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Abstract—In this paper, we address the problem of large
MIMO detection assuming QAM constellations. We show that
the QAM signal becomes a simple signal (that is to say a
bounded signal with extreme elements equal to the inferior and
superior bounds [1]) after a real transformation. Based on this
property, we present a low complexity detection algorithm which
significantly outperforms classic algorithms such as zero forcing
(ZF) and minimum mean square error (MMSE) algorithms. The
proposed detection technique is based on a quadratic program-
ming criterion whose constraints ensure that the detected vector
is simple. We implement it successfully in an underdetermined
MIMO system (the number of observations is less than the
number of sources) and we show the necessary conditions of
success detection. Then we consider an outer forward error
correcting (FEC) code and we propose a turbo detection scheme.
Based on the investigation of the output detector statistics in [2],
we propose a symbol to binary converter (SBC) which can feed
the FEC decoder with reliable output. On the other side, from
the second iteration, the detection scheme resorts to a regularized
quadratic criterion so that the searched vector draws near to
the estimate resulting from the FEC decoder output. Simulation
results show the efficiency of the proposed scheme.

Index Terms—Source separation, massive MIMO, turbo-
detection

I. INTRODUCTION

In previous generations of wireless communications, orthog-
onal multiple access schemes were used in order to serve the
cellular users and allocate the radio resources among them.
While 1G used frequency division multiple access (FDMA),
2G is based mostly on time division multiple access (TDMA)
and 3G exploits code division multiple access (CDMA). In
order to increase the spectrum efficiency, orthogonal frequency
division multiple access (OFDMA) was adopted in the 4G.
In these schemes, orthogonal radio resources are allocated to
avoid the inter-user interference and provide an acceptable
multiplexing gain with reasonable complexity.

However, the predicted exponential growth in the number
of mobile connected machines and the traffic of data they
represent motivate 5G designers to look for new technologies
and approaches to address the mounting demand. It was
theoretically demonstrated that the previous schemes cannot
achieve the sum-rate capacity of multiuser wireless systems
and the maximum number of supported users is limited by
the total amount of orthogonal resources [3]. To overcome
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this problem and in order to support massive connectivity of
users and devices, enhanced technologies are needed.

The massive MIMO is considered as a potential candidate
to address the challenges of 5G. The idea is to implement
a large number of antennas to better exploit the spatial
diversity so as to provide higher throughput under spectrum
limitations. In this paper, we consider the detection problem
in massive MIMO technology. Rather than dealing with inter-
user interference by designing proper transmitting schemes as
Orthogonal Multiple Access (OMA), the proposed algorithm
jointly decodes the useful signal and the interfering signal
before selecting the source of interest.

Usual detection algorithms cannot be applied to massive
MIMO systems. The optimum maximum likelihood (ML)
detection fulfills the diversity requirement but its complexity is
obviously too huge. The suboptimal ML-like sphere decoding
(SD) technique [4] involves an exhaustive search within the
hypersphere whose dimensions remain high in the large-scale
MIMO case, yielding computationally-unsolvable detection.
Linear solutions such as minimum mean square error (MMSE)
[5] and zero-forcing (ZF) have low computation complexity at
the expense of a high performance-loss. In previous works,
the compressed sensing (CS) techniques have attracted a
considerable attention. They suggest that it may be possible to
surpass the traditional limits of the sampling theory. Thanks
to a sparse transformation of the received signal and using
the source separation techniques such as the basis pursuit
(BP) which looks for the sparsest solution vector, it becomes
possible to recover successfully the desired signal [6], [7], [8].

An outer FEC is usually applied before the modulation.
Turbo-like receivers based on iterative information exchanges
between its components (detection, decoder, channel estima-
tion, synchronisation, ...) were proved efficient to achieve
near-optimal performance. To that purpose, the authors pro-
posed in [9] to associate a CS-based detection with a soft-
decision decoder within an iterative process based on a reg-
ularized detection criterion combined with a judicious sparse
formulation of the detector output.

In this paper, we exploit the QAM signal simplicity (all its
elements are bounded) [10] and we resort to CS techniques to
propose a low-complexity detector adapted to underdetermined
large MIMO systems. Contrary to [6], [7], [8], except the real-
valued formulation of the problem, no signal transformation is
required. We first present a quadratic criterion with bounded



constraints to recover the received signal. Then, from the
analytical detector output statistics, we define a reliable soft
input of the FEC decoder. Finally we propose an iterative
receiver with a regularized detection optimization criterion.

This paper is organized as follows. Section II describes the
MIMO transmission model and its real-valued formulation.
Section III deals with the detection problem in the MIMO case.
We detail the detector optimization criterion and its analytical
output probability density function. Section IV describes how
the detector output statistics is exploited to exchange soft
information with a FEC decoder. In Section V, we compare
the proposed detector to MMSE-based equalizers both in the
uncoded case and in the coded case. Finally, Section VI
concludes the paper.

Notations: boldface upper case letters and boldface lower
case letters denote matrices and vectors, respectively. For the
transpose, transpose conjugate and conjugate matrices we use
()T,()H and (-)*, respectively. ® is the Kronecker product.
I, is the p x p identity matrix and 1, is the all-one size-p
vector.

II. SYSTEM MODEL

Let us consider a K-user MIMO transmission over a flat
fading channel, where each user has N; transmit antennas and
let N = K x N;. At the base station side, we assume n
equivalent receive antennas (base station cooperation through
the base station controller is possible) with n < N. We assume
a perfect knowledge of the channel state information (CSI)
at the base station. In this paper, we focus on the uplink of
the communication system. Under the above assumptions, the
received signal can be modelled as:

y=Hz+ z, 1

where H is an n X N complex random channel matrix,  is
the NV x 1 complex data vector, and z is the n X 1 complex
circularly symmetric additive Gaussian noise vector with zero
mean and a covariance matrix equal to o2I. We assume
that the components of x belong to an M-QAM modulation
alphabet such that M = p? (square QAM constellation). The
modulation alphabet is denoted by Q = {q1,q2,...,qn}. We
associate to Q the symbol vector ¢ = [q1, g2, .., qn] Where
¢ =a;+37bi, i € {l,...,M} with (a;,b;) € Ax A and
A={ag,ag,...,0,}.

We transform first the complex-valued system into an equiv-
alent real-valued system, which reads

, @)
(H) —S(H)
) )

I\

Y= Hx +
R R
where Yy = (QZ%), H = (%
(32) a2 = (33)
In this real-valued system, the first N components of x

are the real parts of the symbols and the imaginary parts are
mapped to the next N components.

H _§R(H)

III. DETECTION OF THE MIMO SIGNAL VIA EUCLIDEAN
DISTANCE MINIMIZATION

A. Proposed method definition and theoretical analysis

In this section, we describe our technique to recover the
real valued-vector x. Considering the proposed real-valued

formulation, the [ML] problem reads:

(Pyr,2) @ arg minjly — He|s subject to z € AV,
€T

This problem is NP-hard with high order of complexity.
To circumvent this problem, we transform the optimization
problem to a convex one by relaxing the constraints. In [8],
the authors proposed to decompose the vector  as £ = Bys
with By = Iy ® [a1,0a2,...,0,]T and they defined a
quadratic optimization criterion to look for the sparsest vec-
tor s that minimizes the euclidean distance. Unfortunately,
the complexity of the resulting algorithm increases with the
constellation size, which becomes problematic for high-order
modulations. In this paper, we exploit the simplicity property
of QAM modulations to define an optimization problem whose
complexity is independent of the constellation size and lower
compared with [8]. A vector is considered to be simple
when it has some elements equal to the extremes of the
constellation. Taking advantage of the simplicity of the vector
x, its components belong to the interval [a1, ] and then it
can be decomposed as £ = B, r where B, = Ioy®|ag, ap]T
and r € [0,1]*N. We take into account just the extremes
because all the elements can be written as a combination of
them. Based on this decomposition, we propose to solve the
following optimization problem:

(Ps12) : arg min||ly — HB,r||2 subject to 3)
T
Bir = 1ay,
r >0,
where B; = Isny ® 1o. The new optimization problem

(Psr,2) is a quadratic programming model. The linear equality
constraint combined with the positivity constraint impose that
the detected vector will be minored by «; and majored by «,.
The criterion (Psy2) can be optimized by the simplex [11]
or the interior point methods[12]. In this paper, we consider
the algorithms based on the interior point methods. These
algorithms start by finding an interior point of the polytope
defined by the constraints and then proceed to the optimal
solution by moving inside the polytope.

In order to fix the acceptable range of values of the MIMO
system dimensions, we consider the noiseless case and search
for the conditions of solution uniqueness from the success
probability. To that purpose, in Fig.l we plotted the phase
diagrams which represent the successful detection probability
as a function of the ratio of the system dimensions . It
can be observed that the success probability is higher than

50% when % > p=

. . p
with a higher convergence rate for large values of N due to
a better exploitation of the system diversity. We deduce that

n .
and tends to 1 when — increases




1 T T P F 789 TI? >
0.9 f —=—4-QAM, N=128 ;P /?/ §
—&— 4-QAM, N=256 i I
08l —"¢— 16-0AM, N=128 P | ]
A - 16-QAM, N=256 ,'f' |
|| — = —64-QAM, N=128 i ]
2 07| = = - 64-0AM, N=256 i Ap’
Q06 % I 1
8 /
[<] b
S05F q ]
@ f
%] I
S04l i i 1
S 51 1
® 03t il 1 ]
i /1
0.2k of Pl .
/! Il
L Pl /1 §
0.1 B F
o - B o .
0.3 0.4 05 0.6 0.7 0.8 0.9 1

n/N

Fig. 1: Phase diagrams of the proposed detector for M-QAM
with M = 4,16,64 and N = 128, 256.

the proposed detector can be implemented in underdetermined
systems which satisfy the following condition: % > pp%l
[2].

In practice, an outer FEC will be used before the modulation
and the detector will be interfaced with a soft-decision decoder.
It is necessary to deliver reliable information to the FEC
decoder. To that purpose we study the statistics of the detector
output. As calculated in [2] and denoting # the result of
the optimization problem, the components of £ = B,7
follow a censored normal distribution which can be seen
as a combination of binary distributions on the bounds and
Gaussian ones in the interior. The probability density function

of the detector output components is given by [2]:

12
fo (@) = = fa, jor—as (@), )
P4
with
1 _
fmk|mk—az ({B) (26rfC <CM\[,/§O—OA61) 5&1 (x)
o (25
(z — Oég)2
Ll en S RINIE)
and
2n—2 2N—k k 9
2 _ 2N\ (1 p—1 2no
%_Z(k p P k1 ©

k=0

where 0, (z) is the Dirac delta function concentrated at o and
1o(z) is the indicator function of the subset (2.

Then, we check that the simulated histogram of the detection
output is in accordance with the theoretical statistical dis-
tribution. In Figs. 2 and 3, we observe that the theoretical
distribution coincides with the simulated histogram for the
different system dimensions and different SNR values, which
supports the validity of the analysis.
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Fig. 2: Output statistics for 64 x 64 systems with 16-QAM
and SNR = 30dB.
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Fig. 3: Output statistics for 16 x 16 systems with 4-QAM and
SNR = 20dB.

B. Complexity analysis

In Table I, we summarize the complexity order of the
proposed detector (Ps; 2), the MMSE, the MMSE-Successive
Interference Cancellation (MMSE-SIC) [13] and the SD near-
optimal detector. The SD detector is a high-complexity detec-
tor especially when the modulation order or the number of
antennas increase, it is the least cost efficient. The MMSE-
based detector consists of one matrix inversion and some ma-
trix multiplications and additions. The MMSE-SIC adds some
order of complexity. According to the complexity analysis



TABLE I: Computational cost with the interior point method.

Iteration number Computational cost per iteration Total
MMSE 1 O(N?3) O(N?3)
MMSE-SIC 1 O(N3) + O(MN?)+ O(M?N) | O(N?) + O(MNZ) + O(M?N)
(Ps1,2) O(VN) O(N??) O(N?)
SD 1 O(VMN) O(VMN)

pdet c dec
. adet IAdet Adec Ad
- Detector ﬂld») SBC [~out. ,-1{tin Decoder out

gdet
Lin

Fig. 4: Turbo detection scheme

in the case of determined MIMO systems, (Psr2) achieves
the same order of complexity compared to the MMSE-based
methods.

IV. PROPOSED TURBO DETECTION SCHEME

A. Iterative receiver and soft-output detection

In this section, our objective is to associate the proposed
soft-output detector with a FEC decoder and make them work
in an iterative manner (see Fig. 4). We consider that the binary
stream is FEC encoded, then randomly interleaved before
being converted into QAM symbols and passed through a
serial-to-parallel converter.

Let m = logy,(v/M) and ¢ be the length-mN coded and
interleaved binary information sequence at one channel use.
Let also ¢ be the binary-to-symbol conversion defined as:

P : [Ckm Ckm41 --- C(k+1)m71i S {0, l}m =T, € A (@)
and cV) = 71 (q;).

Using :cgii, the symbol to binary converter (SBC) computes

the log likelihood ratio on the i-th bit associated to the k-th
symbol, denoted by A% and defined as:
) 3
ZaJeAl o fzk\zk aj (ﬁgut k)PT(xk = a]iAdEt) )
with A; . = {a € Ale=¢"(a),c; = €}.
Let us mention that an empirical study proved that the expres-
sion of o; given by (6) keeps valid throughout the iterative

process. The aforementioned a priori information is computed
as follows:

Pr (mk = oz]\Adet) = H

0<i<m—1
C(.f):wfl(aj)

e : Pr(bem+i = 1ly)
Ad t -1 LT \Ykm+4i — LY)
aut(km + Z) og (Pr(bkm+z — 0|y)
)
)

l (ZO&]EAI 1 fik izk =y (—ouf k)Pr( k - a]iA;i'lcit)
= 10,

Pr (ckm+l = (])\Adet)

exXp (ui,jvk,i)
exp (g, )+exp (—vk,i)
Adet (km4i)
I E——

and Pr (Ckm+z = (])|Ad6t

(9)

with

u;j = 2¢;”” — 1 and vy, ; =

By using a LogSumExp approximation [14] we can avoid
saturation precision problems of the floating point, especially

for high SNR and after some iterations.
The log likelihood ratio approximation reads

~det 2
(gout,k - aj)
max | ————(5 5 + UiV,
a;EA; 1 20%
’ z
‘i‘ Ui, Vk, z)

det
_ (gout Kk
a; €A 0
~det 1 2
xout k:aJ 5 J
+ U4,V i

AL (km + 1) ~

— Imax

which is equivalent to

Agei(km + i) ~

max
aje.AiJ
~det
gout K — 5 J
— al’l’glja‘\X —0_2 + Uq Vi
j€Ai0 P

z

Let A be the sequence obtained after deinterleaving

of A9t We consider that the FEC code is a convolutional

code and assume that the soft-in soft-out optimal Bahl Cocke
Jelinek Raviv (BCJR) decoder [15] is used at the receiver.
The FEC decoder produces A9, It can be decomposed as

out*

the sum of A%e¢ and A4S A% is extrinsic information. Let

Adet be the result of interleaving of AZ¢¢. Tt is used as input
of the binary-to-symbol converter (BSC) to provide a priori
information to the detector in the following iteration.
Hereinafter, we propose two strategies to feed the detector
with a priori information.
Strategy A: The first approach computes a soft decision based
on the decoder output probabilities. The detector a priori
information is denoted by idet and is computed by

~det,A __

Q’L’I’L k

Z a; Pr(z;, = a;|A%)
a; €A

(10)

Strategy B: The second approach is based on hard decision.
The detector a priori information denoted by xdEt B is equal
to the symbol with the maximum probability at the decoder
output:

~det,B

Lipp = I8 max Pr( T, = a]|Adet)

(1)

B. Detection criterion

In order to take into account the a priori information
delivered by the decoder in the proposed detector, we propose
to resolve the optimization system with a regularization term
as follows:

(Prz2) : 0|

arg min

ly = HBor||247[|Bar —
Bir=12n,7>0.

2
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Fig. 5: BER performance comparison in 64 x 64 MIMO
channel and 4-QAM.

where v is a positive weight less than 1. It enables to
take into account the unaccuracy of the estimated vector. The
second term of regularization can be seen as a penalty, imposed
to ensure that the detector output remains in the neighborhood
of the decoder output.

C. Choice of the regularization parameter

The performance of our proposed detector depends highly
on the choice of the regularization parameter. However, its
optimization is an open issue. It depends on many parameters
among which the SNR value and the probability that /<" is
the searched vector (computed from the LLR provided by the
decoder). In the future we intend to investigate the choice of
~v. For the time being, in this article we consider a fixed value,
independent of the SNR and of the current iteration.

V. SIMULATION RESULTS
A. Non-Coded case

In Fig. 5, we consider a 64 x 64 MIMO system with 4-QAM
and we compare the (Psr ) detector to the MMSE-based
detectors (which require N < n). The (Psy,2) detector better
exploits the receive diversity than the MMSE and MMSE-SIC
detectors. At BER 1072, the (Ps; 2) outperforms the MMSE
by about 5.5 dB and the MMSE-SIC by 1.6 dB. This gain
increases and exceeds 7dB and 2dB respectively for a BER
of 1073,

Fig. 6 shows the performance for an underdetermined
16 x 14 MIMO system with 4-QAM. We observe that
the proposed detector (Pgr2) achieves a BER lower than
1072 for the SNR values higher than 17 dB. Beyond 8
dB, the sphere decoder (SD) [16] outperforms (Pgs2), e.g.,

—8— (Ps12)

Bit Error Rate(BER)

0 2 4 6 8 1‘0 12 14 16 18 20
SNR(dB)

Fig. 6: BER performance comparison in 16 x 14 MIMO

channel and 4-QAM.

—©—iter 1, Strat. A
—8—iter 6, Strat. A
O iter 1, Strat. B
+@ - iter 6, Strat. B

10 12 14 16 18 22 24 26
SNR(dB)

Fig. 7: BER performance comparison with N = 16 and n =
15 and 16-QAM (coded).

at BER 1073, the gain is about 4.8 dB. However as the
MIMO system dimension increases, the SD computation cost
will rapidly become too high to be implemented in practice,
making the SD inadequate for large-scale MIMO applications.

B. Coded case

In this section, we compare the proposed two strategies
for the turbo detection scheme. The convolutional code (CC)
polynomials in octal are (13,15) with a code rate equal to
0.5. The regularization parameter in the detection criterion is
empirically fixed to v = %

In Fig. 7, we consider N = 512



(frame length) and M = 16. We observe that the strategy A-
based scheme outperforms the strategy B-based one. It can
be seen that the gain increases with the SNR value. For
instance, it achieves 1 dB at BER=10"* at the sixth iteration.
The efficiency of the exploitation of the extrinsic information
between the detector and the decoder can be shown by looking
at the improvement from the first iteration to the sixth one. For
example, for strategy A, it equals 6 dB at BER=10"*.

In [9], we proposed a detection scheme based on a sparse
decomposition and we defined a turbo detection scheme, which
compared positively with respect to a turbo-MMSE equalizer.
Contrary to the current study, the soft input delivered to the
FEC decoder in [9] was not based on the probability density
function of the detector output which makes the turbo detector
of [9] less efficient than the one proposed in this paper. We can
thus predict that the latter should outperform the turbo-MMSE
equalizer [17].

VI. CONCLUSION

In this paper we have addressed the problem of detection in
large MIMO systems with finite M-QAM constellation. We
have proposed a real-valued formulation of the system model
and then exploiting the vector simplicity we have defined
the detection problem based on quadratic optimization with
constraints to ensure the simplicity of the detected vector. We
have given the conditions the underdetermined MIMO system
must satisfy so that it can be detected successfully. Exploiting
the probability density function of the detector output, we have
computed a reliable soft input for a FEC decoder. We have also
designed an iterative receiver based on a regularization method
in the detection to further improve the BER performance.
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