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Abstract—In this paper, we propose to use magnetic nanopar-
ticles as information carriers for molecular communication. This
enables the use of an external magnetic field to guide information-
carrying particles towards the receiver. We show that the particle
movement can be mathematically modeled as diffusion with drift.
Thereby, we reveal that the key parameters determining the
magnetic force are particle size and magnetic field gradient. As an
example, we consider magnetic nanoparticle based communica-
tion in a bounded two-dimensional environment. For this model,
we derive an analytical expression for the channel impulse re-
sponse subject to fluid flow and magnetic drift. Numerical results,
obtained by particle-based simulation, validate the accuracy of
the derived analytical expressions. Furthermore, adopting the
symbol error rate as performance metric, we show that using
magnetic nanoparticles facilitates reliable communication, even
in the presence of fluid flow.

I. INTRODUCTION

Molecular communication (MC) is one of the mechanisms
that biological cells use to communicate with each other [1,
Ch. 16]. In natural MC systems information is conveyed by spe-
cific patterns of molecule releases, e.g., by releasing different
numbers or types of molecules. Thereby, in typical diffusive
MC environments, the information molecules propagate by
Brownian motion where the movement of particles is due to
thermally induced collisions with molecules of the embedding
liquid.

A recent trend in biotechnology is to create artificial and
genetically modified cells [1, Ch. 10]. These synthetic nanoma-
chines, e.g., drug bearing cells, could cooperate and fight a local
infection site by adjusting the release of the pharmaceutical in
a coordinated and controlled manner [2, Ch. 8]. For this smart
collaboration of nanomachines, communication is essential.
Thereby, a message might trigger a certain chemical process
which in turn may cause a desired action of a receiving
nanomachine. In this context, MC has recently attracted
considerable attention as a biocompatible approach for synthetic
communication at the cellular level.

For MC, usually naturally occurring information molecules
such as proteins are considered as information carriers [2,
Ch. 2]. However, apart from problems in realizing synthetic
biological MC systems at nanoscale [3], there are also severe
limitations by design. In particular in diffusive MC, the
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movement of the information carriers is random and cannot
be stirred towards the receiver, i.e., many of the released
molecules do not arrive at the receiver. Moreover, molecules
suspended in a fluid are very sensitive to fluid flow which
easily dominates the diffusive movement and in many cases
cannot be controlled externally, e.g., in blood vessels. In this
paper, we will show that these problems can be overcome by
using magnetic nanoparticles (MNPs) as information carriers
and by guiding them via an external magnetic field.

For targeted drug delivery and many other biotechnological
applications, MNPs are widely used already [4], [5]. These
particles usually consist of a polymer matrix with embedded
iron oxides which we will simply refer to as magnetic core, and
a nonmagnetic coating. The coating ensures biocompatibility
and stability, i.e., it prevents agglomeration of the nanoparticles.
Moreover, the particle surface can be functionalized with
binding sites that are selective to specific molecules [6]. In this
way, MNPs can be chemically recognized by cells. Also, by
exploiting their magnetic properties, MNPs can be detected by
external devices [4]. However, most importantly, MNPs can
be externally guided by applying a magnetic field. Thereby,
the magnetic force crucially depends on the magnetic field
gradient rather than the magnitude of the magnetic field. Thus,
larger forces can be realized by optimizing the design of the
magnet to achieve large magnetic field gradients, see e.g. [7]
where the arrangement of spatial arrays of permanent magnets
is optimized for this purpose.

Despite their widespread use in contemporary biotechnology,
to the best of our knowledge, for synthetic MC, MNPs have
only been considered in [8], [9]. In particular, the authors
of [8] proposed that MNPs attached to DNA can initiate gene
expression if subjected to an external magnetic field. On the
other hand, a wearable device detecting changes of inductance
when MNPs pass through a coil was devised in [9]. However,
using MNPs as information carriers and guiding them by an
external magnetic field has not been investigated yet.

Motivated by the general availability and applicability of
MNPs in biotechnology, in this paper, we make the following
contributions:

1) We propose the use of MNPs as information carriers and
characterize their physical properties. Thereby, we model
the particle movement in an external magnetic field as
diffusion with drift similar to fluid flow. In contrast to
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fluid flow, a magnetic field can be applied in a desired
direction and even towards solid boundaries. Moreover,
we show that the magnetic force critically depends on
the particle size.

2) To illustrate the utility of using MNPs for MC, we
consider a generic bounded two-dimensional environment
which can be thought of as a simple abstraction of a
microfluidic channel or as a rough approximation of a
blood vessel. For this model, we analyze the time-variant
spatial particle distribution subject to the combined effect
of diffusion, fluid flow, and magnetic drift. As particles
usually differ in size, we also take into account the typical
log-normal distribution of the particle radius [10] in our
mathematical expressions.

3) For the considered model, we calculate the symbol error
rate (SER) to evaluate the system performance. Thereby,
the system is affected by fluid flow which may prevent
information-carrying particles from reaching the receiver
(RX). We show that applying a magnetic force can
drastically reduce the SER.

The remainder of this paper is organized as follows. In
Section II, we present the system model and the magnetic
properties of MNPs. Based on this model, we derive the
exact particle distribution and the channel impulse response
in Section III. Simulation results are provided in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

The use of MNPs can be beneficial for many environments
and applications especially when fluid flow hinders MC. For
concreteness, as one example where MNPs can be advanta-
geous, we consider a bounded two-dimensional environment
of height h and infinite width in the x-z-plane. In particular,
particles can only diffuse within −∞ < x <∞, 0 ≤ z ≤ h and
the boundaries at z = 0 and z = h are modeled as reflective,
see Fig. 1. For this channel, we assume the transmitter (TX)
positioned at x = d, z = h wants to deliver a message to the RX
which is located on the opposite side at x = 0, z = 0. Thereby,
fluid flow with velocity vf carries the MNPs downstream in
negative x-direction but possibly past the RX. To increase the
number of particles arriving at the RX, a magnet creating a
magnetic field B is placed below the channel dragging particles
in negative z-direction towards the RX with velocity vm.

A. Channel Model

To illustrate the benefits of using MNPs, we focus on the
following common MC model. The binary information symbols,
b[k], are modulated by on-off keying (OOK). Assuming
instantaneous particle release, for transmitting b[k] = 1 and
b[k] = 0, the point source TX releases NTX and 0 particles,
respectively. The RX is a transparent rectangular patch at
|x| ≤ cx/2, 0 ≤ z ≤ cz at the bottom of the channel with
height cz and width cx. We assume that the RX is perfectly
synchronized with the TX, i.e., the RX knows the symbol
interval T and when transmission starts and ends, see [11] for
more details. By counting the number of particles within its
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Fig. 1. System model geometry. The overall flow vector and the magnetic
field gradient are given by (−vf ,−vm) and (0, ∂

∂z
B), respectively.

volume, the RX takes samples at times kT +t0, where t0 is the
time offset after which, for each symbol interval, k, particles
can be expected within the receiver volume. For detection, in
each symbol interval, the number of counted particles at the
RX, nRX[k], is compared to a threshold ξ, i.e., the detected
symbols are given by

b̂[k] =

{
0, nRX[k] < ξ

1, nRX[k] ≥ ξ.
(1)

B. Magnetic Nanoparticles

We model the MNPs by the radius of the magnetic core
and the radius including the coating which are denoted as
Rm and Rh, respectively. Because of slight variations in the
physical parameters during MNP synthesis, actual particle sizes
may differ from the intended size. Thereby, it has been found
that the log-normal distribution usually provides a good fit
to the experimentally observed particle sizes [10]. Motivated
by this, for the particle radius, Rm, we assume a log-normal
distribution with mean mR and standard deviation sR. Thereby,
for simplicity, we assume that Rh = Rm + Rc, where Rc is
the constant thickness of the coating. In the remainder of this
paper, we will refer to mR as the nominal particle size, i.e.,
the target magnetic core size in the production of the MNPs.

We model the externally applied magnetic field by the
magnitude of the magnetic flux density B. Thereby, B is
assumed to increase towards the magnet, i.e., the gradient of
B is in the negative z-direction, cf. Fig. 1. MNPs tend to
magnetically align with the applied magnetic field B. However,
immersed in a fluid of temperature Tf , the alignment is not
perfect. In particular, considering the thermal energy per
particle kBTf , where kB ≈ 1.381× 10−23 m2kg/s2/K is the
Boltzmann constant [12], the average magnetization in the
direction of the magnetic field is given by [13, Ch. 4.3.2]

M(B) = Ms L

(
VmMsB

kBTf

)
, (2)

where the Langevin function L(s) is defined as L(s) =
coth(s) − 1/s and coth(s) is the hyperbolic cotangent.
Moreover, Vm is the volume of the magnetic core and Ms

denotes the saturation magnetization which applies if an



MNP is fully aligned with the applied magnetic field, i.e.,
M(B → ∞) = Ms. In the remainder of this paper, for
simplicity, we will assume M(B) ≈Ms. The validity of this
assumption is investigated in Section IV, Fig. 2. Eq. (2) implies
M(B = 0) = 0, which is in contrast to larger ferromagnetic
materials for which M does not only depend on the current
value of B but also on previous values of B. This effect is
known as hysteresis.

Given the volume of the magnetic core Vm and its average
magnetization in (2), the force on an MNP in a magnetic field
B in negative z-direction (cf. Fig. 1) is given by [14]

Fm(z) = −VmMs
∂

∂z
B(z), (3)

which is proportional to the magnetic field gradient. In this
paper, we assume that the magnetic field within the channel
can be accurately modeled by an affine function of z, i.e., we
consider the linearization of B(z). In this case, the magnetic
force on the MNPs is constant. Thereby, the force points
towards the magnet because this is the direction of increasing
magnetic field strength.

The movement of the MNPs is subject to diffusion, which
can be characterized by the diffusion coefficient D, and a
magnetic drift with velocity vm, which is due to the magnetic
force Fm. It is known that applying a force Fm on an MNP
immersed in a liquid of viscosity η quickly accelerates it to
the terminal velocity vm = Fm/ζ [12, Eq. (4.12)], where ζ
is the friction coefficient which by Stokes’ law is given by
ζ = 6πηRh. In summary, we obtain

vm = −2Ms

9η

R3
m

Rm +Rc

∂

∂z
B(z), (4)

which is proportional to the magnetic field gradient and strongly
depends on the particle size.

By thermodynamic reasoning [12, Ch. 4], ζ is linked to the
diffusion coefficient D by the Einstein relation kBTf = Dζ.
Hence, given the viscosity η and the temperature of the fluid
Tf , D can be determined as

D =
kBTf

6πη(Rm +Rc)
, (5)

which also depends on the particle size but to a lesser degree
than vm. In contrast, the fluid flow velocity vf is not affected
by the value of Rm.

III. PERFORMANCE ANALYSIS

In this section, we derive an analytical expression for the
time-variant spatial MNP distribution by solving the diffusion
equation with drift for the system in Fig. 1. Then, equipped
with the solution to the diffusion equation, we calculate the
probability of observing a particle within the RX volume as
well as the expected received number of particles which is
a function of time that we will refer to as impulse response.
Finally, given the impulse response, we determine the average
received signal and the SER.

A. Impulse Response

In the environment depicted in Fig. 1, the particle movement
in the x- and z-direction is uncoupled and hence the time-
varying probability density function (PDF) for the MNP
position can be written as p(x, z; t) = px(x; t)pz(z; t). In this
equation, the horizontal distribution px(x; t) corresponds to
an unbounded environment with constant drift vf . Hence, this
distribution is readily obtained as [15, Eq. (4.39)]

px(x; t) =
1√

4Dπt
e−(x−d+vf t)

2/(4Dt), (6)

where the mean particle x-coordinate arrives at the RX at time
t1 = d/vf . Determining the vertical distribution pz(z; t) is
more challenging because of the combination of a bounded
environment and particle drift. Therefore, we consider the under-
lying partial differential equation (PDE) which is the diffusion
equation with drift. Thereby, the reflective boundary conditions
are specified by [15, Eq. (4.24)] D ∂

∂z pz(z; t)+vmpz(z; t) = 0
for z = 0, h, and t > 0. Moreover, by assumption of a point
source TX, the initial position z0 = h is known a priori. Hence,
pz(z; t) for t > 0 is obtained by solving the following PDE
with boundary and initial conditions

∂

∂t
pz(z; t) = vm

∂

∂z
pz(z; t) +D

∂2

∂z2
pz(z; t), 0 < z < h

∂

∂z
pz(z; t) = −vm

D
pz(z; t), z = 0, h

pz(z; t) = δ(z − z0), t = 0.
(7)

Solutions to the one-dimensional diffusion equation without
drift are well known for various boundary conditions [16].
Motivated by this, using a variable substitution, we obtain
an equivalent problem formulation in terms of an auxiliary
function q(z; t) without drift term but with q(z; t→∞) = 0
and modified boundary conditions [17]. To this end, we define
q(z; t) by

pz(z; t) = q(z; t) e−u(z−z0)−Du
2t +peqz (z), (8)

where peqz (z) = pz(z; t→∞) is the steady state or equilibrium
solution of (7) and u = vm/(2D). Substituting (8) in (7), for
t > 0 we obtain the following PDE in q(z; t)

∂

∂t
q(z; t) = D

∂2

∂z2
q(z; t), 0 < z < h

∂

∂z
q(z; t) = −uq(z; t), z = 0, h

q(z; t) = δ(z − z0)− peqz (z) eu(z−z0), t = 0,

(9)

which is the diffusion equation without drift and can be solved
by separation of variables. Nevertheless, to obtain pz(z; t) in
(8), we require peqz (z). Therefore, in the following, we first give
the steady state solution and then use it to solve the original
problem.

1) Steady State: The steady state solution of pz(z; t) also
needs to satisfy (7) but is characterized by ∂

∂tpz(z; t) = 0, i.e.,
the following ordinary differential equation (ODE)

−vm
D
peqz (z) =

∂

∂z
peqz (z), z ∈ [0, h] (10)



has to be solved. As peqz (z) is a PDF and no particles are lost,
the reflective boundary conditions are met if the steady state
PDF satisfies

∫ h
0
peqz (z) dz = 1.

As can be verified by substitution, (10) is solved by

peqz (z) = s−1 e−vmz/D, (11)

where s = D
(
1− e−vmh/D

)
/vm.

2) Transient Solution: Using separation of variables, we
obtain the auxiliary function q(z; t) in terms of the following
series solution

q(z; t) =

∞∑
n=1

Zn(z) e−Ds
2
nt an, (12)

where sn = nπ/h,

Zn(z) =

√
2

h(s2n + u2)
(sn cos(snz)− u sin(snz)) , (13)

and an = Zn(z0).
We are now ready to determine pz(z; t) by substituting (11)

and (12) in (8). In summary, we obtain

pz(z; t) = peqz (z)+ e−u(z−z0)×
∞∑
n=1

e−D(s2n+u
2)t Zn(z)Zn(z0),

(14)

which simplifies to (11) for t→∞.
3) Probability of Particle Observation: Using the PDF

p(x, z; t), we can now determine the probability of observing
a particle within the RX volume, Pob(t), as

Pob(t) = Pob,x(t)Pob,z(t), (15)

where Pob,x(t) and Pob,z(t) are the probabilities of observing
a particle within the RX x- and z-coordinates [−cx/2, cx/2]
and [0, cz], respectively. Integrating (6) from −cx/2 to cx/2
yields

Pob,x(t) =
1

2

[
erf

(
x(t) + 1

2cx√
4Dt

)
− erf

(
x(t)− 1

2cx√
4Dt

)]
,

(16)
where erf(s) is the error function and x(t) = d − vft.
Furthermore, integrating (14) from 0 to cz yields Pob,z(t)
as

Pob,z(t) = P eq
ob,z+ e−u(cz−z0)×

∞∑
n=1

e−D(s2n+u
2)t LnZn(z0),

(17)

where Ln is obtained as

Ln =

√
2

h(s2n + u2)
sin(sncz), (18)

and P eq
ob,z is the integral of (11) which is easily found as

P eq
ob,z =

1− e−vmcz/D

1− e−vmh/D
. (19)

We note that Pob,z(t) in (17) is the sum of a transient
term approaching zero for t → ∞ and a constant steady
state term. Therefore, we can make the following equilibrium
approximation. If transmitter and receiver are placed far
apart, at time t1 when the particles are expected at the x-
coordinates of the receiver, pz(z; t) will have converged to
peqz (z). Consequently, in this case, the particle observation
probability reduces to Pob(t) = Pob,x(t)P eq

ob,z , which is a
simple scaling of Pob,x(t) in (16). By considering P eq

ob,z in
(19), we can also gain qualitative insight on how the particle
distribution is affected by changes of the magnetic drift velocity
vm. In particular, for vm → 0, we obtain P eq

ob,z = cz/h as in
this case the particle distribution is uniform across the channel
height because of diffusion. On the other hand, for vm →∞,
we obtain P eq

ob,z = 1, i.e., all particles are gathered at the
lower boundary in Fig. 1 since the magnetic drift completely
dominates diffusion.

Having obtained the particle observation probability at the
receiver (15), we can now obtain the expected number of
received molecules as a function of time due to the release of
NTX particles. Thereby, assuming the number of particles within
the channel is small enough such that particle interactions can
be ignored, we obtain the impulse response

Nob(t) =

NTX∑
i=1

Pob,i(t), (20)

where Pob,i(t) is the probability of observing particle i at time
t. Thereby, the Pob,i(t), i = 1, 2, . . . , NTX, vary for sR > 0 as
the particle sizes differ. In particular, in (16) and (17), vm and
D depend on Rm via (4) and (5). On the other hand, for sR = 0,
we have Pob,i(t) = Pob(t), ∀i, i.e., all particles have the same
(nominal) particle size mR. In this case, Nob(t) = NTXPob(t)
which we will refer to as the nominal impulse response.

B. Symbol Error Rate

Using [18, Eq. (30)], the average number of observed
particles nRX[k] in the k-th time slot due to a binary sequence
of transmitted symbols b[k] ∈ {0, 1}, 0 ≤ k < K, is given by

nRX[k] =

k∑
i=0

b[i]Nob((k − i)T + t0). (21)

In general, using the detection rule in (1), the probability of
making an error in the k-th symbol can be written as

Pr(b̂[k] 6= b[k]; b[κ ≤ k]) =

{
pξ, b[k] = 1

1− pξ, b[k] = 0,
(22)

where pξ = Pr(nRX[k] < ξ; b[κ ≤ k]) is the probability of
observing less than ξ MNPs at the k-th sampling time given
b[κ] for 0 ≤ κ ≤ k. Similar to [18], nRX[k] can be well
approximated by a Poisson random variable with mean nRX[k],
see [19]. In this case, pξ = Pr(nRX[k] ≤ ξ − 1; b[κ ≤ k]) is
the Poisson cumulative distribution function with mean nRX[k]
evaluated at ξ − 1.

If there is no inter-symbol interference (ISI), then for any
ξ ≥ 1, b[k] = 0 is always detected correctly because in this



TABLE I
SYSTEM PARAMETERS.

Parameter Value Parameter Value

η 1 × 10−3 kg m−1 s−1 d 1 mm
Tf 300 K h 10 µm
Rc 1 nm cx 0.1 mm
mR 50 nm cz 1 µm
sR 10 nm vf 0.5 mm s−1

Ms 5 × 105 A m−1 T 2 s∣∣∣ ∂
∂z
B
∣∣∣ 5 T m−1 ξ 1

case nRX[k] = 0. On the other hand, if b[k] = 1, then nRX[k] =
Nob(t0) and the error probability is minimized for the minimal
ξ. Hence, assuming there is no ISI, ξ = 1 minimizes Pe. In
this case, an error occurs only if b[k] = 1 and nRX[k] = 0.
Hence, the average symbol error rate is given by Pe = 1/2×
Pr(nRX[k] = 0; b[k] = 1) assuming Pr(b[k] = 1) = 1/2. For
Poisson random variable nRX[k], the average SER simplifies
to

Pe =
1

2
e−Nob(t0), (23)

which we will refer to as the no ISI approximation.

IV. NUMERICAL RESULTS

In this section, unless explicitly stated otherwise, we adopt
the physical parameters in Table I using the viscosity of water
for η, room temperature for Tf , a saturation magnetization
similar to magnetite for Ms, a magnetic field gradient well
within the range of realizable values for

∣∣ ∂
∂zB

∣∣ [14], and values
for h and vf realizable in a microfluidic setting [5]. Thereby, we
choose t0 = t1, where t1 = d/vf , i.e., the RX takes a sample
when particles are expected due to fluid flow. For simulation
of the system described in Section II, we use a particle-based
approach where time advances in discrete time steps ∆t and
the position of each particle is tracked and updated in each
time step, see e.g. [3, Eq. (1)]. Then, for the received signal,
for each time step, the number of particles within the receiver
volume is counted. Within each simulation step, if a particle
crosses a channel boundary, it is reflected back into the channel.

In Fig. 2, we evaluate the particle magnetization (2) as a func-
tion of the applied magnetic field B for Rm = mR = 50 nm
and Rm = mR ± sR. As M(B) in (2) is point symmetric,
we only show M(B) for B ≥ 0. Here, magnetization is
saturated already for B ≈ 1 mT which is easily exceeded
by today’s magnets for targeted drug delivery [14]. Hence,
assuming M(B) ≈ Ms in Section II, is justified. Compared
to the nominal particle size, slightly larger and smaller MNPs
reach saturation quicker and slower because their magnetiza-
tion direction is less and more affected by thermal energy,
respectively.

In Fig. 3, we show the fraction of MNPs within the receiver
volume after a point release of NTX particles at the transmitter
at t = 0 as a function of time for times around t1 = 2 s. The
curves are parameterized by different magnetic field gradients∣∣ ∂
∂zB

∣∣ resulting in different drift velocities vm. For each
∣∣ ∂
∂zB

∣∣,

0.2 0.4 0.6 0.8 1 1.2

2

4

·105

Rm = 60, 50, 40 nm

B [mT]

M [A m−1]

Fig. 2. Magnetization curves as given by (2) for magnetic core sizes Rm =
40, 50, 60 nm.

we also show the nominal impulse response as well as simulated
data points. For clarity, the equilibrium approximation is only
shown for

∣∣ ∂
∂zB

∣∣ = 5 T m−1. Fig. 3 shows that increasing the
magnetic field gradient significantly increases the number of
observed MNPs. There is a time window of approximately
0.2 s centered around t1 = 2 s within which a nonzero number
of MNPs can be observed independent of the magnetic field
gradient. Hence, for a symbol interval size of T = 2 s, ISI
does not play a significant role for the given parameters
due to the flow-dominated transport of particles. Due to the
log-normal particle size distribution there is some deviation
from the nominal impulse response as vm depends on the
particle size. In particular, when

∣∣ ∂
∂zB

∣∣ is relatively small
(e.g.

∣∣ ∂
∂zB

∣∣ = 5 T m−1) and large (e.g.
∣∣ ∂
∂zB

∣∣ = 20 T m−1),
more and fewer MNPs are observed at the RX than expected
based on the nominal impulse response, respectively. This
can be explained as follows. The nominal impulse response
is obtained based on the assumption that the radius of all
MNPs is equal to the mean radius mR. The magnetic force
experienced by a particle increases with its size. Hence, for
small

∣∣ ∂
∂zB

∣∣, the magnetic force experienced by MNPs having
radius mR is relatively weak and having MNPs with a larger
radius, and thus, experiencing a larger magnetic force, increases
the number of observed MNPs. On the other hand, for large∣∣ ∂
∂zB

∣∣, the magnetic force experienced by MNPs having radius
mR is relatively strong and almost all MNPs with this radius
arrive at the RX. Thus, having even larger MNPs cannot
further increase the number of observed MNPs. However,
having smaller MNPs, which experience a weaker magnetic
force, decreases the number of observed MNPs. Regarding the
equilibrium approximation for

∣∣ ∂
∂zB

∣∣ = 5 T m−1, we see that
it overestimates the number of observed particles as within the
time frame where MNPs can be observed, the steady state has
not yet been reached. Overall, Fig. 3 confirms that magnetically
targeting the RX proves effective in increasing the number of
observed MNPs. Thereby, for the considered system model,
larger magnetic field gradients are preferable.

In Fig. 4, we evaluate the symbol error rate when the magnet
is turned on and off, respectively, as a function of the number
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Fig. 3. Impulse response Nob(t) in (20) for different magnetic field gradients
where NTX = 1000. Simulation results with ∆t = 2 ms have been averaged
over 104 realizations (for clarity, not all points are shown).
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Fig. 4. Symbol error rate as a function of the available number of MNPs
per symbol. Pe in (23) with K = 10 is shown for two different fluid flow
velocities and with the magnet turned on and off, respectively. Simulation
results with ∆t = 20 ms have been averaged over 106 realizations.

of MNPs used per transmit pulse. In particular, for each NTX,
we show the SER according to (23) for ξ = 1 as well as
simulation results for SER ≥ 5× 10−5 where the particle
sizes have been chosen independently for each transmit pulse
of NTX particles. As for T = 2 s no ISI is expected for the
chosen system parameters, cf. Fig. 3, the no ISI approximation
in (23) matches the simulation results. We can also observe
that the system is very sensitive to changes in the fluid flow
which can not be controlled externally. However, overall, we
note that turning the magnet on reduces the SER significantly.

V. CONCLUSION

In this paper, we proposed the use of MNPs as information-
carriers for MC systems. In particular, we showed how the
movement of MNPs can be modeled as diffusion with drift.
To this end, we reviewed the magnetic drift velocity resulting
from a magnetic force caused by a magnetic field gradient.

Thereby, we highlighted the dependence of the drift velocity
and the diffusion coefficient on the particle size. Subsequently,
we introduced a technique to solve the diffusion equation with
drift in a bounded environment and applied this technique to
derive the impulse response in a two-dimensional environment
subject to fluid flow, diffusion, and magnetic drift. Moreover,
we showed how the particle size distribution can be incorpo-
rated in the impulse response. By numerical evaluation, we
illustrated how a log-normal particle size distribution affects the
impulse response for different magnetic field gradients. Finally,
evaluating the SER revealed the sensitivity of the system
performance to variations in the fluid flow and demonstrated
the effectiveness of employing external magnetic fields for
improving the reliability of communication.
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