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Abstract—In this paper, we investigate the achievable degree
of freedom (DoF) of a fully connected 2-user multiple-input
multiple-output (MIMO) relay interference channel with M an-
tennas at each transmitter and N antennas at each receiver when
channel state information (CSI) is not available at transmitters
and a delayed version of the CSI of direct links from the
transmitters to the receivers is known at the relay. We propose
a two-phase transmission scheme and obtain different sum-DoF
gains (inner bound) under various configurations. We found the
achievable sum-DoF values for different antenna configurations
at the relay node for the MIMO relay interference channels. The
results show that if the relay node has more than 2M antennas,
our proposed scheme can achieve the outer bound when the
instantaneously CSI is known at the relay and at the receivers.
This result implies that with the help of a relay with enough
antennas, the requirement for instantaneous CSI can be relaxed
to the delayed CSI. Moreover, when compared to the MIMO
interference channel with no relay, the presence of relay with
delayed global CSI can boost the DoF performance even when
there is no CSI at the transmitters.

I. INTRODUCTION

The proliferation of wireless devices makes interference
among them increasingly the major limitation for further
improvement in both capacity and performance. Adding relays
appropriately in the system is one way to reduce the interfer-
ence and to boost the quality of service. The information the-
oretic approach studies the fundamental limits of the systems
and, in particular, degree of freedom (DoF) is an important
metric used to measure and characterise the asymptotic perfor-
mance of a communication system as the signal-to-noise ratio
approaching infinity. In these situations, interference becomes
the limiting factor and interference alignment (IA) is the one of
the well-known techniques in alleviating effect of interference.

The K-user interference channel has K
2 sum-DoF, indi-

cating that each user shares half the channel, and can be
achieved by interference alignment [1]. Then [2], [3] extended
the work to MIMO interference channel with M antennas at
each transmitter and N antennas at each receiver, and the
DoF outer bound min(M,N)K if K ≤ R and

max(M,N)
R+1 K

if K > R, where R =
⌊
max(M,N)
min(M,N)

⌋
are obtained in [2]. [4]

The research is funded by the HK Research Grant Council under project
number 611613.

investigated the impact of the presence of relay in the system
and found that relay cannot increase the DoF if all channels
are fully connected with all nodes having instantaneous global
channel state information (CSI). While CSI at the receivers are
more readily to be obtained, CSI at the transmitters or CSIT are
much more difficult to achieve. A more relaxed and probably
practical assumption is the delayed, instead of instantaneous,
CSIT where transmitters know a delayed version of the CSI
usually obtained through feedback channels from the receivers.
With this relaxed assumption, [5] introduced the concept of
retrospective interference alignment and a tight outer bound
was derived in [6] for the two-user MIMO interference chan-
nel. Specifically, authors in [7] explored the value of CSIT
and showed how delayed CSIT increases the DoF. The sum-
DoF of K-user MISO broadcast channel with delayed CSIT
is given as K

1+ 1
2+...+ 1

K

, which is larger than the case with

no CSIT [8]. An interesting result shown in [9] is that with
the presence of a MIMO relay, the KM

2 sum-DoF can be
achieved in a K-user M × M MIMO interference channel
with no CSIT. Thus, relay can eliminate the need of CSIT
provided that relay has instantaneous global channel state
information. Moreover, in K-user MISO interference channels
without CSIT, [10] showed that having relay, even with only
delayed CSI feedback, can improve the sum-DoF. Intuitively,
if the transmitters and the relay are fully cooperated, we can
treat them as a huge node and DoF of this MIMO relay
interference channel is bounded by broadcast channel under
the same assumption.

In our work, we are interested to exploit the DoF result
in a 2-user MIMO relay interference channel without CSIT
and outdated CSI at the relay and the receivers. Based on the
idea of retrospective interference alignment, one interesting
result is that even the relay and the receiver only know delayed
version of channel state information from the transmitters to
the receivers, we can achieve the optimal sum-DoF in [9]
which requires instantaneous global CSI at the relay and local
CSI at the receivers. Meanwhile, we also find an inner bound
for the case when the relay has fewer antennas.

Notations : A , AT , AH stand for matrix, transpose,
Hermitian transpose, respectively. Ai,j is the entry on ith row
and jth column of A. Tr(A) , rank(A), null(A), dim(A) stand
for the trace , rank, null space, dimension of A, respectively.
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E[·] denotes expectation. �x� denotes the largest integer no
greater than x. I is identity matrix. O(p × q) represents the
null matrix with p rows and q columns.

Fig. 1. 2-user M ×N MIMO relay interference channel.

II. SYSTEM MODEL

We consider a 2-user M ×N MIMO interference channel
with a MIMO relay as depicted in Figure-1, which consists
of 2 transmission pairs with M antennas at each transmitter,
N antennas at each receiver and R antennas at the relay.
Each transmitter sends an independent message, Wi for the ith

transmitter, to its corresponding receiver through the help of
the relay. In this work, we assume the relay knows the instanta-
neous CSI of its incoming and outcoming links,and that every
receiver knows the instantaneous CSI of its incoming links.
The relay also has the CSIs of all direct links from transmitters
to receivers with a unit time slot delay, every receiver knows
the direct links information from all transmitters to the other
receivers with a unit time slot delay, which is the outdated CSI,
but the transmitters have no CSI. The relay node is assumed to
operate at half duplex mode, i.e. can only receive or transmit at
any given time. The signals transmitted from user i and from
the relay in the t th time slot, denoted by Xi(t) ∈ C

M , and
XR(t) ∈ C

R, respectively, are subject to the power constraints
E[tr(Xi(t)Xi(t)

H)] � P and, E[tr(XR(t)XR(t)
H)] � P ,

respectively. The received signals at the relay and receiver
i at time t, denoted by YR(t) ∈ C

R and, Yi(t) ∈ C
N ,

respectively, can be expressed as:

YR(t) =

2∑
j=1

H[R,j](t)Xj(t) + ZR(t), (1)

and

Yi(t) =
2∑

j=1

H[i,j](t)Xj(t) + Zi(t), (2)

where H[i,j](t) ∈ C
N×M represents the channel gain matrix

from transmitter node j to receiver node i and, H[R,j](t) ∈
C

R×M represents the channel gain matrix from transmitter
node j to the relay node. Since the relay operates in half-
duplex mode, the received signal at the receiver i when the
relay is transmitting can be expressed by

Yi,R(t) = H[i,R](t)VXR(t) + Zi(t). (3)

where V ∈ C
R×R is the transmit beamforming vector at

the relay node and H[i,R](t) ∈ C
N×R is the channel gain

matrix from the relay node to receiver node i. All the channel
coefficients are drawn from an independent and identically
distributed (i.i.d.) continuous distribution. Zi(t) and ZR(t)
denote the noise at receiver i and the relay node which are
assumed to be i.i.d. complex Gaussian random variables follow
CN (0, 1).

A rate tuples {Ri(SNR)} for i ∈ {1, ...,K} is achievable

if the error probability Pn
e = Pr(

⋃
i Ŵi �= Wi) can be

made arbitrarily small when n is sufficiently large. We define
the degrees of freedom (DoF), which captures the number of
independent data streams from the transmitters to the receivers,
as

DoF = lim
SNR→∞

Csum(SNR)

log(SNR)
. (4)

where Csum(SNR) = sup
∑K

i=1 Ri(SNR).

III. TWO-PHASE TRANSMISSION SCHEME

In this section, we propose a new two-phase transmission
scheme that can achieve the Degrees of Freedom with Retro-
spective Interference Alignment method under different relay
antenna configurations. The proposed transmission scheme
consists two phases. In phase 1, transmitters send their mes-
sages to corresponding receivers. Then in phase 2, transmitters
kept silent and the relay broadcasts the encoding messages.

A. Achievable Scheme for R = M > N ≥ M
2

When the number of antennas at the relay equals to the
number of antennas at each transmitter (R = M), we will
show that our scheme can achieve a sum-DoF of 2M

3 .

Phase1 : There are two time slots in phase 1. The two

users take turn to transmit X1(1) =
[
x1
1 x1

2 · · · x1
M

]T
and X2(2) =

[
x2
1 x2

2 · · · x2
M

]T
. The received signals at

receiver node i at the two time slots are then

Yi(1) = H[i,1](1)X1(1) + Zi(1), (5)

Yi(2) = H[i,2](2)X2(2) + Zi(2). (6)

Phase2 : Phase 2 has only 1 time slot. Since the relay
has the same number of antennas as the transmitters, the relay
can decode all the transmitted signals in Phase 1. At Phase
2, since both the relay and the receivers know the CSI of
the direct links at the previous time slots, the relay can send a
linear combination of the symbols to do interference alignment
using the delayed direct links channel state information.

We notice that in equation (5) and (6), there are M signal
symbols but receiver i only has N equations. Thus the aim is
for the relay to use the overheard signals to create additional
useful equations in Phase 2 to ensure decodability at the
receiver nodes. In this situation, there is no need to even do
interference alignment. We simply pick 2(M−N) antennas in
the relay to transmit and pick (M−N) antennas in the receiver
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XR(3) =

[
Hs1(1)

0
0

]
X1(1) +

[
0

Hs2(2)
0

]
X2(2) =

[
x1,R(3)
x2,R(3)

0

]
(7)

to receive. In order to do this, R = M ≥ 2(M − N), N ≥
(M − N) need to be satisfied, which is N ≥ M

2 . So the

effective channel information matrix is simply H′[i,R](3) ∈
C

(M−N)×2(M−N). Thus, we can design a linear beamforming
matrix Hsi(t) ∈ C

(M−N)×M at the relay to combine the
transmitted signals in the first phase based on the overheard
equations, such that Hsi(t) ≺ H[j,i](t), ∀i, j ∈ {1, 2}, j �= i.
Where P ≺ Q means that span(P) ⊂ span(Q), the set of
column vectors of P is a subset of the set of column vectors
of Q. For example, the relay can transmit a linear combination
of the symbols as shown in (7) on the top of this page.

It’s worth mentioning that the dimension of the null
space of H′[i,R](3) is M − N . Hence, the beamforming
vector V = [V1 V2] can be constructed such that V1 ∈
null(H′[2,R](3)), V2 ∈ null(H′[1,R](3)). Then, the received
signal in Phase 2 at the receiver i is,

Yi,R(3) = H′[i,R](3)ViXi,R(3) + Zi(3). (8)

Consequently, we now have M linear equations at receiver

i to decode M desired signals because

[
H[i,i](i)

H′[i,R](3)ViHsi(i)

]
is full rank almost surely for any continuous distribution.
As the receivers now know previous channel coefficients, the
symbols can be decoded if SNR is high enough. Thus, 2M
transmitted symbols can be completely decoded in a 3-time-
slots transmission scheme, and achieve a sum-DoF of 2M/3.

B. Achievable Scheme for R ≥ KM = 2M, M
2 ≤ N < M

When the number of antennas at the relay is equal to or
larger than the total number of antennas at all the transmitters,

i.e. R ≥ KM or in this case R ≥ 2M , we will show in this
section that a modified version of our scheme can achieve a
sum-DoF of 2MN

M+N . This result matches the upper bound in
[9] when the direct links channel state information is known
at both relay and receivers instantaneously.

Since the relay has enough antennas to decode all the
transmitted signals, we can simply reduce the first phase in
the aforementioned section to only one time slot. That means

both transmitters send X1(1) =
[
x1
1 x1

2 · · · x1
M

]T
and

X2(1) =
[
x2
1 x2

2 · · · x2
M

]T
simultaneously. Clearly the

interference at the receivers has more terms and the received
signal at receiver i becomes

Yi(1) = H[i,1](1)X1(1) +H[i,2](1)X2(1) + Zi(1), (9)

The received signal in (9) provides N linear equations for user
i to decode M signal symbols in the presence of interference.
Intuitively, in phase 2, the broadcasting phase, the relay can
spend one time slot to transmit related interference terms to do
interference purification and then use an additional time slot to
transmit another signals to provide needed linear equations to
help user i to decode the signal symbols. Using this approach,
we can achieve a sum-DoF of 2M

3 which is exactly the same
as previous section.

However, we can do better. In the first phase, we can
use μ time slots to transmit 2Mμ symbols in total by
doing multiple access for μ times, where μ is the sym-

bol extension coefficient defined by μ =
⌊

N
M−N

⌋
≥ 1.

i.e. X1(μ) =
[
x1
(μ−1)M+1 x1

(μ−1)M+2 · · · x1
μM

]T
and

X2(μ) =
[
x2
(μ−1)M+1 x2

(μ−1)M+2 · · · x2
μM

]T
. The re-

XR(t) =

⎡
⎣ 0
H[2,1](t− μ)

0

⎤
⎦X1(t− μ) +

⎡
⎣H[1,2](t− μ)

0
0

⎤
⎦X2(t− μ) =

[
X1,R(t)
X2,R(t)

0

]
, ∀t ∈ {μ+ 1, μ+ 2, · · · , 2μ} (11)

XR(2μ+ 1) =

[
Hs1(1)

O((3N −M)×M)

]
X1(1) + · · ·+

[
O((2N −M)×M)

Hs1(μ)
O(N ×M)

]
X1(μ)

+

[
O(N ×M)
Hs2(1)

O((2N −M)×M)

]
X2(1) + · · ·+

[
O((3N −M)×M)

Hs2(μ)

]
X2(μ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
1,R(2μ+ 1)

...
XN

1,R(2μ+ 1)
X1

2,R(2μ+ 1)
...

XN
2,R(2μ+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)
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Yi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H[i,i](1) 0 ··· 0

0 H[i,i](2) ··· 0

...
...

. . .
...

0 0 ··· H[i,i](μ)

O(μN × μM)

G[i,R](2μ+1)

[
Hsi(1)

O((2N−M)×M)

]
G[i,R](2μ+1)

⎡
⎣ O((M−N)×M)

Hsi(2)
O((3N−2M)×M)

⎤
⎦ ··· G[i,R](2μ+1)

[
O((2N−M)×M)

Hsi(μ)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
Xi(1)
Xi(2)

...
Xi(μ)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H[i,j](1) 0 ··· 0

0 H[i,j](2) ··· 0

...
...

. . .
...

0 0 ··· H[i,j](μ)

G[i,R](μ+1)H[i,j](1) 0 ··· 0

0 G[i,R](μ+2)H[i,j](2) ··· 0

...
...

. . .
...

0 0 ··· G[i,R](2μ)H[i,j](μ)

O(N × μM)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
Xj(1)
Xj(2)

...
Xj(μ)

⎤
⎥⎥⎦+ Zi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Yi(1)
...

Yi(2μ)
Yi(2μ+ 1)1

...
Yi(2μ+ 1)N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

ceived signal at receiver i at the μth time slot is

Yi(μ) = H[i,1](μ)X1(μ) +H[i,2](μ)X2(μ) + Zi(μ). (10)

Phase 2 consists of μ + 1 time slots. In the first μ time
slots, the relay sends interference terms so that all the inter-
ference can be eliminated at the receivers using retrospective
interference alignment. The last time slot is used to transmit
additional signals to create additional linear equations to make
sure there are enough equations to solve for the signal symbols.
If the relay uses 2N antennas to do the transmission, we
can construct the transmit signal at the relay as shown in
(11) and (12). It is the same as the previous section, we
construct a matrix Hsi(t) ∈ C

(M−N)×M at the relay based on
the overheard equations in the transmission phase, such that
Hsi(t) ≺ H[j,i](t), ∀i, j ∈ {1, 2}, j �= i. In order to do beam-
forming at the relay node, the relay using the information of
the channel matrix H̃[i,R](t) ∈ C

N×2N ,∀i ∈ {1, 2}, t ∈ {μ +
1, μ + 2, · · · , 2μ+ 1}. Since the dimension of the null space

of H̃[i,R](t) is N , ∀i ∈ {1, 2}, t ∈ {μ+1, μ+2, · · · , 2μ+1}.
So beamforming vector V(t) = [V1(t) V2(t)] can be

constructed such that V1(t) ∈ null(H̃[2,R](t)), V2(t) ∈
null(H̃[1,R](t)), ∀t ∈ {μ+1, μ+2, · · · , 2μ+1}. Consequently,
we have finished all transmission tasks over 2μ+1 time slots.
The received signals structure during phase 1 and 2 at receiver
i, is shown as equation (13) on the top of this page, where
G[i,R](t) = H̃[i,R](t)Vi(t) and j �= i.

There are total (2μ + 1) time slots and each time slot
contributes N linear equations. So from the expression (13),
there are a total of (2μ+1)N linear equations with μN of them

used for aligning interference terms. With proper manipulation,
we can eliminate the interference signals. Thus we could
solve μM desired symbols through μM linear equations. In
summary, we use μ time slots to transmit 2Mμ symbols
successfully, which achieve a sum-DoF of 2MN

M+N when μ is
an integer with minimum value 1.

Remark : In [9], a tight upper bound dsum ≤ MN
M+N ×K

when there is no CSIT and global CSI is known instantaneous-
ly at the relay and the receiver is derived when N ∈ (0,KM).
Our result shows that if the direct links channel state informa-
tion is a delayed version instead of instantaneous, as long as
the relay node has enough antennas, the upper bound can be
achieved and is the actual DoF.

C. Achievable Scheme for R = M +1 ≥ 2μ, M+1
2 ≤ N < M

So far, we have considered the cases when relay has the
same number of antennas as each transmitter (i.e. R = M )
and when relay has sufficient antennas (i.e. R ≥ KM = 2M )
to decode all symbols in one time slot. In this section, we
consider the case when the number of antennas at the relay
is between these two numbers (i.e. M < R < 2M ). Let us
consider the case where R = M+1 to illustrate the idea of our
scheme. Obviously, we can do at least as good as the case in
Section− III −A and achieve a sum-DoF of 2M

3 . However,
the following scheme shows that the additional antenna at the
relay can be exploited to increase the DoF. This transmission
strategy consists of 2 phases, with 2μ time slots in phase 1
and μ+ 1 in phase 2.

Phase1 : In the first time slot, user 1 sends X1(1) =

XR(t) =

[
X1,R(t)
X2,R(t)

]
=

⎡
⎢⎣

Hs1(t
′)X1(t

′)
X2(t

′)
X1(t

′ + 1)
Hs2(t

′ + 1)X2(t
′ + 1)

⎤
⎥⎦. (18)
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Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H[1,1](1) 0 ··· 0 0

0 Ḣ[1,1](2) ··· 0 0

...
...

. . . ··· ···
0 0 ··· H[1,1](2μ−1) 0

0 0 ··· 0 Ḣ[1,1](2μ)
Γ1 0 ··· 0 0

...
...

. . . ··· ···
0 0 ··· Γμ 0
0 Υ1 ··· 0 Υμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

X1(1)
X1(2)

...
X1(2μ− 1)
X1(2μ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ḣ[1,2](1) 0 ··· 0 0

0 H[1,2](2) ··· 0 0

...
...

. . . ··· ···
0 0 ··· Ḣ[1,2](2μ−1) 0

0 0 ··· 0 H[1,2](2μ)
Λ1 0 ··· 0 0

...
...

. . . ··· ···
0 0 ··· Λμ 0
0 0 ··· 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

X2(1)
X2(2)

...
X2(2μ− 1)
X2(2μ)

⎤
⎥⎥⎥⎥⎦+ Z1 =

⎡
⎢⎢⎢⎢⎣

Y1(1)
Y1(2)

...
Y1(3μ)

Y1(3μ+ 1)

⎤
⎥⎥⎥⎥⎦ (19)

[
x1
1 x1

2 · · · x1
M

]T
and user 2 uses only one antenna to

send one symbol X2(1) =
[
x2
1

]
. Then in the second time

slot, user 1 only picks one antenna to send X1(2) =
[
x1
M+1

]
and user 2 sends X2(2) =

[
x2
2 x2

3 · · · x2
M+1

]T
. In the

remaining 2(μ−1) time slots, user 1 and 2 just repeat the same
step in the first two time slots to generate another 2(μ− 1)R
symbols, for example, the signals in the third and fourth

time slots are X1(3) =
[
x1
1(3) x1

2(3) · · · x1
M (3)

]T
,

X2(3) =
[
x2
1(3)

]
, X1(4) =

[
x1
M+1(4)

]
and X2(4) =[

x2
2(4) x2

3(4) · · · x2
M+1(4)

]T
. As illustrated before, there

is one transmitter sending only one symbol in a specific time
slot. Thus in the receiver side, we have

Y1(t) = H[1,1](t)X1(t) + Ḣ[1,2](t)X2(t) + Z1(t), (14)

Y1(t
′) = Ḣ[1,1](t′)X1(t

′) +H[1,2](t′)X2(t
′) + Z1(t

′). (15)

at receiver 1 and

Y2(t) = H[2,1](t)X1(t) + Ḣ[2,2](t)X2(t) + Z2(t), (16)

Y2(t
′) = Ḣ[2,1](t′)X1(t

′) +H[2,2](t′)X2(t
′) + Z2(t

′). (17)

at receiver 2 for t ∈ {1, 3, · · · , 2μ − 1}, t′ ∈ {2, 4, · · · , 2μ},

where Ḣ[i,j](t) ∈ C
N×1,∀i, j ∈ {1, 2}.

Phase2 : During phase 1, there are R symbols arriving at
the relay node at every time slot and the relay can completely
decode the incoming symbols. Thus we design the linear
combination symbols transmitted by the relay in the 2μ+1th,
2μ + 2th,· · · , 3μ − 1th and the 3μth time slot, by applying
the same construction method to create a matrix Hsi(t) ∈
C

(M−N)×M , such that Hsi(t) ≺ H[j,i](t), ∀i, j ∈ {1, 2}, j �=
i, which is expressed in (18) at the bottom of pervious page,
where (t, t′) = {(2μ + 1, 1), (2μ + 2, 3), · · · , (3μ − 1, 2μ −
3), (3μ, 2μ−1)}. So we require R = M+1 ≥ 2(M−N)+2,
in other words N ≥ M+1

2 so that it can send the symbols
successfully.

In the (3μ + 1)th time slot, transmitted
signal at the relay is simple as XR(3μ + 1) =

[X1(2) X1(4) ··· X1(2μ) X2(1) X2(3) ··· X2(2μ−1)]
T

. To ensure
the successful transmission, we need R = M + 1 ≥ 2μ
antennas at the relay node. Then the relay transmits signal by
multiplying a beamforming vector which is similar as before
so that the desired signals could arrive to the corresponding
receiver. The dimension of the null space of H[i,R](t) is
R − N , ∀i ∈ {1, 2}, t ∈ {2μ + 1, · · · , 3μ + 1}. So there
exists beamforming matrix V(t) = [V1(t) V2(t)] such

that V1(t) ∈ null(H[2,R](t)), V2(t) ∈ null(H[1,R](t),
∀t ∈ {2μ+ 1, · · · , 3μ+ 1}.

Up to now we have done all the steps of this transmission
scheme and the whole receiving structures at receiver side
are constructed. Using receiver 1 as an example. The whole
receiving part during the two phases is shown in expression
(19) where

Γ1 = H[1,R](2μ+ 1)V1(2μ+ 1)

[
Hs1(1)

O(1×M)

]
,

Γμ = H[1,R](3μ)V1(3μ)

[
Hs1(2μ− 1)
O(1×M)

]
,

Λ1 = H[1,R](2μ+ 1)V1(2μ+ 1)
[
OT (M −N)× 1 1

]T
,

Λμ = H[1,R](3μ)V1(3μ)
[
OT (M −N)× 1 1

]T
,

Υ1 = H[1,R](3μ+ 1)V1(3μ+ 1)
[
1 OT (μ− 1)× 1

]T
,

Υμ = H[1,R](3μ+ 1)V1(3μ+ 1)
[
OT (μ− 1)× 1 1

]T
.

We want to recover μR independent symbols from (2μ+
1)N + μ linear equations. From expression (19), we can see
that the interference terms fall within a μN dimensional space.
Thus we have enough dimension in the signal space to decode
all the μR desired signals using this transmission strategy.
Similar argument can be made for receiver 2. Ultimately
combining the results for the two receivers, we can achieve
a sum-DoF of 2μR

3μ+1 , which lies between 2M
3 and 2MN

M+N .

Remark : If we add more antennas at the relay node and
keep everything else the same, which means a 2-user system
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with R = M + ζ, where ζ ∈ {2, 3, ..., N}, by applying the
same mechanism, we can achieve a sum-DoF of 2μR

4μ+1 . This

result is inferior to the one when there are (M + 1) antennas
at the relay. Hence, our scheme when applied to this 2-user
M × N model, with relay having (M + 1) antennas, cannot
increase DoF gain even if we add an additional antenna to the
relay. But if the relay has (M + ζ) antennas, we can ignore
the redundant antennas and do at least as good as the case
introduced in this section.

IV. DISCUSSION AND COMPARISON

In this section, we compare our DoF inner bound with
different types of channel models.

Numerical results of the proposed scheme by setting
(M,N) = (3, 2) are provided in Fig.2, which match our
theoretical DoF values. When the relay has 6 antennas, the
curve has the largest slope. While the sum rate performance
has the slowest increasing speed when R = 3.

Fig. 2. Achievable sum rates versus SNR for 2-user 3 × 2 interference
channel.

In [8], the optimal sum-DoF for a K-user M ×N MIMO
interference channel with no CSIT is N

K × K = N for N ∈
(0,KM). Comparing this result with our result in Section−
III −A, when N ≤ 2M

3 , we can see that the relay is helpful
to increasing the DoF even though the receiver knows only
the delayed global CSI. Intuitively, MIMO system must have
more multiplexing gain than MISO system. An upper bound
has already derived in [9] when M �= N , for example, the
optimal DoF gain of 2 user M ×N interference channel with
no CSIT is 2MN

M+N . But it can be achieved when relay has more
than M antennas with instantaneous global CSI rather than at
least 2M antennas in this paper. That’s the penalty due to
the lack of the instantaneous global CSI. However, when the
relay has more than 2M antennas, the CSI requirement can
be relaxed and still achieve the same sum-DoF. An interesting
result is that as mentioned in the remark in Section−III−C,
if we add one more antenna at relay from M + 1 to M +
2, the DoF characterization drops under the same mechanism
which is counter-intuition. That is because if we add one more
antenna, one more independent symbol appears in phase 1.

That increases the difficulty to cancel interference. But we
can achieve the same DoF using another proposed scheme.
Since we only investigate the 2-user case, it’s not that obvious
to illustrate the merit of retrospective interference alignment
because there’s only one interference user. However, examples
shown in this paper lower the complexity of the system with
delayed CSI.

V. CONCLUSION

In this paper, we focus on a scenario where a 2-user MIMO
relay interference channel has outdated channel state informa-
tion. We introduced a two-phase transmission scheme based on
retrospective interference alignment to achieve different DoF
inner bounds under different antenna configurations at the relay
node. We explain the mechanism when the number of antennas
at the relay is R = M,M < R < 2M,R ≥ KM = 2M and
show that when R ≥ 2M , it can achieve the optimal sum-
DoF. Hence, we do not need to require instantaneous global
CSI at the relay. The proposed scheme can be extended to the
more general case with arbitrary number of K, M , R, and
N . Furthermore, an outer bound of this channel with the same
assumption will need to be derived.
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