. f(Nu, su) ≤ Xmax if tu(n),k(n) = 1, ∀n ∈ {1, ..., m̄}.

9: Set tu(m),k(m) = 1 for all m ∈ {1, ..., m̄}.

10: Solve power minimization problem with defined {tu,k}.

Fig. 1. Simulation model

TABLE I
TARGET SINRS FOR DIFFERENT s-QAM WITH P e = 10−3 .

s-QAM 2 4 8 16 32
bits/symbol 1 2 3 4 5

γ(s) 4.77 9.55 27.65 45.11 113.90

gains from strongest to lowest. Third, we activate as many

links as possible starting from the strongest ones as long as

the computational constraint is still satisfied. Finally, we solve

the power minimization problem for the obtained RRH-user

association solution to determine all precoding vectors.

IV. NUMERICAL RESULTS

We consider the 7-cell network where the distance between

two nearest RRHs are 500m as in Fig. 1. Users are randomly

located inside the cells. The channel gains are generated

by considering both Rayleigh fading and path loss which is

modeled as Lk
u = 36.8log

10
(dku)+43.8+20log

10
( fc
5
) where dku

is the distance from user u to RRH k and fc = 2.5GHz. The

noise power is set equal to σ2 = 10−13 W and τ = 10−6. The

CE required for each user is simulated based on the function

given in (5). We also assume that the BBU pool comprises B
Intel Xeon E5590 processors where the computational capacity

of each processor is 53.328 GOPS [14]. Hence, the total cloud

computational capacity is 53.328×B GOPS. In addition, the

same modulation scheme is chosen for all users, which is

from the set {2−, 4−, 8−, 16−, 32−}QAM and corresponding

target SINRs are given in Table I.

In Figs. 2–4, we present the variations of total transmission

power (in dB) obtained by the two algorithms versus the

constellation size (su), the number of processors, the number

of users, and the number of antennas per RRH, respectively

where “GAB Alg.” represents Algorithm 1 and “(k-RRHs)”
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Fig. 2. Total transmission power versus constellation size where M = 10,
B = 40, N = 4.
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Fig. 3. Total transmission power versus the number of processors where
M = 10, su = 16, N = 4.
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Fig. 4. Total transmission power versus the number of users where B = 100,
su = 16, N = 4.
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Fig. 5. Total transmission power versus the number of antennas where B =
100, su = 2, M = 10.

captures the case in which each user is allowed to associate

with at most k nearest RRHs. As evident from Fig. 2, larger

transmission power is required as the higher constellation size

is employed. In addition, we can achieve better performance

when the cloud computational capacity of BBU pool is larger

(i.e., the larger number of processors) as illustrated in Fig. 3.

Also, larger number of users results in higher total transmis-

sion power as confirmed by Fig. 4.

Interestingly, Fig. 5 demonstrates that when larger number

of antennas is equipped at each RRH, we can achieve lower

transmission power. However, when number of antennas be-

comes too high, the required transmission power will increase.

This is because of that limited cloud computational capacity

would force the number of RRHs serving each user to be

smaller when the number of antennas of each RRH becomes

sufficiently high. It is also evident that our proposed GAB

algorithm outperforms the Fast Greedy algorithm in all studied

simulation scenarios. Moreover, allowing more RRHs to serve

each user results in reducing the total transmission power.

V. CONCLUSION

We have presented a novel algorithm for downlink joint

processing design in C-RAN which aims to minimize the

total transmission power subject to constraints on the cloud

computational capacity and users’ QoSs. Numerical results

have illustrated the efficacy of our proposed algorithms and the

impacts of different parameters on the network performance.
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