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Abstract—The millimeter wave (mmWave) radio band is
promising for the next-generation heterogeneous cellular net-
works (HetNets) due to its large bandwidth available for meeting
the increasing demand of mobile traffic. However, the unique
propagation characteristics at mmWave band cause huge redun-
dant handoffs in mmWave HetNets if conventional Reference
Signal Received Power (RSRP) based handoff mechanism is
used. In this paper, we propose a reinforcement learning based
handoff policy named LESH to reduce the number of handoffs
while maintaining user Quality of Service (QoS) requirements
in mmWave HetNets. In LESH, we determine handoff trig-
ger conditions by taking into account both mmWave channel
characteristics and QoS requirements of UEs. Furthermore, we
propose reinforcement-learning based BS selection algorithms for
different UE densities. Numerical results show that in typical
scenarios, LESH can significantly reduce the number of handoffs
when compared with traditional handoff policies.

I. INTRODUCTION

The 5G network needs to dramatically increase network
capacity for keeping pace with increasing mobile traffic de-
mand. A simple way to increase network capacity is to allocate
more bandwidth. Since the radio spectrum from 300MHz to
3GHz is very crowded, an effective solution is to design
the 5G networks as two-tier heterogeneous cellular networks
(HetNets) where the macrocell is supported by traditional
cellular band, while some small or femto cells are supported by
the globally available spectrum at millimeter wave (mmWave)
band ranging from 30GHz to 300GHz [1]. This network
architecture is called mmWave HetNets.

The key propagation properties at mmWave band are
large propagation path loss and high sensitivity to blockage.
These properties cause many design challenges for mmWave
HetNets, including integrated circuits design, beamforming
design, user association and handoff mechanisms. In particular,
handoff occurs more frequently in mmWave HetNets. It was
shown in [2] that the average handoff interval can be as low as
0.75 second in typical scenarios. A separate study [1] showed
by computer simulation that more than 61% handoffs are
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unnecessary. The very large number of redundant handoffs
causes heavy signaling overhead, low energy efficiency and
high UE outage probability.

There are relatively few papers on handoff in mmWave
HetNets. The authors of [4] proposed the Extended Cell (EC)
concept in RoF architecture to increase overlapping areas and
thus decrease handoff UE outage probability. Similarly, to
the support of high UE mobility in outdoor environment,
the Moving Extended Cell [5] and Moving Extended N-
Cells [6] concepts are proposed. Focusing on the optimization
of handoff mechanisms, the authors of [7] solved the BS
selection problem by Markov Decision Process (MDP). The
handoff policy can achieve high throughput while decreasing
the number of handoffs. As the computation complexity of
solving MDP is formidable, this strategy cannot readily be
applied to dense deployment HetNets. The authors of [8]
develop an online learning-based approach to solve single UE
network selection problem in heterogeneous wireless networks
which contains mmWave and other RATs, such as Wi-Fi and
LTE. This work is focused on RAT selection for a single UE
and aims at maximizing long-term throughput of the UE.

In this paper, we propose the Learning based Smart Handoff
(LESH) policy for mmWave HetNets. Our design objective is
to reduce the number of unnecessary handoffs while guaran-
teeing the QoS of UEs. LESH consists of two parts. Part 1
is to determine the handoff trigger condition by the mmWave
channel characteristics and QoS requirements of UEs. Part 2
is on BS selections, and is carried out by two algorithms:
LESH-S and LESH-M for different UE density circumstances.
LESH-S chooses target BS for single UE based on Upper Con-
fidence Bound (UCB) algorithm that can achieve logarithmic
performance when compared with the optimal algorithm that
uses global perfect information. LESH-M is used for dense
UE distribution circumstance to choose BSs for multiple UEs
triggering handoffs in the same measurement report period.
We formulate it as a 0-1 integer programming, and solve it by
Lagrange dual decomposition with relaxation.



II. SYSTEM MODEL

Consider a densely deployed HetNet with M femto cells
underlying a macrocell as shown in Fig. 1. Let M be the set
of femto base stations (FBSs). FBSs can use either mmWave
or the traditional cellular frequency shared with the macro BS
(MBS). Let � be the ratio of FBSs using mmWave frequency,
Mm be the set of the mmWave FBS (denoted as mm-FBS),
and Mt be the set of the traditional FBS (denoted as Tr-FBS).

Fig. 1. The system model of mmWave HetNets.

We assume that the channel of mm-FBS is based on LOS-
NLOS models [9], meaning that the channel condition between
UE and mm-FBS can alternate between the two well-defined
states, Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS).
Similar to that in [10], [11], we assume that the path loss
model is

L(d) = ↵+ 10⌘ log10 (d) + ⇠ [dB] , ⇠ ⇠ N(0, ✓2), (1)

where d is the distance, ↵ and ⌘ are the least square fits of
floating intercept and slope over the measured distances (30
to 200 m), and �2 is the lognormal shadowing variance. The
values of ↵, ⌘ and ✓ are different for LOS and NLOS states
[10]. Since interference can be ignored for mm-FBS, for a
specific UE, say UE n, the SNR when associated with mm-
FBS j can be written as SNRj

n
= Pj L(d)�1

�2 , where Pj is the
transmit power of mm-FBS j, �2 is the noise power and  is
the antenna gain that can be calculated according to [10].

For the traditional band, co-channel interference needs to be
considered due to shared bandwidth deployment. We assume
that all BSs allocate bandwidth resources to their serving
UEs uniformly. According to Shannon capacity formula, the
achievable transmission rate for UE n associated with BS j

can be written as

r
j

n
=

(
Bm
Uj

log2(1 + SNRj

n
), j 2Mm

Bt
Uj

log2(1 + SINRj

n
), j 2 {Mt [MBS}

, (2)

where Bm (Bt) is the bandwidth of mm-FBS (Tr-FBS and
MBS) and Uj is the total number of UEs served by BS j.

We use two factors to describe QoS requirement: minimum
threshold of transmission rate �

min

n
and endurable time ⌧n.

The endurable time is the maximum time a UE is allowed to
have the transmission rate lower than the minimum threshold.
We state that the QoS of UE n is satisfied when the following
condition holds

9t0 2 [t� ⌧n, t], s.t.rjn(t0) � �min

n
. (3)

Furthermore, to classify the type of service more precisely, we
introduce a third factor: maximum threshold of transmission
rate, denoted by �

max

n
. Let C = {C1, C2, · · · , CL} be the

set of all service types, and specify that the service of UE n

belongs to type Ci when ⌧n 2 [⌧i, ⌧i+1), �min

n
2 [�min

i
, �

min

i+1 )
and �max

n
2 [�max

i
, �

max

i+1 ). We assume that UEs in the system
move at a random speed and in a random direction.

III. FRAMEWORK OF LESH HANDOFF POLICY

3GPP defines six handoff events for cellular networks [3]
with Event A2 and Event A3 being the most two common
events in HetNets. Our proposed LESH handoff mechanism
is focused on these two handoff events, and the other handoff
events decisions remain the same as those in 3GPP.

A. Handoff Trigger Conditions

Event A2 occurs when the serving BS becomes worse than
a threshold [3], or the serving BS cannot fulfill the minimum
UE QoS requirement. Thus, in LESH, the trigger condition
can be expressed as

8t0 2 [t� ⌧n, t], rin(t0) < �
min

n
, (4)

where ⌧n and �
min

n
are UE service type parameters. This

change can avoid many unnecessary handoffs. Once inequality
(4) is satisfied for UE n, an Event A2 handoff is triggered,
and the UE needs to select a suitable target BS.

Event A3 occurs when a neighbor BS becomes offset
amount better than the serving BS [3]. In this event, the UE
switches to a better BS which can improve his QoS although
current serving BS can fulfill the minimum QoS requirement.
Thus, LESH uses the following three trigger conditions

9t0 2 [t� ⌧n, t], s.t.rjn(t0) � �min

n
, (5-1)

r
k

n
(t) � r

j

n
(t) + o↵set , (5-2)

�
max

n
� �min

n
> ✏. (5-3)

Condition (5-1) states that the current serving BS can
fulfill the minimum UE QoS requirement. Condition (5-2)
constraints that the transmission rate of the target BS k is at
least offset higher than that of the serving BS j. Condition (5-
3) indicates that the difference of transmission rate between
maximum and minimum threshold is greater than ✏ in QoS
requirement.

B. BS Selection

Once handoff trigger conditions are met, UEs need to
select suitable target BSs. In LESH, we use reinforcement-
learning for selecting BSs to reduce the number of unnecessary
handoffs. We design two BS selection policies LESH-S and
LESH-M for different UE density circumstances. LESH-S
with low computational complexity is for a specific UE. It
is suitable for sparse UE density circumstance. LESH-M is a
joint optimal policy for multiple UEs who trigger handoffs in
the same measurement report period. It is suitable for dense
UE distribution circumstance with a central controller.



IV. LESH-S ALGORITHM FOR SINGLE TARGET BS
SELECTION

Once a specific BS satisfies the trigger conditions of Event
A3, the target BS is determined. We therefore focus on the
BS selection for Event A2. Let An(t) be the set of admissible
BSs when UE n triggers Event A2 handoff at time t,

An(t) = {k | rk
n
(t) � �min

n
+ �, 8k 2M [MBS},

where � is a criteria offset parameter. For UE n with volume of
data Qn to be transmitted, we use Hn to denote the number of
handoffs. Our goal is to select BS in set An(t) with minimum
Hn once Event A2 condition is triggered.

A. Reinforcement-Learning Framework
We model the BS selection problem as a reinforcement

learning problem. It consists of three elements: agent, envi-
ronment and action. In our model shown in Fig.2, the agent
is a specific UE n, the environment is the channel conditions
of BSs, and the action is BS selection policy. The aim is to
maximize the total reward by a sequence of BS selections.

Fig. 2. Reinforcement learning based BS selection framework

As it is difficult to incorporate Hn into the reward function
directly, we make a transformation as follows. Let reward
function R

k

n
(t) be defined as the volume of transmitted data

from time t to t
k

n
when UE n switches to BS k at time t, or

R
k

n
(t) =

Z
t
k
n

t

r
k

n
(t)dt. (6)

Proposition 1: Minimizing the total number of handoffs Hn

for UE n is equivalent to solving the proposed reinforcement
learning problem with the reward function defined in (6).

Proof: Let t
k

n
in (6) equal to the time when the next

handoff for UE n is triggered after time t, and we define a
sort function � in a finite set X as

�(x) = k, x 2 X and x is the k smallest element in X.

The objective of the above reinforcement learning
model is to find the optimal policy ⇡

⇤ =

argmax⇡ E⇡
hP

K

�(tkn)=1 R
k

n
(t)
i
, where K is the maximum

value of �(tk
n
), which is equals to the number of handoffs in

the time period.
If we fix the volume of transmitted data of UE n as Qn,

applying policy ⇡⇤ can minimize the total number of handoffs
of UE n when transmitting Qn data, which equals to our
optimization objective minHn.

B. Expected Reward Estimation

As t
k

n
and r

k

n
(t) in (6) are unknown random variables,

the expected reward E[Rk

n
(t)] can only be estimated from

historical information. We use Ř
k

n
(t) to denote the observed

value of R
k

n
(t) which can be obtained once UE n switches

from BS k. However, a UE may not stay around a specific BS
k for a long time, and thus we cannot have enough historical
information to estimate R

k

n
(t) accurately. To get around, we

define type reward Ř
k

Cn
(T k

Cn
) as

Ř
k

Cn
(0) = 0, (7-1)

Ř
k

Cn
(T k

Cn
+ 1) =

T
k

Cn
Ř

k

Cn
(T k

Cn
) + Ř

k

n
(t)

T
k

Cn
+ 1

, (7-2)

where T
k

Cn
denotes the number of times that BS k is selected

by UEs with service type Cn. We take this observed value
Ř

k

Cn
(T k

Cn
) as the mean reward for UEs with the same service

type Cn, and each UE uses his own observed reward Ř
k

n
(t)

to update the type reward Ř
k

Cn
(T k

Cn
) after a handoff occurs

based on (7-2). Thus, the expected reward can be estimated as

E[Rk

n
(t)] = Ř

k

Cn
(T k

Cn
), for n 2 Cn (8)

Since the handoff trigger conditions of UEs with the same ser-
vice type are similar, type reward Ř

k

Cn
(T k

Cn
) can be accurately

estimated by reinforcement learning.

C. BS Selection Algorithm

We cannot always select the BS with the highest reward
since a well-known dilemma exploration vs. exploitation ex-
ists. This dilemma states that there is a tradeoff between
improving UEs knowledge about the reward distributions of
BSs (exploration) and switching to the BS with the highest
empirical mean reward (exploitation). Based on UCB algorith-
m, we propose a BS selection policy T when UE n triggers
Event A2 handoffs. We set index of BS j for UE n as
E[Rk

n
(t)] + `

q
2 lnHn

T
k
Cn

, where ` = max
k2An,Cn2C

Ř
k

Cn
(T k

Cn
) and

Hn is the total number of handoffs for UE n so far. Thus, the
policy is selecting BS k

⇤ in set An for UE n once Event A2
handoff occurs, where k

⇤ can be expressed as

k
⇤ = argmax

k

 
E[Rk

n
(t)] + `

s
2 lnHn

T
k

Cn

!
. (9)

We summarize LESH-S BS selection algorithm as follows:

V. LESH-M ALGORITHM FOR MULTIPLE TARGET BS
SELECTION

The BS selection algorithm discussed in Section IV focuses
on individual UEs. However, in the time interval between two
adjacent measurement report periods, there may be multiple
UEs that need handoff especially for dense UE distribution.
Moreover, multiple UEs may trigger handoffs in the same time
period or even simultaneously in typical scenarios, such as a
group of UEs riding in a moving bus. We therefore design
LESH-M algorithm for optimal multi-BS selection.



Algorithm 1 : LESH-S BS selection algorithm based on UCB.
Input: Network topology (BS and UE distributions, �); ser-

vice type of UEs.
Output: BS selection decisions k

⇤.
1: Initialization: obtain T

k

Cn
, Hn, Řk

Cn
(T k

Cn
) in time T based

on traditional handoff policy
2: while handoff conditions are met for a certain UE n do
3: if Event A2 handoff then
4: Judge service type Cn of UE n

5: Ř
k

Cn
(T k

Cn
+ 1) T

k
Cn

Ř
k
Cn

(Tk
Cn

)+Ř
k
n(t)

T
k
Cn

+1

6: k
⇤ = argmax

k

✓
E[Rk

n
(t)] + `

q
2 lnHn

T
k
Cn

◆

7: T
k

Cn
 T

k

Cn
+ 1,Hn  Hn + 1

8: else
9: switch to the unique target BS k

⇤

10: end if
11: end while

A. Problem Formulation based on Learning Results
Let N be the set of UEs sending handoff request to the

network central controller in a measurement period. As the
period is usually short (e.g. in tens of milliseconds), we assume
that the BS selection decisions are made at the end of the
period. Here, the objective function Y is again chosen as the
volume of transmitted data before the next handoff occurs for
these N UEs. The problem is formulated as

max Y =
X

i2N

X

j2Ai

xijE[Rk

n
(t)] (10)

s.t.
X

i2N
xij  Nj , 8j 2 [i2NAi, (10-1)

X

j2Ai

xij = 1, 8i 2 N (10-2)

xij 2 {0, 1}, 8i 2 N , 8j 2 [i2NAi, (10-3)

where xij is a binary variable indicating whether UE i

switches to BS j, Nj is the current connection capacity of
BS j (equals to the maximum connection capacity minus
the number of current serving UEs), and Ai is the set of
admissible BSs for UE i. Constraint (10-1) ensures that the
number of UEs which switch to the same BS does not exceed
the current BS connection capacity. Constraints (10-2) and (10-
3) guarantee that each UE can only be associated with one BS
at a time. For convenience, we use set A to denote [i2NAi

in the rest of the paper.

B. BS Selection Algorithm
The problem stated in (10) is a special case of a well-

known NP-hard problem ”Generalized Assignment Problem
(GAP)”, we propose the following efficient heuristics. We
first relax binary variables xij in constraints (10-3) to be
continuous variables in [0, 1]. We then exploit Lagrange dual
decomposition method [14] to solve this optimization problem.

After relaxing xij , problem (10) becomes a
linear problem with Lagrange function L(x,µ) =

P
i2N

P
j2Ai

xijE[Rk

n
(t)] �

P
j2A µj(

P
i2N xij � Nj),

where µj is Lagrange multiplier. For a fixed vector µ,
Lagrange dual function can be expressed as

g(µ) = sup
x

L(x,µ) (11)

s.t.
X

j2Ai

xij = 1, 8i 2 N , (11-1)

0  xij  1, 8i 2 N , 8j 2 A, (11-2)

and the dual problem is min
µ

g(µ). Rewriting function g(µ)

yields g(µ) = sup
x

P
i2N

P
j2Ai

xij(E[Rk

n
(t)]) � µj) +

P
j2A µjNj . Since it dose not include the cross-term of xij ,

we can exchange the computation order as:

g(µ) =
X

i2N
sup

xij ,j2Ai

X

j2Ai

xij(E[Rk

n
(t)]� µj) +

X

j2A
µjNj .

Thus, we can solve the following problem for each UE i

separately,

gi(µ) = sup
xij ,j2Ai

X

j2Ai

xij(E[Rk

n
(t)])� µj) (12)

s.t.
X

j2Ai

xij = 1, (12-1)

0  xij  1.8j 2 Ai. (12-2)

Since we want to find a binary solution of xij , for a fixed
vector µ, problem (12) is described as: for UE i, we choose a
BS j

⇤ from set Ai to maximize the value of E[Rk
⇤

n
(t)]�µj⇤ .

Therefore, when µ is fixed, problem (11) can be solved by
choosing the optimal BS j

⇤ for each UE respectively. Then
we minimize g(µ) over µ to obtain the optimal value µ⇤ for
the dual problem. We use negative gradient direction to update
µj with respect to µj � 0,

µj(k+1) =

"
µj(k)� �(k)(Nj �

X

i2N
xij)

#+
, 8j 2 A, (13)

where �(k) > 0 is the update step size, and is given by

�(k) =
g(µ

k
)� gk

khkk2
, 8k � 0, (14)

where gk is an estimate of the optimal value g
⇤. The procedure

of updating gk is given by

gk = min
1jk

g(µ
k
)� "k, (15)

and "k is updated according to

"k+1 =

(
⇢"k if g(µ

k+1)  gk

max{�"k, "} otherwise
, (16)

where ", � and ⇢ are fixed positive constant with � < 1 and
⇢ � 1 [15]. For linear programs, strong duality holds. There-
fore, the minimum value of g(µ) is equal to the maximum
value of the original problem. Similar to that in Section IV,
E[Rk

n
(t)] is updated once the next handoff occurs according

to (7) and (8). Note that, the reinforcement-learning process in



Section IV can improve the accuracy of the value of E[Rk

n
(t)]

thus the solution of this optimization problem. We summarize
the LESH-M algorithm in Algorithm 2.

Algorithm 2 : Joint optimal LESH-M BS selection algorithm.
Input: Network topology (BS and UE distributions, �); hand-

off UEs N .
Output: BS selection decisions x⇤.

Initialization:
1: Judge service type of UEs
2: Determine admissible BSs
3: The BSs send the value of Řj

Ci
(T j

Ci
) and Nj to the central

controller
BS selection decisions:

4: x0  0, x0  current connections, k  1
5: while xk 6= xk�1 do
6: k  k + 1
7: for each UE i 2 N do
8: solve problem (12)
9: end for (obtain xk)

10: update µk according to (13)
11: end while
12: x⇤  xk

VI. NUMERICAL RESULTS

We now compare the performance of LESH with two con-
ventional handoff policies as follows. (1) Rate-based handoff
(RBH). RBH has similar trigger conditions as those in 3GPP.
When choosing target BSs for handoffs, the ones with maxi-
mum transmission data rates are chosen (instead of maximum
RSRP in 3GPP [3]). (2)SINR based handoff (SBH). SBH has
the same handoff trigger conditions as that of LESH and uses
maximum SINR for target BS selection.

A. Simulation Settings

We consider a two-tier HetNet which consists of an MBS
and varying number of mm-FBSs, Tr-FBSs and UEs. Both
mm-FBSs and Tr-FBSs are randomly distributed. The transmit
power of MBS, mm-FBS and Tr-FBS are set to 46dBm, 30dB-
m and 20dBm, respectively. Both the numbers and regions of
blockages in mm-FBS are randomly generated. Similar to [11],
when UEs in mm-FBS move to blockage regions, the channel
state is assumed to be NLOS with parameters ↵ = 72 and
⌘ = 2.92 in (1). In non-blockages areas, the channel state is
assumed to be LOS with parameters ↵ = 61.4 and ⌘ = 2 in
(1). We use L(d) = 34+40 log(d) and L(d) = 37+30 log(d)
to model the path loss for the MBS and Tr-FBSs respectively
[16]. The bandwidth allocated to MBS/Tr-FBSs and mm-FBSs
are 20MHz and 500MHz respectively. The noise power is
set to -101dBm and -77dBm for traditional and mmWave
band respectively [10]. We assume that UEs are randomly
distributed in the area and move to a random direction at a
random speed.

B. Results and Discussions

In Experiment 1, we compare the number of handoffs
and system throughput of the three handoff policies. In this
experiment, we fix the number of FBSs and UEs as 100 and
500 respectively. The average UE movement speed is 5m/s.
Fig.3 shows the number of handoffs and system throughput
for the three handoff policies with different mm-FBS ratio �
in 1000 seconds. Fig.3 (a) shows that when � = 0.2, the total
number of handoffs for RBH, SBH and LESH is 7.8 ⇥ 104,
5.5⇥104and 3.2⇥104, respectively. These numbers show that
LESH can reduce handoffs to 41% and 58% when compared
with RBH and SBH respectively. For � = 0.8, the reduction
percentages are 46% and 68%. Note that, fewer handoffs im-
plies reduced signaling overhead, energy consumption and UE
outage probability. Fig.3 (b) shows that the system throughput
of all the three handoff policies increases with the ratio of mm-
FBS because of increasing available bandwidth in mm-FBS.
The system throughput of RBH is higher than that of the other
two schemes since that the handoff trigger conditions in RBH
takes into account only UE data rate. In other words, in RBH
a UE may frequently perform handoff for achieving maximum
data rate, while ignoring the negative effective of handoff. We
also find that the difference of system throughput between
LESH and RBH is relatively small (3% for � = 0.8, 6% for
� = 0.2), implying that significant handoff performance gain
can be accomplished with a small compromise on throughput.

Fig. 3. Handoff performance as a function of mm-FBS ratio �

In Experiment 2, we examine the effect of UE movement
speed at � = 0.5 with parameters the same as the Experiment
1. Fig.4 shows the number of handoffs and system throughput
for the three handoff policies as a function of the mean
UE movement speed. We see that from fast walking speed
of 2 m/s (7.2 km/h) to slow driving of speed of 14 m/s
(50km/h), the numbers of handoffs are increased slightly for
all three policies. The relative advantage of LESH remains.
As expected, Fig.4 (b) shows that the system throughput of
all the three policies decreases with UE movement speed due
to faster change of channel quality.

In Experiment 3, we compare the performance of handoff
policies by the number of UEs at =0.5. Fig.5 (a) shows that
for a wide range of UE densities, the number of handoffs for
LESH is only about 50% of RBH and 70% of SBH. We also
see that the difference of the number of handoffs between



Fig. 4. Relationship between handoff performance and UE speed.

Fig. 5. Handoff performance as a function of the number of UEs.

LESH and the other two handoff policies increases with the
number of UEs. This implies that LESH-M algorithm has even
better performance in dense UE conditions. Fig.5 (b) shows
that the average UE transmission rate for the three handoff
policies decreases with the number of UEs due to wireless
resource limitations.

VII. CONCLUSIONS

In this paper, the smart handoff policy LESH is proposed
for mmWave HetNets based on reinforcement learning. In
LESH, the handoff trigger conditions are determined by taking
into account both mmWave channel characteristics and QoS
requirements of UEs. LESH has two BS selection algorithms
for different UE density conditions. LESH-S is for single UE
and uses reinforcement-learning for BS selection. LESH-M is
for multiple UEs and uses a heuristic for the simultaneous
identification of the best target BSs. Numerical results show
that, without sacrificing UE QoS, LESH can reduce the num-
ber of handoffs by about 50% when compared with handoff
policies without machine learning.
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