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Abstract—In this paper we analyze and discuss the coverage
and capacity of Sigfox and LoRaWAN in a large scale urban
environments covering 150 km2 in Northern Denmark.

First, the study measures and analyzes interference in the
European 868 MHz license free industrial, scientific, and medical
band, creating a model for the interference. The measured
interference in downtown Aalborg has an occurrence rate of
22 % and a generalized extreme value distributed power level.

Next, the study compares the coverage of the two Internet
of Things network solutions using the existing Telenor cellular
site grid both with and without interference from the measured
external sources. The study concludes that without interference,
both LoRaWAN and Sigfox provides very good indoor coverage
of more than 99 %. Furthermore, Sigfox and LoRaWAN can
provide uplink and downlink failure rates of less than 1 % for
the 95 percentile of the devices for all cells without external
interference. Adding the external interference results in an
outdoor coverage of 90-95 % and indoor coverage of 50-80 %.
Finally, the uplink and downlink 95 percentile failure rate
increases significantly to 50 % for LoRaWAN and exceeds 60 %
for Sigfox.

I. INTRODUCTION

Low power wide area (LPWA) networks represent an evo-

lution of networks targeted for the Internet of Things (IoT),

which offers connectivity to various sensors and actuators.

Unlike traditional mobile broadband networks these networks

do not focus on offering high data rates and low latency, but

rather on scalability, extended coverage, low cost, and energy

efficiency for end user devices.

According to Cisco [1] there are already approximately

20 billion connected devices, and the estimate for 2020 is

more than 50 billion connected devices. Not all devices

are connected to a LPWA network but rather to local area

networks such as Wi-Fi and Bluetooth low energy. However,

the potential of LPWA networks is still very significant.

Today in most parts of the world, the main connectivity

platform for IoT is the existing GSM/GPRS with its good

coverage and low cost devices. An alternative solution to

GSM/GPRS is the narrowband IoT (NB-IoT) network based

on LTE standard. NB-IoT has been specified under 3GPP Rel.

13 [2] with the aim to offer IoT connectivity in a 200 kHz

spectrum (on a single physical resource block) within the

LTE system [2]. Besides cellular networks, IoT networks are

also being deployed in the license free industrial, scientific,

and medical (ISM) bands. Two of the most common IoT

connectivity technologies being deployed in the ISM band are

Long Range (LoRa) WAN [3] and Sigfox [4]. LoRaWAN is

Fig. 1. Measurement locations for interference in the ISM band. Blue dot:
measurement point, red dot: cellular site location.

based on proprietary spread spectrum techniques and Gaussian

frequency shift keying. Sigfox is an ultra-narrowband technol-

ogy using differential binary phase-shift keying (DBPSK) with

100 Hz channel only. The license free ISM band can be used

by anyone, but will have to deal with both internal and external

interference, contrary to the licensed cellular spectrum utilized

by e.g. GPRS and NB-IoT.

Since LPWA networks for IoT and their technologies

are rather new they have not received much attention from

the academic community yet. There are only a few papers

available, and while they provide insight in the individual

technologies they do not analyze the impact from external

interference sources. Examples include the analysis of the

basic performance of LoRa [5], [6], and NB-IoT [7].

The contribution of this paper is to analyze the coverage

and capacity for Sigfox and LoRaWAN under the influence of

external interference in the EU ISM band at 868.0-868.6 MHz.

The analysis is based on the technologies’ link budget, a new

measurement-based interference model [8], the technologies’

time on air, and a probabilistic modeling of the random access

capacity and potential collisions.

To quantify the level of interference in the 868.0-868.6 MHz

ISM band we carried out a measurement campaign in subur-

ban, industrial, harbor, and downtown urban areas [8]. The

measurements were made in Aalborg, Denmark at the loca-



TABLE I
TECHNOLOGY OVERVIEW.

LoRa Sigfox

UL & DL UL DL

Spectrum [MHz] 863-870 868.1- 869.425-
868.3 869.625

Tx power [dBm] 14-27 14 27
Modulation Chirp spread spectrum DBPSK GFSK
Bandwidth [kHz] 125 0.1 0.6
Max payload [bytes] 51 12 8
Scheduling Uplink initiated Uplink initiated

tions identified in Fig. 1. When evaluating the coverage and

capacity of Sigfox and LoRaWAN LPWA networks Telenor’s

sub 1 GHz cellular grid in Northern Denmark was used as

a realistic reference for site locations. The average intersite

distance is ≤ 2 km and the sites are shown in Fig. 1.

The paper is structured as follows: In the next section

the EU ISM band regulations and the two LPWA network

technologies are analyzed, while the system level modeling

and interference measurements are presented in section III.

Next, the results are given in section IV followed by the

conclusions in section V.

II. TECHNOLOGY OVERVIEW

This paper compares the coverage and capacity of Sigfox

and LoRaWAN LPWA networks for IoT. Both communication

systems are designed for and deployed in the ISM sub 1 GHz

band. Different world regions provide different frequency

bands for ISM and this paper addresses a deployment in the

license free European 868 MHz band [9]. In this section

the spectrum usage restrictions and the key properties of

Sigfox and LoRaWAN are reviewed. Selected LPWA network

properties are summarized in Table I.

The 868 MHz EU ISM band enables two basic mechanisms

for sharing the spectrum; duty cycle restrictions or listen

before talk (LBT). Both Sigfox and LoRaWAN use the duty

cycle restrictions for access in the EU ISM band. Therefore,

LBT access is not addressed in this paper. The duty cycle

restriction varies within the ISM band from 0.1 % to 10 %,

where the latter is only available for the 250 kHz band in

869.4-869.65 MHz, as illustrated in Fig. 2. Certain parts of

the ISM band is pre-allocated to specific use cases such as

alarms and voice systems, which are limited to a maximum

radiated power of 10 dBm. The remaining parts of the ISM

band allow a maximum radiated power of 14 dBm, while the

aforementioned 250 kHz band may use 27 dBm [9].

A. Sigfox

The Sigfox network [4] is relying on Ultra-Narrow Band

(UNB) modulation using DBPSK at 100 bps. Sigfox is based

on a simple access scheme where the device initiates a

transmission by sending three uplink packages, containing the

same data, in sequence on three random carrier frequencies.

The base station will successful receive the package even if

two of the transmissions are lost due to e.g. collision with

Fig. 2. 868 MHz EU ISM band power and duty cycle restrictions [9].

other devices or interference from other systems using the

same frequency. Sigfox uses 868.1-868.3 MHz for uplink with

a maximum radiated power of 14 dBm under the EU ISM band

regulations [9].

The duty cycle of this frequency band is maximum 1 %,

allowing the Sigfox device to transmit only 36 seconds every

hour. With a time on air of 2 s per transmission that is 6 s

in total for a single Sigfox package, this allows maximum

6 messages per hour with a payload of 4, 8, or 12 bytes [10].

Sigfox was initially designed without a downlink channel,

but it has been added in the recent Sigfox standards [4].

The downlink channel uses Gaussian Frequency-Shift Key-

ing (GFSK) with 600 bps in the frequency band 869.425-

869.625 MHz. This ISM band allows a maximum radiated

power of 27 dBm and a duty cycle of 10 % or 360 seconds per

hour. The downlink payload is always 8 bytes and, depending

on the Sigfox subscription, up to 4 downlink messages per

day are allowed.

B. LoRaWAN

The LoRa LPWA solution consist of two major components,

the LoRa physical layer specifications and the LoRaWAN

which is the network protocol.

The LoRa physical layer is based on chirp spread spectrum

with GFSK modulation and high bandwidth-time product

(BT>1) to protect against in-band and out-band interference.

LoRa provides 6 different spreading factors from 6 to 12.

This enables multiplexing of different devices without causing

performance degradations and reducing time on air. LoRa can

operate in the entire EU ISM band but has three mandatory

channels at 868.1, 868.3, and 868.5 MHz. The maximum

LoRaWAN payload depends on the spreading factor and for

the best protected channels it is limited to 51 bytes.

Both the Sigfox and LoRaWAN LPWA networks are based

on a typical star protocol where each device communicates

with a base station that relays the information to and from

a central server via an IP based protocol. Each end user

device can transmit any time, and the LoRaWAN devices using

any data rate unless instructed otherwise by the base station.

Finally, each end device needs to track the time spent for each

transmission to observe the local spectrum regulations.



TABLE II
LINK BUDGET FOR SIGFOX AND LORAWAN.

Technology LoRa Sigfox

UL/DL UL DL UL DL

Transmitter
(1) Tx power [dbm] 14 14 14 27

Receiver
(2) Thermal noise density [dBm/Hz] -174 -174 -174 -174
(3) Receiver noise figure [dB] 3 5 3 5
(4) Occupied channel bandwidth [kHz] 125 125 0.1 0.6
(5) Effective noise power
=(2) + (3)+(4)+10log((4)) [dBm] -120 -118 -151 -141
(6) Required SINR [dB] -20 -20 7 7
(7) Receiver sensitivity = (5)+(6) [dBm] -140 -138 -144 -134

(8) MCL = (1)-(7) [dB] 154 152 158 161

III. SYSTEM LEVEL MODELING AND MEASUREMENTS

The analysis is based on a system level modeling where

commercial site locations and a digital height map are im-

plemented in a simulation tool to estimate the coupling loss

between end user devices and base stations. The simulation

method is aligned with the work described in [7]. Using the

simulated coupling loss it is then determined whether the

devices are in coverage or not based on the link budget,

described in the following subsection. Next the time on air per

device is calculated, based on the coupling loss, and finally the

random access capacity is estimated based on the probability

of the number of concurrent active devices. In the interference

scenario the coverage is recalculated using the interference

model, after which the time on air and the random access

capacity estimates are also updated.

The analyzed area is the urban part of Northern Denmark

covering 10 cities; in total 150 km2 with 242.000 inhabitants

[11]. The site locations are based on Telenor’s commercially

deployed cellular network. All 2G, 3G, and 4G sites with sub

1 GHz carriers are used to simulate the Sigfox and LoRaWAN

networks, but on the contrary to the cellular deployment all

sites only have one omni directional antenna. The simulated

area is divided into 100m x 100m pixels with an average

density of 16 people per pixel that is 1600 people per km2.

The applied channel model is the Urban Macro NLOS

model [12]. Furthermore, shadow fading with a log normal

distribution of 6 dB is added to the simulated path loss [12].

The traffic model assumes 1 IoT device per person, that

is the IoT spatial density follows the people density. The

traffic per device is modeled as uplink originated traffic of

10 bytes/hour with an uniformly distributed transmission time.

Therefore, one Sigfox or LoRa message is sufficient to transfer

the payload.

A. Maximum Coupling Loss (MCL)

The next step in the system level evaluation is to compare

the simulated coupling loss with the technologies’ maximum

coupling loss (MCL) to determine whether the devices are

covered. The MCL is shown in Table II based on [13].

B. Time on air

The time on air is constant for Sigfox, which uses 2 s per

message [10]. LoRaWAN uses link adaptation and thus the

time on air varies from 22 ms to 860 ms depending on the

coupling loss [14]. The LoRaWAN is deployed using the three

mandatory channels with 125 kHz bandwidth in the 868.0-

868.6 MHz EU ISM band with duty cycle of 1 % [9].

C. Random access capacity

Sigfox and LoRaWAN are not scheduled systems, but rather

transmits the uplink packets in a random time and channel.

This contention-based method is known as the pure Aloha

access scheme [15]. The probability p of having zero transmis-

sion attempts from other devices coincide with a device’s own

transmission, and thus resulting in a successful transmission

in the pure Aloha access method is:

p = e−2·G (1)

where G is the mean number of transmission attempts per time

frame according to a Poisson distribution. In the simulations

the mean number of transmissions per hour is based on the

time on air per device, the number of devices per specific site,

and the number of channels per technology. Note that slotted

Aloha access is used in downlink because the transmissions

from a single base station are scheduled.

As mentioned earlier, Sigfox transmits the same package in

three attempts on random and independent uplink channels.

Each attempt can either be received successful or not. Thus

the reception of a Sigfox uplink package can be modeled as a

Bernoulli trial with a binomial distribution. The probability

P , of receiving at least one of three Sigfox transmissions

correctly, is therefore modeled as a sequence of three Bernoulli

trials:

P (X > 0) = P (X = 1) + P (X = 2) + P (X = 3)

= 1− P (X = 0) = 1−

(

n

X

)

pX (1− p)
n−X

= 1−

(

3

0

)

p0 (1− p)
3−0

(2)

where the probability of a successful transmission using the

Aloha scheme is p, defined in Eq. 1, X is the total number of

successful transmissions from the specific device and n is the

number of trials, which is three for Sigfox.

D. Interference

The license free ISM band allows many different types

of devices to access the spectrum as long as they obey the

regulations [9]. Therefore the level of interference between

the different radio access technologies may be significant and

thus harmful to successful operation of e.g. LoRaWAN and

Sigfox. To study this issue, interference measurements have

been carried out in Aalborg, Denmark in the five locations

identified in Fig. 1, which include suburban, industrial, harbor,

and downtown urban areas. The measurements were made in a

stationary position for 2 hours at each location during normal



Fig. 3. Interference measurement result and modeling of the mandatory
LoRaWAN and Sigfox band (868.0-868.6 MHz).

working hours and covering the 863-870 MHz ISM frequency

band. The measurements were made with a Rohde & Schwarz

TSMW radio network scanner [16] using a resolution of 7 kHz

by 200 ms per sample. Each sample is referred to as an

interference unit in the following. For further details on the

measurement campaign refer to [8].

The measurement in urban Aalborg in the mandatory Lo-

RaWAN and Sigfox 868.0-868.6 MHz frequency band shows

that interference occurs frequently and with high power as

illustrated in the top plot of Fig. 3. Interference units (7 kHz

by 200 ms samples) stronger than -105 dBm occur in 22 %

of all samples and with a maximum recorded interference

power level of approximately -65 dBm. In order to include

the interference in the coverage and capacity estimates the

interference is modeled with a uniformly random occurrence

rate of 22 %. When an interference sample is generated

its power level is modeled by a generalized extreme value

distribution [17] as illustrated in the lower plot of Fig. 3.

The impact on receiver performance will be different from

LoRaWAN and Sigfox as the systems apply different mech-

anisms to combat the interference. As mentioned earlier,

LoRaWAN utilizes a spread spectrum technique to spread the

interference in the received band and minimize its impact.

Sigfox on the other hand transmits each data package in uplink

three times on different frequencies to maximize the probabil-

ity of receiving at least one packet successful. However, for

both systems, the impact on the signal to interference + noise

ratio (SINR) can be modeled as:

SRx =
STx − L

N + I
(3)

where SRX is the received SINR [dB], STx is the transmitted

power [dBm], L is the coupling loss [dB], N is the effective

noise power from Table II [dBm] and I is the modeled

interference [dBm]. Note the SINR model of Eq. 3 applies

to both uplink and downlink.

Fig. 4. Interference model and scaling of Sigfox and LoRaWAN systems.
Note that most LoRa messages are shorter than 200 ms.

The measured interference unit (7 kHz by 200 ms) is wider

in frequency than a Sigfox burst and significantly shorter in

time as illustrated in Fig. 4. Therefore, multiple interference

units, following each other in the time domain, may impact a

Sigfox transmission. Likewise, the LoRaWAN burst is signifi-

cantly wider in frequency and thus multiple interference units,

parallel to each other in the frequency domain, may impact a

LoRaWAN transmission as illustrated in Fig. 4.

The probability of interference P (i > 0) is modeled with

a binomial distribution, similarly to Eq. (2), where i is the

number of interference units within the Sigfox or LoRa signal.

The probability of interference is determined as the comple-

ment of the probability of all Bernoulli trials not resulting

in interference (P (i = 0)). The number of trials is based

on the relationship between the interference unit and the

time-frequency domain allocation of Sigfox and LoRaWAN

transmissions:

PLoRa (i > 0) = 1−

(

125 kHz
7 kHz

0

)

p0i (1− pi)
125 kHz

7 kHz
−0

(4)

PSigfox (i > 0) = 1−

(

2 s
200ms

0

)

p0i (1− pi)
2 s

200 ms
−0

(5)

where the probability pi is the occurrence rate of the inter-

ference unit (22 %). In most cases the LoRaWAN signal is

shorter than the 200 ms interference unit and therefore the time

domain probability is not included in the number of trials in

Eq. (4). Similarly the Sigfox signal is much narrower than the

7 kHz interference unit and thus not included in the number

of trials in Eq. (5).

If interference occurs the interference power I [dBm],

applied in Eq. (3) and based on the generalized extreme value

distribution in Fig. 3, is scaled according to the ratio between

the interference unit and the radio signal as follows:

ILoRaWAN = Igev + 10 · log10

(

pi ·
125 kHz

7 kHz
· ISF

)

(6)

ISigfox = Igev + 10 · log10

(

100Hz

7 kHz

)

(7)

where Igev is the base interference power level [dBm], drawn

randomly from the generalized extreme value distribution
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in Fig. 3, and ISF is the interference spreading factor of

LoRaWAN, which is 7 kHz/125 kHz because the interference

unit’s power is spread across the LoRaWAN signal. Further-

more, the LoRaWAN interference is scaled with the average

number of interference units: 0.22 · 125 kHz/7 kHz = 3.93 to

include the possibility of having more than one interferer dur-

ing the transmission. The Sigfox interference is calculated for

uplink (100 Hz signal) and the average number of interference

units is not included, because it is assumed that a collision with

just one interference unit will result in a failed transmission

provided that the SINR is less than the requirement of Table

II. In downlink the 600 Hz wide Sigfox signal would change

the scaling accordingly.

IV. RESULTS

In this section the simulation results are presented. They

are based on the path loss estimates for the urban areas of

Northern Denmark, combined with the MCL and time on air

of Sigfox and LoRaWAN. The path loss calculations are made

for outdoor positions, but additional losses of 10, 20 and 30 dB

are added to account for outdoor-to-indoor penetration losses

in buildings [7]. Finally, the modeled interference is included

to determine the impact on coverage and capacity,

A. Coverage

The estimated Sigfox and LoRaWAN uplink coverage in the

urban areas of Northern Denmark is illustrated in Fig. 5. Both

technologies provide more than 99 % coverage for up to 20 dB

indoor penetration loss when interference is not included as

illustrated with the solid lines. For deep indoor coverage

(penetration loss of 30 dB) Sigfox provides 96 % coverage

and LoRaWAN 90 % coverage under ideal conditions without

interference. Including the interference from external sources,

as modeled in the previous section, reduces the coverage area

as shown with dashed lines in Fig. 5. Sigfox only covers
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Fig. 6. Downlink coverage relative to penetration loss with and without
interference.

90 % of the outdoor area while LoRaWAN provides 95 %

coverage. According to the modeling Sigfox is more sensitive

to interference than LoRaWAN as LoRaWAN uses spread

spectrum techniques. Even though Sigfox transmits three times

on random frequencies each Sigfox message is likely to

collide with interference units during the transmission. For

indoor coverage (20 dB penetration loss), the impact from

interference is even worse as the link budget is reduced and

LoRaWAN has 78 % coverage and Sigfox less than 50 %

coverage.

Fig. 6 shows the coverage of Sigfox and LoRaWAN in

downlink. The observations are similar to those made for up-

link in Fig. 5, but Sigfox performs slightly better in downlink

due to the higher transmit power of the base station (27 dBm

vs 14 dBm according to Table II).

B. Capacity

The uplink failure rate is shown in Fig. 7 for both Lo-

RaWAN and Sigfox. Without interference (solid lines) both

Sigfox and LoRaWAN are able to provide one 10 byte message

every hour per devices for both indoor (20 dB indoor pene-

tration loss) and outdoor locations with 95 percentile uplink

failure (combination of collision and lack of coverage) less

than 1 %.

Including the external interference (dashed lines) the Lo-

RaWAN outdoor devices have a 95 percentile uplink failure

of about 7 % while Sigfox has an uplink failure rate of 17 %.

For the indoor deployment LoRaWAN has 95 percentile uplink

failure rate of 50 % while Sigfox has an uplink failure rate of

more than 60 %.

Fig. 8 shows the capacity of Sigfox and LoRaWAN in

downlink. Generally, the downlink failure rate is similar to

uplink in Fig. 7, but again Sigfox performs slightly better in

downlink due to the higher transmit power.
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V. CONCLUSION

This paper analyses coverage and capacity for Sigfox and

LoRaWAN in a deployment scenario, based on real operator

site locations, covering 150 km2 of urban areas in Northern

Denmark. Both LoRaWAN and Sigfox show very good per-

formance, in the initial interference-free scenario, with indoor

coverage of more than 99 %. Furthermore, both Sigfox and

LoRaWAN can provide 95 percentile uplink and downlink

failure rates of less than 1 % for all cells, when each device

transmits 10 bytes/hour.

The interference level in the 868.0-868.6 MHz EU ISM

band, utilized by Sigfox and LoRaWAN, is measured in down-

town Aalborg. Interference powers stronger than -105 dBm

occur with a probability of 22 % and the power level is

fitted to the generalized extreme value distribution. Adding the

measured and modeled external interference to the simulations

results in an outdoor coverage reduction of up to 10 % points

and an indoor coverage reduction of 20-50 % points. The

indoor uplink and downlink 95 percentile failure rates increase

significantly under interference, exceeding 60 % for Sigfox in

both uplink and downlink. LoRaWAN provides a failure rate

of about 50 % for both uplink and downlink indoor devices.

The level of interference in the 868 MHz EU ISM band

is expected to grow with the deployment of several wireless

IoT solutions not limited to Sigfox and LoRaWAN. There-

fore, it will be difficult to provide reliable and predictable

communication, with wide area coverage and capacity, in the

868 MHz EU ISM band due to the frequent and significant

level of external interference.

Based on this study further work is needed for uplink and

downlink interference mitigation in urban areas.
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