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Abstract—A common approach to obtain channel state infor-
mation for massive MIMO networks is to use the same orthogonal
training sequences in each cell. We call this the full-pilot reuse
(FPR) scheme. In this paper, we study an alternative approach
where each cell uses different sets of orthogonal pilot (DOP)
sequences. Considering uplink communications with matched
filter (MF) receivers, we first derive the SINR in the large system
regime where the number of antennas at the base station, the
number of users in each cell, and training duration grow large
with fixed ratios. For tractability in the analysis, the orthogonal
pilots are drawn from Haar distributed random unitary matrices.
The resulting expression is simple and easy to compute. As shown
by the numerical simulations, the asymptotic SINR approximates
the finite-size systems accurately. Secondly, we derive the user
capacity of the DOP scheme under a simple power control and
show that it is generally better than that of the FPR scheme.

I. INTRODUCTION

One of the candidates for 5G technology is the massive

Multiple-Input and Multiple-Output (MIMO) system (see e.g.,

[1], [2]) introduced by Marzetta in [3]. In massive MIMO cel-

lular networks, a large number of small and low-cost antennas,

in the order of hundreds, is employed at base stations (BSs).

This enables an aggressive spatial multiplexing which can lead

to a ten times capacity increase compared to conventional

MIMO systems [2], [3].

A common approach in the uplink training of massive

MIMO systems is the full-pilot reuse (FPR) where the same

orthogonal training sequences are used in each cell, see e.g.,

[3], [4], [5]. The other approach proposed in [3] is to use

different orthogonal pilots in different cells and we denote this

approach as the DOP scheme. To the best of our knowledge,

this scheme is largely unexplored.

It is argued in [3] that this scheme gives little difference in

terms of the achieved SINRs compared to the FPR scheme.

However, in the DOP, we get a small amount of contamination

from all inter-cell users rather than a (potentially) large amount

from a few users (those with the same pilot sequence) and

this can lead to a better user capacity (see [6]). Note that

the analysis in [3], [6] is performed in the regime where the

number of antennas (N ) tends to infinity and the number users

(K) is finite (K ≪ N ). This implies that the cell-loading

(K/N ) is close to zero. It should be noted that the analysis in

this regime gives a loose approximation for finite-size systems

and can also converge slowly [4], [7].

In this paper, we generalize the performance analysis of the

DOP scheme for arbitrary numbers of cell-loading. We obtain

the approximation of the SINR by performing the analysis

in the large system regime where the number of antennas at

the base station, the number of users in each cell, and the

number of training symbols go to infinity with fixed ratios.

For analytical tractability, we choose the training pilots from

Haar-distributed random unitary matrices. This approach has

been used previously in CDMA systems, see for example [8]

and [9]. Our numerical simulations show that the asymptotic

results approximate the finite-size systems accurately. In the

analysis, we show that the pilot contamination in the asymp-

totic SINR expression is the average of the square of received

powers of all users from the interfering cells (see also [3] for

a similar conclusion). This result differs from that obtained in

the FPR case [3], [4], [5], where the pilot contamination is the

sum of the received power of users from the interfering cells

that use the same training sequence.

In this paper, we also consider another performance crite-

rion, i.e., the user capacity. In the downlink with maximum

ratio transmission (MRT) precoders, the user capacities of

massive MIMO networks for single and multi-cell scenarios

have been characterized in [10], [11], respectively. Recent

work [6] studies the uplink user capacity when the cell-loading

approaches zero. Here, we derive the uplink user capacity

for arbitrary numbers of cell-loading under a simple power

control where the uplink transmit power of a user is the

inverse of the slow path-gain of that user (see also [12]). Our

numerical simulations show that even though all users from

the interfering cells contribute to the pilot contamination in

the DOP scheme, its user capacity can be larger compared to

that of FPR. Other related work is [12] that investigates the

optimal number of users that maximizes the spectral efficiency

of massive MIMO networks.

The following notations are used in this paper. The boldface

lower and upper case letters denote vectors and matrices,

repectively. IN denotes an N×N identity matrix. E[·] and
a.s.−→

denotes respectively the statistical expectation and the almost

sure convergence. The circularly symmetric complex Gaussian

(CSCG) vector with zero mean and covariance matrix Σ is

denoted by CN (0,Σ). |a| and ℜ[a] denote the magnitude

and the real part of the complex variable a, respectively.

‖ · ‖ represents the Euclidean norm. Tr (·), (·)T and (·)H refer

to the trace, transpose and Hermitian transpose, of a matrix

respectively.
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II. SYSTEM MODEL

We consider a multi-cell communication system with L-

cells. Each cell has a base station equipped with N antennas

and the number of users in cell i is denoted byKi. The channel

between user k in cell j and the BS in cell i is denoted by

the column vector gkji that can be modeled as

gkji =
√
ℓkjihkji (1)

where hkji ∼ CN (0, IN ) represents the fast-fading channel

coefficients. It is assumed that the slow-fading coefficient ℓkji
is distance-dependent and the shadowing effect is ignored. The

channel variations follow the block channel fading model and

one block duration is equal to the channel coherence time.

We also consider the time-division duplex (TDD) proto-

col with perfect channel reciprocity between the uplink and

downlink channels. In this paper, we focus on the uplink trans-

mission where all scheduled users transmit simultaneously to

their base station (BS). In the pilot-based TDD training, the

BS estimates each user channel from the pilot symbols sent by

each user in the uplink transmission. The BS uses the channel

information to decode the transmitted symbols from its users.

We should note that the uplink training and the uplink data

transmissions should occur in one coherence block time.

A. Uplink Training

Let T be the length of the channel coherence time (in

symbols). Let τ ≤ T be the uplink training interval or the

number of training symbols. In this training phase, each user

in each cell sends the pilot symbols to their BS. We assume a

synchronized training, where all cells perform the training at

the same time and with the same training period τ. Let h
[n]
kji

be the n-th element of hkji that represents the channel from

the corresponding user to the n-th antenna of BS i. Also, let

q
(t)
ki be the pilot symbol sent by user k in cell i at time t and

̺ki be the corresponding average training power. Note that,

in the uplink training, BS i will estimate the channels of its

users hkii. Since our assumption that the elements of hkii are

independent, therefore we can estimate each element of the

channel vector hkii independently. The received signal vector

at the n-th antenna of BS for τ training symbols is

y
[n]
i =

L∑

j=1

Kj∑

k=1

√
ρkjih

[n]
kjiqkj + n

[n]
i (2)

where y
[n]
i = [y

[n]
1i , . . . , y

[n]
τi ]

T, qkj = [q
(1)
kj , . . . , q

(τ)
kj ]

T, and

n
[n]
i = [n

[n]
1i , . . . , n

[n]
τi ]

T ∼ CN
(
0, σ2Iτ

)
is the receiver

noise vector. We also denote ρkji = ̺kjℓkji as the received

power of user k from cell j at BS i. From (2), we can see

that BS i also receives the training transmissions from other

cells. It is assumed that the BS knows all the path-gains and

training sequences of all users perfectly. We also assume that

the training matrix for cell j, Qj = [q1j ,q2j , · · · ,qKjj ]
is obtained by extracting Kj ≤ τ columns of a τ × τ
Haar-distributed random unitary matrix UUUj (see also [8], [9]).

Thus, QH

jQj = IK which implies that the training sequences

are orthogonal (orthonormal) across the users in the same

cell. It is assumed that UUUj , j = 1, . . . , L are independent

[9]. In other words, different cells employs different sets

(independent) of orthogonal training sequences. It is in contrast

to the majority of works in massive MIMO where the same

orthogonal training sequences are used in each cell.

Let us focus on obtaining the estimate for h
[n]
kji. By corre-

lating the observation vector y
[n]
i with the training vector qki,

we have

qH

kiy
[n]
i =

√
ρkiih

[n]
kii+

L∑

j 6=i

Kj∑

m=1

√
ρmjih

[n]
mjiq

H

kiqmj+n̄
[n]
ki (3)

where n̄
[n]
ki = qH

kin
[n]
i ∼ CN (0, σ2). The minimum mean-

square estimation (MMSE) is employed based on the obser-

vation (3). Note that since BS i knows ρkji, and qkj , ∀k, j, the

vector y
[n]
i is Gaussian. Moreover, the scalars qH

kiy
[n]
i and h

[n]
kii

are jointly Gaussian. The MMSE estimate for h
[n]
kii is given by

ĥ
[n]
kii =

υki√
ρkii

qH

kiy
[n]
i (4)

where

υki =
ρkii

ρkii +

L∑

j 6=i

Kj∑

m=1

ρmji|qH

kiqmj |2 + σ2

. (5)

Note that υki√
ρkii

is the scalar estimator for h
[n]
kii based on

the observation (3) and υki is the variance of the channel

estimate. It can be checked that the channel estimates for

different users (in the same cell) are correlated. In contrast,

they are uncorrelated in the FPR scheme. From (4), we can

model ĥ
[n]
kii ∼ CN (0, υki). Note that we have removed the

index n in the notation for the channel estimation variance

because it does not depend on n. The channel estimate vector,

ĥkii =
[
ĥ
[1]
kii, ĥ

[2]
kii, . . . , ĥ

[N ]
kii

]T
can be expressed as follows

ĥkii = υki


hkii +

L∑

j 6=i

Kj∑

m=1

√
ρmji
ρkii

hmjiq
H

mjqki +
n̂ki√
ρkii




(6)

where n̂ki = [n
[1]
i , · · · ,n

[N ]
i ]Tq∗

ki ∼ CN
(
0, σ2IN

)
. Note that

ĥkii ∼ CN (0, υkiIN ). By the property of MMSE, we can

model hkii = ĥkii+ h̃kii, where h̃kii ∼ CN (0, (1− υki)IN )
is the channel estimation error vector. Moreover, ĥkii and h̃kii
are independent. Note that the second term of (6) is the pilot

contamination term which includes the channels of all users

from the interfering cells. In the FPR scheme, only users that

have the same training sequence contribute to this term.



B. Uplink Data Transmission

The uplink data transmission will take the duration of T −τ
symbols. Let skj be the transmitted symbol from user k in cell

j with the average power pkj . The received signal at BS i is

ui =
L∑

j=1

Kj∑

k=1

√
pkjℓkjihkjiskj + ni (7)

where ni ∼ CN (0, σ2IN ) is the receiver noise at BS i. It

is assumed that skj ∼ CN (0, 1) and is independent of other

users’ data symbols. For the rest of the paper, we assume

pkj = ̺kj and thus, ρkji = pkjℓkji.
Let us consider user k at cell i. A linear receiver, denoted

by cki, is used by BS i to decode the received data symbols.

The estimate for symbol ski is

ŝki = cHkiui = cHki

L∑

j=1

Kj∑

k=1

√
ρkjihkjiskj + cHkini.

In this paper, we consider the MF receiver due to its low

complexity. A more sophisticated LMMSE receiver is left for

future works. The receiver is constructed by using the channel

estimate, i.e., cki = ĥkii. The resulting SINR, denoted by γki,
can be written as follows

γki =
ρkii‖ĥkii‖4

ξki +

L∑ Kj∑

(j,m) 6=(i,k)

ρmji|ĥH

kiihmji|2 + σ2‖ĥkii‖2
(8)

where ξki = ρkii|ĥH

kiih̃kii|2 is the self interference noise.

III. ASYMPTOTIC ANALYSIS

In this section, we derive the asymptotic uplink SINR (8) by

analyzing it in the large system regime, i.e., when Kj, N and

τ tend to infinity with Kj/N and Kj/τ being finite constants.

The derivation relies on results in random matrix theory [13],

[14], as well as the results on Haar-distributed random matrices

(see e.g., [8], [9], [14]).

Theorem 1: Let Γji = diag
(
ρ1ji, ρ2ji, · · · , ρKjji

)
. Suppose

that the empirical spectral distribution (e.s.d.) of Γji converges

to a non-random distribution FΓji
. As Kj, N, τ → ∞ with

Kj

N
→ αj and

Kj

τ
→ κj , the uplink SINR γki converges

almost surely to γ̄ki which is given by

γ̄ki =
ρ2kiiῡki

ρkii

L∑

j=1

αjE [Γji] + ῡki

L∑

j 6=i
κjE

[
Γ
2
ji

]
(9)

where

ῡki =
ρkii

ρkii +

L∑

j 6=i
κjE [Γji] + σ2

(10)

and Γji is a random variable with distribution FΓji
.

Proof: See Appendix A.

Remark 1: In practice, i.e. when the distribution of FΓji
is

difficult to obtain or Kj is relatively small, we can replace

E [Γji] with its empirical value 1
Kj

∑
k ρkji.

As mentioned previously, the large system analysis is per-

formed to obtain the approximation for the uplink SINR.

In practice, the parameters Kj, N and τ are finite and the

approximation (9) uses the ratios of those parameters (αj and

κj). As shown in Section V, (9) can approximate the finite-

size systems accurately. Moreover, we can infer from (9) that

the uncertainty due to the fast fading has been removed and

only that from the large-scale fading (ρkii) remains.

Now, let us compare (9) with the limiting SINR in the FPR

scheme, denoted by γ̄ski, given by (see also [4, eq. (23)])

γ̄ski =
ρ2kiiῡ

s
ki

ρkii

L∑

j=1

αjE [Γji] + ῡski

L∑

j 6=i
ρ2kji

(11)

where

ῡski =
ρkii

ρkii +
L∑

j 6=i
ρkji + σ2

=
ρkii

L∑

j=1

ρkji + σ2

. (12)

Observing the denominator of (9), the first term is the

total interference (the intra- and inter-cell interference). This

term also appears in the denominator of (11). Thus the

limiting interference power is the same for both FPR and DOP

schemes. The second term in the denominators of (9) and (11)

is the pilot contamination contributed by the users from the

interfering cells. However, this term takes different forms in

both schemes . In DOP, the pilot contamination is caused by all

users in each interfering cell in the form of the second moment

of the interference powers. In contrast, the pilot contamination

in the FPR scheme is caused only by the users with the same

training pilot sequence.

Remark 2: In common massive MIMO setups, i.e., when

N → ∞ and Kj is finite (Kj ≪ N ), or equivalently αj → 0,

(9) will reduce to

lim
α→0

γ̄ki = ρ2kii


1

τ

L∑

j 6=i

Kj∑

m=1

ρ2mji




−1

(13)

where we use 1
Kj

∑
k ρ

2
kji to represent E

[
Γ
2
ji

]
in finite system

dimensions. This agrees with the result in [3].

Now, let us consider a simple power control scheme where

pkj = Pu

ℓkjj
. Thus, the received power ρkjj = Pu is the

same for all users in cell j (see also [12]). Consequently, Γji
becomes

Γji =

{
PuIKj

, j = i

PuL̄ji, j 6= i
,

where L̄ji = diag
(
ℓ1ji
ℓ1jj

,
ℓ2ji
ℓ2jj

, · · · , ℓKjji

ℓKjjj

)
. Suppose that the

e.s.d. of L̄ji converges almost surely to a deterministic dis-

tribution F
L̄ji

. Then, it is straightforward from Theorem 1 to



show that the limiting SINR under the power control, denoted

by γ̄pki, is

γ̄pki = γ̄pi =
ῡpi

L∑

j=1

αjE
[
L̄ji

]
+ ῡpi

L∑

j 6=i
κjE

[
L̄
2
ji

]
(14)

where

ῡpi =
1

1 +

L∑

j 6=i
κjE

[
L̄ji

]
+ σ2/Pu

(15)

and L̄ji is a random variable whose distribution F
L̄ji

.

We can see from (14) and (15) that the limiting SINR and

channel estimation variance under power control are the same

for all users in cell i. Moreover, γ̄pi is deterministic since

it does not depend on the random locations (or particular

realizations of the locations) of the users. Under the same

power control, the limiting SINR for the FPR scheme is

γ̄s,pki =
ῡs,pki

L∑

j=1

αjE
[
L̄ji

]
+ ῡs,pki

L∑

j 6=i

ℓ2kji
ℓ2kjj

(16)

where ῡs,pki =
(
1 +

∑L
j 6=1

ℓkji/ℓkjj + σ2/Pu

)−1

. It is ob-

vious that γ̄s,pki still depends on the particular realizations

of ℓ̄kji = ℓkji/ℓkjj . Note that, for a particular realization

of ℓ̄kji,
∑L

j 6=1 ℓ̄kji and
∑L

j 6=i ℓ̄
2
kji can be larger or smaller

than
∑L
j 6=i κjE

[
L̄ji

]
and

∑L
j 6=i κjE

[
L̄
2
ji

]
, respectively. Con-

sequently, γ̄s,pki can be smaller or larger than γ̄pi .

IV. USER CAPACITY UNDER POWER CONTROL

Here we will characterize the user capacity based on the

limiting SINR under power control (14). Recall that the

limiting SINR, γ̄pi , is deterministic and is the same for all

users in cell i. Now, let us assume that all users in cell i have

the quality of service (QoS) requirement,

γ̄pi ≥ γthi (17)

where γthi is the minimum required SINR for users in cell i.
Then, the user capacity is defined as the number of users per

degree of freedom (N ), or αi, that satisfies the QoS (17), see

also [10], [11]. From (17), we have

αi +
L∑

j 6=i
αjE

[
L̄ji

]
≤ ῡpi


 1

γthi
−

L∑

j 6=i
κjE

[
L̄
2
ji

]

 . (18)

To get more insights on the user capacity, let us consider the

simplest case where Kj = K , so that αj = α, κj = κ. Note

that K affects both α and κ and we can write α = K
τ
τ
N

= κθ
with θ = τ

N
. For a given degree of freedom, there are two

ways of defining α that satisfies the QoS in (17), either by

fixing τ or κ.

A. Fixed τ

Recall that α = κθ. By substituting the expression for ῡpi
in (15) into (18), we obtain

Aiκ
2 +Biκ− 1

γthi
≤ 0 (19)

where

Ai = θ




L∑

j=1

E
[
L̄ji

]





L∑

j 6=i
E
[
L̄ji

]



Bi = θ
(
1 + σ2/Pu

) L∑

j=1

E
[
L̄ji

]
+

L∑

j 6=i
E
[
L̄
2
ji

]
.

Now we need to find the range of κ (or α) such that (19)

holds with Ai, Bi, γ
th

i > 0 and 0 ≤ κ ≤ 1. The left hand side

of (19) is a quadratic equation with one positive root and one

negative root. The positive root (solution) is

κτ =
−Bi +

√
B2
i +

4Ai

γth

i

2Ai
. (20)

It is easy to check that the left hand side of (19) is a convex

function and has a negative value at κ = 0. Thus, (19) will

hold when

0 ≤ κ ≤ κτ .

Equivalently, the cell loading that satisfies (17) is

0 ≤ α ≤ ατ , with ατ = κτθ. (21)

Now, we will check the condition where κτ ≤ 1 holds. It is

equivalent to
√
B2
i +

4Ai

γth

i

≤ 2Ai+Bi. By squaring both sides

and performing some algebraic manipulations, κτ ≤ 1 holds

when
1

γthi
≤ Ai +Bi.

Otherwise, we set κτ = 1 (or ατ = θ).

Considering (20) and (21), it can be easily checked that ατ
is an increasing function of τ . Thus, a larger τ will increase

the user capacity.

B. Fixed κ

In this case, κ is fixed and thus τ varies as K varies. The

corresponding user capacity is simply given by

α ≤ ακ = ῡpi

1
γth

i

− κ
∑L
j 6=i E

[
L̄
2
ji

]

1 +
∑L

j 6=i E
[
L̄ji

] . (22)

Since ακ ≥ 0, the right-hand side of the above equality must

satisfy

1

γthi
≥ κ

L∑

j 6=i
E
[
L̄
2
ji

]
.

It is obvious that the choice of κ affects the user capacity. It

can be checked that ῡpi

(
1
γth

i

− κ
∑L
j 6=i E

[
L̄
2
ji

])
is increasing

as κ decreases. Note that by decreasing κ, we have a better



quality of channel estimates that obviously increases the user

capacity.

Remark 3: As discussed in both subsections above, increas-

ing τ (or decreasing κ) will result in a higher user capacity. On

the other side, this will reduce the uplink transmission time

and consequently the cell sum rate. This trade-off is also a

concern raised in [3]. One way to handle this trade-off is to

find an optimal τ , for K ≤ τ ≤ T , that maximizes the cell

sum rate. It is obvious that τ = T is never an optimal solution

since it gives a zero sum-rate. Thus, the optimal τ is either at

τ = K or at τ ∈ (K,T ). Let us consider the worst case in

terms of the user capacity, i.e., τ = K (or κ = 1). The user

capacity in this case is easily obtained from (22) (or (21)) and

is given by

ακ =

1
γth

i

−∑L
j 6=i E

[
L̄
2
ji

]
(
1 +

∑L
j 6=i E

[
L̄ji

])(
1 +

∑L
j 6=iE

[
L̄ji

]
+ σ2

Pu

) .

The numerical simulation for this case is shown in Figure 4

in the following section. We can see that the user capacity of

the DOP scheme is considerably larger compared to that of

the FPR scheme.

V. NUMERICAL SIMULATIONS

In this section, we will validate the approximation of our

large system results for finite Kj , N , and τ . We consider

a 7–cell hexagonal layout where the inner cell radius is

normalized to 0.9 and the distance between the base stations

is normalized to 2. The users are uniformly distributed across

the cell. We adopt the bounded path-loss model where the

slow path-gain is modeled as ℓkji = (1 + dζkji)
−1 where ζ

is the path-loss exponent and dkji is the distance between

user k in cell j and BS i. We set ζ = 3.7 and ignore

the shadowing effect in the model. The experiment takes

parameters Pu = 0 dB, Kj = K = 20, κ = 2
3 and the

number of antennas varies from 50 to 500 with interval 50. We

generated 500 channel realizations according to the Rayleigh

distribution. Figure 1 shows the SINR (in decibels) as the

number of antennas at the BS increases. We can see that the

SINR obtained from the large system analysis or LSA (9) can

approximate the simulation results (finite-size systems, i.e.,

with K = 20) accurately. Observe that the SINR obtained by

using the conventional approach in massive MIMO (K < ∞
but N → ∞), acts as the upper-bound for the finite-size

systems. The figure also implies that this approach gives quite

a loose approximation compared to the large system approach

(see also [7] for the convergence behavior of massive MIMO

systems). Observe that for N = 100, the SINR gap between

the massive MIMO approximation and the finite size result

is about 9 dB. This gap reduces as N increases and it is

approximately 2.3 dB when N = 500.

Figure 2 compares the cdf of γ̄s,pki and γ̄pi . Note that γ̄pi
is a deterministic quantity. Hence, its cdf is a unit impulse

located at γ̄pi . To produce the curves, we set α = 0.1 and

κ = { 1
3 ,

2
3 , 1}. Note that, γ̄pi depends on κ while γ̄s,pki does

not. It is obvious from the curves for γ̄pi that smaller κ
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gives a better performance (SINR). The figure also reveals

that there is some probability that γ̄pi is larger than γ̄s,pki and

vice-versa. For example, when κ = 1, there is a 30% chance

that γ̄pi is larger than γ̄s,pki . When smaller κ = 1
3 is used, the

probability becomes higher i.e., around 75%. This probability

also changes when α varies. Thus, it is interesting to see how

the user capacity (which is related to α) is affected by both

schemes.

The user capacity for the different orthogonal training se-

quences (DOP scheme) has been presented in Section IV. For

the FPR scheme, the formulation of user capacity is slightly

different since γ̄s,pki is a random quantity contributed by the

large-scale fading terms of the pilot contamination. Hence,

the user capacity region, for the simplest case (Kj = K, ∀j)
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Fig. 3. User Capacity of the FPR (solid) and the DOP (mark/dashed) schemes
for different values of θ =

τ
N

.

is defined as the value of α that satisfies

P
(
γ̄s,pki ≥ γthi

)
≥ 1− β (23)

where β is the outage probability. The above is equivalent to

P (Xki ≤ 0) ≥ 1− β or FXki
(0) ≥ 1− β where

Xki = α
L∑

j=1

E
[
L̄ji

]

1 +

σ2

Pu
+

L∑

j 6=i
ℓ̄kji


+

L∑

j 6=i
ℓ̄2kji −

1

γthi
.

Figure 3 presents the comparisons of the user capacities of

the FPR obtained from (23) with β = 0.05 and of the DOP

represented by ατ in (21) with θ = {0.5, 1, 1.5}. As expected,

higher outages lead to higher user capacities for the FPR while

higher θ (higher τ with N fixed) gives higher user capacities

for DOP. In general, we can see that the FPR has a higher

user capacity compared to the DOP for very low γthi (less than

−6 dB) and the reverse occurs for low to high γthi s. The user

capacity of the FPR scheme is zero starting at γthi = −2 dB for

outage probability 5% and at γthi = 0 dB. On the other hand,

the user capacities for the DOP scheme are about 0.28− 0.35
and 0.2 when γthi = −2 dB and γthi = 0 dB, respectively. This

shows the advantage of the DOP scheme over the FPR scheme

in terms of user capacity and is consistent with the findings

in [6]. A similar conclusion can be drawn by comparing the

user capacities of FPR and ακ of DOP with κ = {0.5, 1} as

shown in Figure 4. Even for the worst case, κ = 1, the user

capacities of the DOP are higher than those of the FPR at all

considered values of γthi . For example, at γthi = −10 dB, the

user capacities in the FPR scheme and the DOP scheme are

about 1.1 and 1.7, respectively. Hence, for example, if the BS

has 500 antennas, the DOP scheme can admit 300 more users

than the FPR scheme can.
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VI. CONCLUSION

In this paper, we consider the performance analysis of up-

link massive MIMO systems with different sets of orthogonal

training pilots in different cells employed during the uplink

training. We obtained a novel expression for the asymptotic

SINR in the large system regime that approximates finite-

size systems accurately. We show that under a simple power

control, the asymptotic SINR is a deterministic quantity and

its denominator contains the average interference and mean-

squared interference (pilot contamination) of all users from

the interfering cells. We also derived the user capacity of

the system and compared to that of the FPR scheme. Our

simulation results showed that the DOP generally gives a better

user capacity even for low values of the required SINRs.

APPENDIX A

PROOF OF THEOREM 1

We begin the proof by establishing the limiting result for

the channel estimate variance υki. Then, we proceed to obtain

the limiting results for the numerator and the denominator

of the uplink SINR γki which are denoted by Aki and Bki
respectively. In the proof we use the following definitions and

results from large random matrices.

Definition 1 ([15, Definition 2.6]): Two infinite sequences

an and bn are defined to be asymptotically equivalent as n→
∞, denoted by an ≍ bn, if only if |an − bn| a.s.−→ 0.

Definition 2 ([15, Definition 2.7]): Two infinite sequences

ak,n and bk,n, indexed by k = 1, 2, · · · , n, are defined to be

uniformly asymptotically equivalent as n → ∞, denoted by

ak,n
k≍ bk,n, if only if max

k≤N
|ak,n − bk,n| a.s.−→ 0.

Lemma 1 ([15, Lemma 2.5]): If ak,n
k≍ bk,n, then

1
n

∑n
k=1 ak,n ≍ 1

n

∑n
k=1 bk,n.

Lemma 2 ([16, Lemma 1]): Let A ∈ CN×N be a deter-

ministic matrix with uniformly bounded spectral radius for



all N . Let x = 1√
N
[x1, x2, · · · , xN ]T where the xi’s are

i.i.d with zero mean, unit variance and finite eighth moment.

Let y be a similar vector independent of x. Then, we have

xAxH − 1
N

Tr(A)
a.s.−→ 0, and xAyH a.s.−→ 0.

The following lemma which involves the columns of an

isometric matrix is analogues to Lemma 2.

Lemma 3: Let w ∈ CN be a column of an isometric matrix1

W and z be a column of an isometric Z matrix independent

of W. Let A be as defined in Lemma 2 and independent of

W and Z. Then, wHAw− 1
N

Tr (A)
a.s.−→ 0 and wHAz

a.s.−→ 0.

In the following subsections, we use the notation X[k] for

matrix X with k-th column removed. If X is a diagonal matrix,

X[k] denotes X with both k-th column and k-th row deleted.

A. The large system limit for υki

Here, we only need to find the asymptotic limit for the

second term in the denominator of υki in (5). That term can

be written as
∑L

j 6=i q
H

kiQjΓjiQ
H

j qki. Since qki is independent

of Qj for j 6= i, qH

kiQjΓjiQ
H

j qki ≍ 1
τ

Tr
(
QjΓjiQ

H

j

)
by

Lemma 3. By employing the trace property, the right hand side

is equal to 1
τ

Tr (Γji). Suppose that the e.s.d. of Γji converges

almost surely to the non-random limiting spectral distribution

(l.s.d.) FΓji
as Kj , τ → ∞ with

Kj

τ
→ κj ,

1
τ

Tr (Γji) =
Kj

τ
1
Kj

Tr (Γji) converges almost surely to κjE [Γji] where Γji

is a random variable with distribution FΓji
. Consequently,

υki
a.s.−→ ῡki, where ῡki is defined in (10).

B. The large system limit for Aki

From the channel model described in subsection II-A,

ĥkii ∼ CN (0, υkiIN ). By using Lemma 2, 1
N
‖ĥkii‖2 ≍ υki.

Since υki
a.s.−→ ῡki, we have 1

N2Aki
a.s.−→ ρkii (ῡki)

2
.

C. The large system limit for Bki

First let us consider the self interference noise (ξki). Note

that while 1
N
ĥH

kiih̃kii ≍ 0 by Lemma 2. Consequently,
1
N2 ξki

a.s.−→ 0. For the noise term, while 1
N
‖ĥkii‖2 a.s.−→ ῡki,

we have 1
N2 ‖ĥkii‖2 a.s.−→ 0. Thus, the noise term converges to

zero almost surely.

For the intra-cell interference term, it can be written as
1
N2 ĥ

H

kiiHii[k]Γii[k]H
H

ii[k]ĥkii. Since ĥkii is independent of

Hii[k] and Γii[k] and by applying Lemma 2 and the rank-

one perturbation lemma [14], the intra-cell interference is

asymptotically equivalent to ῡki

N
Tr
(

1
N
HiiΓiiH

H

ii

)
. Note that

1
N

Tr
(

1
N
HiiΓiiH

H
ii

)
is the first moment of the e.s.d. of

1
N
HiiΓiiH

H

ii. It can be shown that (see also [13, eq. 2.118]),

this moment converges almost surely to αiE [Γii]. Hence, the

intra-cell interference power converges to αiῡkiE [Γii] almost

surely.

Now, let us consider the inter-cell interference term. The

(normalized) interference from cell j can be written as Ikij =
1
N2 ĥ

H

kiiHjiΓjiH
H
jiĥkii. Let us rewrite (6)

ĥkii =
υki√
ρkii

HjiΓ
1

2

jiQ
H

j qki + zki

1An N × K isometric matrix with K ≤ N is obtained by taking K
columns of an N ×N Haar-distributed random matrix [15, Definition 2.14].

where zki = υkihkii+
υki√
ρkii

(∑L
l 6={i,j} HliΓ

1

2

liQ
H

l qki + n̂ki

)
.

Let ac,j = υki√
ρkii

HjiΓ
1

2

jiQ
H

j qki that represents the (pilot)

contamination from cell j. Thus,

Ikij =
1

N2
zHkiHjiΓjiH

H

jizki +
1

N2
aHc,jHjiΓjiH

H

jiac,j

+
2

N2
ℜ
{
zHkiHjiΓjiH

H

jiac,j
}
.

It is easy to check that zki and ac,j are (mutually)

independent. Furthermore, zki and ac,j are zero

mean Gaussian vectors with variances ψkiIN with

ψki = υ2ki +
υ2

ki

ρkii

(
σ2 +

∑L
l 6={i,j} q

H

kiQlΓliQ
H

l qki

)
and

υ2

ki

ρkii
qH

kiQjΓjiQ
H

j qki, respectively. Let us denote Ikij,1, Ikij,2
and Ikij,3 respectively for each term of Ikij . Considering

Ikij,1, it is obvious that zki is independent of HjiΓjiHji.

Hence, Ikij,1 ≍ ψki

N
Tr
(

1
N
HjiΓjiHji

)
. As shown previously

qH

kiQlΓliQ
H

l qki
a.s.−→ κlE [Γli]. Thus, ψki

a.s.−→ ψ̄ki where

ψ̄ki =
ῡ2ki
ρkii


ρkii + σ2 +

L∑

l 6={i,j}
κlE [Γli]


 .

Moreover, 1
N

Tr
(

1
N
HjiΓjiHji

)
converges to αjE [Γji] almost

surely. Thus,

Ikij,1 a.s.−→ αj ῡ
2
kiE [Γji]

ρkii


ρkii + σ2 +

L∑

l 6={i,j}
κlE [Γli]


 .

For Ikij,2, we have

Ikij,2 =
υ2ki
ρkii

(
1

N2
qH

kiQjΓ
1

2

jiH
H

jiHjiΓjiH
H

jiHjiΓ
1

2

jiQ
H

j qki

)

≍ υ2ki
ρkii

× N

τ
× 1

N
Tr

((
1

N
HjiΓjiH

H

ji

)2
)
.

The last term in the last line is the second moment of the

e.s.d. of 1
N
HjiΓjiH

H
ji. It can be shown that (see also [13, eq.

2.118]) it converges almost surely to αjE
[
Γ
2
ji

]
+α2

j (E [Γji])
2
.

By writing N
τ
=

Kj

τ
N
Kj

→ κj

αj
, we obtain

Ikij,2 a.s.−→ ῡ2ki
ρkii

κj

(
E
[
Γ
2
ji

]
+ αj (E [Γji])

2
)
.

Let us consider the term 1
N2 z

H

kiHjiΓjiH
H
jiac,j in Ikij,3. It

can be written as

υki
N2√ρkii

zHkiHjiΓjiH
H

jiHjiΓ
1

2

jiQ
H

j qki

=
υki

N2√ρkii

Kj∑

m=1

√
ρmji(q

H

mjqki)z
H

kiHjiΓjiH
H

jihmji

=
υki

N
√
ρkii

Kj∑

m=1

√
ρmji(q

H

mjqki)
1

N
zHkiHji[m]Γji[m]H

H

ji[m]hmji

+
υki

N
√
ρkii

Kj∑

m=1

ρ
3

2

mji(q
H

mjqki)
zHkihmjih

H
mjihmji

N
.



It can be checked that all the summands of the last equation

are asymptotically equivalent to zero. Therefore, by using

Lemma 1, Ikij,3 a.s.−→ 0.

Summing up over all interfering cells, the limiting result for

the total inter-cell interference
∑
j 6=i Ikij is

ῡ2ki
ρkii

L∑

j 6=i
κjE

[
Γ
2
ji

]

+
ῡ2ki
ρkii


ρkii +

L∑

l 6=i
κlE [Γli] + σ2




L∑

j 6=i
αjE [Γji] .

Using the definition for ῡki in (10), the second term can be

simplified to ῡki
∑L

j 6=i αjE [Γji]. Thus,

∑

j 6=i
Ikij a.s.−→ ῡki




L∑

j 6=i
αjE [Γji] +

ῡki
ρkii

L∑

j 6=i
κjE

[
Γ
2
ji

]

 .

Bringing up the limiting results for each term of Bk, we obtain

1

N2
Bki

a.s.−→ ῡki




L∑

j=1

αjE [Γji] +
ῡki
ρkii

L∑

j 6=i
κjE

[
Γ
2
ji

]

 .

By putting the large system results forAki andBki, (9) follows

immediately and this completes the proof.
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