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Abstract—We consider a device-to-device (D2D) underlaid
cellular network, where each cellular channel can be shared
by several D2D pairs and only one channel can be allocated to
each D2D pair. We try to maximize the sum rate of D2D pairs
while limiting the interference to cellular links. Due to the lack
of global information in large scale networks, resource allocation
is hard to be implemented in a centralized way. Therefore, we
design a novel distributed resource allocation scheme which is
based on local information and requires little coordination and
communication between D2D pairs. Specifically, we decompose
the original problem into two cascaded subproblems, namely
channel allocation and power control. The cascaded structure
of our scheme enables us to cope with them respectively. Then
a two-stage algorithm is proposed. In the first stage, we model
the channel allocation problem as a many-to-one matching with
externalities and try to find a strongly swap-stable matching. In
the second stage, we adopt a pricing mechanism and develop an
iterative two-step algorithm to solve the power control problem.

I. INTRODUCTION

Device-to-device (D2D) communication as an underlay to
cellular networks is one of the key technologies to meet the
dramatically increasing traffic demand and provide better user
experience in future cellular networks [1]. The basic idea is
to allow nearby mobile devices to reuse cellular spectrum by
establishing direct communication links without interacting
with base station (BS).

One big challenge for implementing underlaid D2D com-
munication is how to allocate spectrum resource efficiently.
To date, numerous resource allocation schemes have been
proposed [2]–[4]. In [2], an efficient scheme was developed
to jointly optimize the channel allocation and power control.
Nevertheless, only one D2D pair was allowed to use one
cellular channel, which may limit the system throughput. The
spectrum efficiency of the cellular system can be improved
further if multiple D2D pairs are allowed to share the same
channels [3], [4].

Most of existing resource allocation schemes worked in
centralized way. These schemes are developed under the
assumption that the channel state information (CSI) between
every transmitter and receiver is available to a central con-
troller (e.g., the BS), which incurs heavy overhead. Therefore,
it is more preferable to design a distributed resource allocation
scheme with limited local channel information [5]–[9]. In [5],
authors studied the system that allowed the channels to be

shared by several D2D pairs. Nonetheless, the proposed algo-
rithm lacked an efficient distributed power control approach
to guarantee the service level of cellular user (CU). In [6]–[9],
authors investigated the system where D2D pairs could reuse
all the channels. However, the D2D pairs in close proximity
will suffer from severe mutual interference, which may make
the interference management complicated.

In this paper, we consider the system where each channel
can be shared by multiple D2D pairs and each D2D pairs
can reuse at most one channel at each slot. The distributed
resource allocation schemes for such system are less explored
in the literature. Unlike [5], we try to maximize the sum
rate of D2D pairs while guaranteeing the service level of
CUs. We decompose the original problem into two cascaded
subproblems: channel allocation and power control, and then
a two-stage distributed algorithm is proposed.

Specifically, in the first stage, the channel allocation prob-
lem is modelled as many-to-one matching, which is suit-
able for assignment problem between two disjoint sets of
players with local information. Unlike many existing works
for resource allocation, the proposed matching game has
externalities, which are resulted from the mutual interference
among D2D pairs sharing the same channel. A distributed
algorithm is proposed to find a strongly swap-stable matching
as solution. Moreover, the existence of strongly swap-stable
matching is proved. In the second stage, a pricing mechanism
is adopted and an iterative two-step algorithm is presented to
solve the power control problem. At the beginning, a virtual
price factor based on the received interference is broadcast.
Then, each D2D pair independently maximizes its utility ac-
cording to the virtual price factor. The virtual price factor acts
as control signal to limit the interference. Our contribution is
that the proposed scheme can be implemented via distributed
decision at each device based on local information. Moreover,
the cascaded structure can reduce the exchange of control
signal in need. The numerical simulations show the proposed
algorithm with limited CSI is efficient and the throughput loss
compared to brute-force method is small in our setup.

The rest of this paper is organized as follows. In Section II,
the system model and problem formulation are established. In
Section III, a two-stage algorithm is proposed to solve the two
subproblems respectively. The Section IV gives the numerical
results. Finally Section V concludes this paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We study a D2D underlaid cellular network comprised of
a BS, C CUs and D D2D pairs. The scenario where D2D
pairs reuse uplink resource is considered in this paper. The
set of CUs and D2D pairs are denoted by C = {1, · · · , C}
and D = {1, · · · , D} respectively. All devices are equipped
with one antenna. The network is provided with a set K of
K orthogonal frequency channels. We assume a fully loaded
cellular network, i.e., K = C. Each channels has been already
allocated to one cellular user. For simplicity, CU k ∈ K is
referred to the CU assigned to channel k in our discussion.
Multiple D2D pairs can share the same cellular channels and
each D2D pair is allowed to access at most one cellular
channel. The set of D2D pairs sharing the channel k is denoted
by Dk ⊆ D, and Dk ∩D′k = ∅ when k 6= k′. Then, the SINR
of D2D pair i on channel k is given by

γDdk =
pdg

k
dd

n0 + qcgkd +
∑
i∈Dk\{d} pig

k
id

, (1)

where qc and pd are the transmit powers of cellular link and
D2D pair d, respectively, gkid denotes the channel gain from
D2D transmitter i to D2D receiver d on channel k, gkd is the
channel gain from CU k to D2D receiver i on channel k, and
n0 is the noise power.

B. Problem Formulation

In this paper, we aim to maximize the sum rate of D2D
pairs while guaranteeing the maximum interference to cellular
users. Mathematically, the problem can be formulated as

max
p,D

∑
k∈K

∑
d∈Dk

ln(1 + γDdk) (2a)

s.t. 0 ≤ pd ≤ Pm,∀d ∈ D, (2b)∑
d∈Dk

pdh
k
d ≤ Qk,∀k ∈ K, (2c)

Dk ∩ D′k = ∅,∀k, k′ ∈ K, k 6= k′, (2d)

where p = (p1, p2, · · · , pD)T , D = {D1,D2, · · · ,DK}, Pm
is the maximum transmit power and hkd denotes the channel
gain from D2D transmitter d to cellular link on channel k.
The constraint (2c), referred to as interference constraint, is
for protection of cellular links, where Qk is the interference
tolerance level which depends on the requirements and chan-
nel gain of cellular link on channel k. Moreover, we assume
only local information is available at each device. Explicitly,
D2D pair d only knows the channel gain hkd, g

k
dd, g

k
d , g

k
id and

gkdi, and the BS only knows hkd .1

1We assume the system works in TDD mode. Hence, due to channel
reciprocity, these CSI can be easily obtained by listening to the pilot
transmitted by CU or other devices .
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Fig. 1: Framework for resource allocation

III. CHANNEL ALLOCATION AND POWER CONTROL

Problem (2) is a mixed integer non-linear programming
problem, which is usually intractable. Moreover, only local
information is available, which makes the problem more
difficult to solve. Therefore, our goal is to develop a efficient
distributed approach. For this purpose, we decompose the
problem into two cascaded subproblems, namely channel
allocation and power control. The former one is solved by
matching theory and a pricing mechanism is adopted for the
latter one. The entire framework is depicted in Fig.1.

A. Channel Allocation Stage

We consider the optimization problem of the channel al-
location solution given the transmit power p by solving the
following optimization problem:

max
D

∑
k∈K

∑
d∈Dk

ln(1 + γDdk) (3a)

s.t. Dk ∩ D′k = ∅,∀k, k′ ∈ K, k 6= k′, (3b)
pd = Pm,∀d ∈ D. (3c)

In problem (3), the interference constraint (2c) will be con-
sidered in power control stage. In order to estimate the
contribution of each D2D pair to the overall throughput,
D2D transmitters are requested to transmit at power Pm, as
represented in constraint (3c).

To solve problem (3), which is a combinational optimiza-
tion problem, we model it as many-to-one matching game.
Originally stemming from economics [10], matching theory
provides a mathematical framework to cope with the problem
of matching players in two distinct sets, based on each player’s
individual preference and local information. It has been used
for many resource allocation problems in communication
networks [11]. In our context, one side is D2D pairs and the
other side is the cellular channels. In the implementation, the
BS will make decisions on behalf of channel k.

Definition 1. A many-to-one matching µ is a subset of
D
⊗
K such that |µ(d)| = 1, |µ(k)| = nk,∀d ∈ D,∀k ∈ K,

where nk is the quota of CU k, µ(d) = {k ∈ K : (d, k) ∈ µ}
and µ(k) = {d ∈ D : (d, k) ∈ µ}.

If the number of D2D pair in µ(k), say r, is less than nk,
then µ(k) has nk−r “holes” represented as D2D pairs with no
preference over matchings. In this paper, we assume nk = D
for simplicity. We will also use µ(d) to denote the channel
reused by D2D pair d. Utility function is adopted to describe



the preferences of agents over matchings. Given matching µ,
the utility of D2D pair d is defined as follows:

Ud(µ) = ξ1φd(µ)− θ, (4)

where φd(µ) is the gain obtained from accessing channel
µ(d), ξ1 is the equivalent revenue with respective to gain
φd(µ), and θ is the price for using cellular channel. We set
Ud(µ) = −∞ when D2D pair d is not matched with any
channel. Specifically, the gain is represented as follows:

φd(µ) = ln(
Pmg

µ(d)
dd

n0
)− wqcgµ(d)d

−
∑

i∈µ2(d),i6=d

w

2
Pm(g

µ(d)
di + g

µ(d)
id ),

(5)

where w is tradeoff coefficient and µ2(d) denotes the set of
D2D pairs reusing channel µ(d). The difference between the
first two terms of (5) can be regarded as the benefit from
channel, which takes into consideration both the channel gain
and interference from cellular link, and only depends on the
matched channel itself. The last term is the loss resulted from
the mutual interference between D2D pairs. The following
lemma implies that

∑
d∈D φd(µ) can be regarded as a lower

bound of the aggregated throughput of D2D pairs.

Lemma 1. Suppose that each D2D pair is matched with one
channel. Then, given pd = Pm,∀d ∈ D, for any matching µ,∑

d∈D

φd(µ) + const. <
∑
k∈K

∑
d∈µ(k)

ln(1 + γDdk).

Proof:∑
k∈K

∑
d∈µ(k)

ln(1 + γDdk)

>
∑
k∈K

∑
d∈µ(k)

ln(
Pmgkdd

n0 + qcgkd +
∑
i∈µ(k)\{d} Pmg

k
id

)

=
∑
k∈K

∑
d∈µ(k)

{
ln(wPmg

k
dd)− ln

[
w(n0 + qcg

k
d +

∑
i∈µ(k)
i 6=d

Pmg
k
id)

]}

(a)

≥
∑
k∈K

∑
d∈µ(k)

{
ln(

Pmgkdd
n0

)− w(qcgkd +
∑

i∈µ(k)\{d}
Pmg

k
id)

}
+ const.

=
∑
d∈D

φd(µ) + const.,

where the inequality (a) follows from the standard logarithm
inequality, lnx ≤ x− 1,∀x > 0.

In addition, the utility of channel k is defined as follows:

Uk(µ) = θ|µ(k)| − ξ2C(
∑

d∈µ(k)

Pmh
k
d

Qk
− 1), (6)

where C(x) = max(0, x) quantifies the degree of violation
of the constraint (2c) and ξ2 is the cost coefficient. Note that
(4) and (6) can be calculated locally at each device.

Because of the interference between D2D pairs, the utility
of D2D pair d will be affected by the choice of other D2D
pairs. Thus the proposed matching has externalities and is
called many-to-one matching with externalities [10]. Due to

Algorithm 1 Stage 1: Channel Allocation for D2D Pairs
GS-algorithm-based initialization:

1: D2D pairs and channels construct their preference lists based on
estimated SINR γ̃kd =

Pmg
k
dd

n0+qcg
k
d

and interference channel gain

hkd , respectively.
2: Each D2D pair proposes to its most preferred channel that has

not rejected it before.
3: Each channel keeps the most preferred nk D2D pairs and rejects

the others.
4: Repeat step 2 and 3 until each D2D pair is accepted by a channel.

Swap operation:
5: Each D2D pair s searches for swap-matching µst ”approved” by

the players involved in the swap. Then, µ = µst .
6: If µ is changed, repeat step 5.

the externalities, the stable matching, which is a solution
concept used widely in matching theory, may not exist. To
this end, we look at another stability concept, based on the
concept of swap-matching [12]:

Definition 2. Given a matching µ, two D2D pairs s, t ∈ D
and two channels m,n ∈ K with (s,m), (t, n) ∈ µ, a swap-
matching is µst = µ \ {(s,m), (t, n)} ∪ {(s, n), (t,m)}.

In the swap-matching, two involved D2D pairs exchange
their matched channels while all other matchings remain the
same. Moreover, one of the D2D pair can be a “hole”, thus
allowing D2D pairs to move into available vacancies.

Definition 3. A matching µ is strongly swap-stable if and
only if there exists no swap-matching µst such that: Us(µst ) ≥
Us(µ), Ut(µ

s
t ) ≥ Ut(µ) and Uµ(s)(µ

s
t ) + Uµ(t)(µ

s
t ) ≥

Uµ(s)(µ) + Uµ(t)(µ), and at least one of the above three
inequalities is strict.

Note that the above swap-stability is stronger than that
defined in [12]. The rationality of our stability notion comes
from the observation that the BS aims to maximize the
total utility of CUs and can permit monetary transfer among
CUs. Algorithm 1 is proposed to find a strongly swap-stable
matching. The initialization step is based on Gale-Shapely
(GS) algorithm. Each D2D pair d ranks channels based on
the descending order of estimated SINR. Meanwhile, each
channel k ranks the D2D pair according to the ascending
order of interference channel gain hkd . Then, each D2D pair
proposes to its most preferred channel, and each channel
accepts the most preferred nk D2D pair and rejects the
others. Initialization step terminates when each D2D pair
is accepted by a channel, which can be guaranteed by the
assumption nk = D. Next, the algorithm seeks ”approved”
swap-matching until no such swap-matching exists.

To prove the convergence of Algorithm 1, we introduce a
potential function for the proposed game:

Φ(µ) =
∑
k∈K

∑
d∈µ(k)

ξ1
{

ln(
Pmg

k
dd

n0
)− w(qcg

k
d +

∑
i∈µ(k)
i 6=d

Pmg
k
id

2
)
}

−
∑
k∈K

ξ2C(
∑

d∈µ(k)

Pmh
k
d

Qk
− 1).



Theorem 1. Algorithm 1 always converges to a strongly
swap-stable matching.

Proof: The proof is based on the fact that the potential
function is improved. after each swap operation in Algorithm
1, which is proved as follows.

Note that each D2D pair is matched with one channel
after initialization. Assume the ”approved” swap-matching

is µst . For convenience, let Wd(µ) = ξ1 ln(
Pmg

µ(d)
dd

n0
) −

ξ1wqcg
µ(d)
d − θ. For i, j ∈ D, k ∈ K, Ik(i, i) = 0 and

Ik(i, j) = ξ2wPm(gkij+gkji)/2. Moreover, we assume µ(s) =
m,µ(t) = n. Thus

Φ(µst )− Φ(µ)

=
∑
k∈K

Uk(µst ) +
∑
d∈D

Wd(µ
s
t )−

1

2

∑
k∈K

∑
i,j∈µst (k)

Ik(i, j)

−

∑
k∈K

Uk(µ) +
∑
d∈D

Wd(µ)− 1

2

∑
k∈K

∑
i,j∈µ(k)

Ik(i, j)

 .

Expanding and canceling the like terms, and using the
symmetric property of I(i, j), we obtain

Φ(µst )− Φ(µ)

=Um(µst )− Um(µ) + Un(µst )− Un(µ)

+Ws(µ
s
t )−Ws(µ) +Wt(µ

s
t )−Wt(µ)

+
∑

i∈µ(m)

Im(i, s)−
∑

i∈µ(m)

Im(i, t) + Im(s, t)

+
∑
i∈µ(n)

In(i, t)−
∑
i∈µ(n)

In(i, s) + In(s, t).

Considering the utilities of players involved in the swap, we
can find out that

Φ(µst )− Φ(µ) =Um(µst ) + Un(µst ) + Us(µ
s
t ) + Ut(µ

s
t )

− {Um(µ) + Un(µ) + Us(µ) + Ut(µ)}.

Thus we can conclude that the potential function is improved
ager swap. The proof is similar when one of D2D pairs is a
”hole”.

Furthermore, he number of possible matching between D2D
pairs and channels is limited, Algorithm 1 will terminate
at finite steps. On the other hand, the algorithm does not
terminate until there is no any ”approved” swap-matching.
Therefore, we can conclude that the final matching is swap-
stable.

B. Power Control Stage

Since all the cellular channels are orthogonal, we can
decouple the power control problem into K subproblems,
where we consider each channel independently. For simplicity,
we focus on the power control problem of channel k. Similar
to [5], [6], we adopt a pricing mechanism consisted of
two steps. In the first step, the BS determines the virtual
price factor ck to control the received interference. In the
second step, with the virtual price information, each D2D
pair adjusts transmit power aiming to maximize its utility. To
solve the two-step problem, the backward induction technique

is adopted. We start with the transmit power determination
problem, called lower problem. Then we investigate the price
factor adjustment problem, called upper problem.

1) Lower Problem: Because each D2D pair d ∈ Dk
maximize its own utility independently with local information,
it is natural to model the lower problem as non-cooperative
game. The power control game model is defined as Gk =
{Dk, {Ad}d∈Dk , {Rd}d∈Dk}, where Dk = {d1, · · · , dDk} is
the set of Dk D2D pairs assigned to channel k, Ad = [0, Pm]
is the set of joint action profiles of all players, and Rd : I →
<+ is the payoff function of player d. The payoff function is
defined as follows:

Rd(pk) = ln(γDdk(pk))− ckhkdpd, (7)

where γDdk(pk) is defined in (1) and pk = (pd1 , · · · , pdDk )T

is the action profile of all players. The first term can be
considered as reward, which is an approximation of achievable
rate. The second term is the cost charged by the BS, which
is proportional to the interference caused by this D2D pair to
cellular link.

We will adopt a well-studied solution notion known as Nash
Equilibrium (NE) [13], from which no players has intention
to unilaterally deviate. A NE of our game model is given in
Theorem 2.

Theorem 2. Given ck, p∗k = (p∗d1 , · · · , p
∗
dDk

)T is a NE of
proposed power control game, where

p∗d = min(Pm,
1

ckhkd
),∀d ∈ Dk. (8)

Proof: Let p−d denote the joint action profile of all
players except player d. Given ck and p−d, player d would
like to maximize its utility as follows:

max
pd

ln(γDdk(pd,p−d))− ckhkdpd (9a)

s.t. 0 ≤ pd ≤ Pm, (9b)

The objective function is concave in pd. After solving problem
(9), we can obtain the best response of player d: BRd(p−d) =
min(Pm,

1
ckhkd

). Note that this best response implies that a
rational player will always take a fixed action no matter what
actions are taken by its opponents. Consequently, we can
conclude that in NE, each player d ∈ Dk would take the
action p∗d = min(Pm,

1
ckhkd

).
2) Upper Problem: In upper problem, the BS will adjust

the virtual price factor ck to limit the interference to cellular
link. On the one hand, too small ck will result in the
interference exceeding the interference tolerance level. On the
other hand, too large ck will result in low transmit power of
D2D pairs, which leads to low sum rate of D2D pairs and
inefficient spectrum utilization. Therefore, it is natural to seek
a appropriate ck which could maximize the sum rate of D2D
pairs while guaranteeing the service level of CU. However,
only interference information is available at the BS. Thus, it
is difficult to find such ck. To this end, instead of adjusting
ck to obtain the optimal power allocation, we try to seek ck



Algorithm 2 Stage 2: Power Control for channel k
1: Initialization: given channel k,Dk, let cu = cmax, cl = 0;
2: while |cu − cl| ≥ ε do
3: The BS calculates ck = (cu + cl)/2 and broadcasts it;
4: Each D2D pair d ∈ Dk, calculate p∗d according to (8);
5: if

∑
d∈Dk

p∗dh
k
d < Qk then

6: cu = ck;
7: else
8: cl = ck;
9: end if

10: end while
11: c∗k = ck;

such that the power profile obtained in the following lower
problem is Pareto optimal, which is defined as follows:

Definition 4. A power profile pk = (pd1 , · · · , pdDk ) satisfy-
ing constraint (2c) is Pareto optimal if there exists no power
profile pk satisfying constraint (2c) could improve one D2D
pair’s rate without deteriorating other D2D pairs’ rates.

Theorem 3. If a power profile pk satisfying
∑
d∈Dk pdh

k
d =

Qk, then it is Pareto optimal.

Proof: We will prove the theorem by contradiction.
Suppose there is another power profile p′k which can increase
or maintain the performance of all D2D pairs. Then there
must exist a set of D2D pairs M ⊂ Dk such that for any
D2D pair d ∈ M, pd decreases. Let m = argmind∈M

p′d
pd

and α =
p′m
pm

< 1. Consequently, p′d ≥ αpd for ∀d ∈ Dk.
Hence

γDmk(p′k) ≤ αpmg
k
mm

n0 + qcgkm + α
∑
i∈Dk\{d} pig

k
im

<
pig

k
mm

n0 + qcgkm +
∑
i∈Dk\{d} pig

k
im

= γDmk(pk),

which is incompatible with our assumptions.
Theorem 3 implies that the virtual price factor ck is

“appropriate” if it can lead to a power profile which makes
the interference constraint (2c) tight. Additionally, from (8),
it is easy to find out that p∗d is a non-increasing function
of ck. So a simple bisection algorithm can be used to find
the “appropriate” ck according to the received interference at
the BS. The algorithm solving the power control problem is
depicted in Algorithm 2, where cmax is the price such that∑
d∈Dk p

∗
d(cmax)hkd < Qk. According to Theorem 3 and the

monotonicity of p∗d(c), Algorithm 2 will converge to the price
factor leading to a Pareto optimal power profile. We consider
non-trivial case, where the interference at the BS exceed Qk
if all D2D pairs transmit using Pm, otherwise we just set
ck = 0.

IV. NUMERICAL SIMULATIONS

The performance of our proposed algorithms is investigated
through simulation in this section. The channel used in
simulation is h = βL−η , where β is fast fading gain with

TABLE I: Simulation Configure Parameters

Parameters Value
Cell radius 500 m

Noise power(n0) -100 dBm
Pathloss exponent(η) 4

Transmit power of CU(qc) 20 mW
Maximum D2D power(Pm) 20 mW

Length of D2D links 50 m
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Fig. 2: Performance evaluation of our proposed scheme with
different interference tolerance level.
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Fig. 3: Performance of different schemes with different inter-
ference tolerance level, K = 4, D = 10.

exponential distribution, η is the pathloss exponent and L is
the distance between transmitter and receiver. The D2D pairs
and CUs are distributed uniformly within the cell. We set
θ = ξ1 = ξ2 = 1 and w = 6 × 106. Other configuration
parameters are depicted in Table.I.

At first, we evaluate the performance of our proposed
scheme with different interference tolerance levels normalized
by the signal strength of cellular link. Fig.2a evaluates the
achieved sum rate of D2D pairs of Algorithm 2. The results of
locally optimal solution, which are obtained by fmincon solver
of Matlab, are given for comparison. It can be seen that the
performance of Algorithm 2 is close to the solution obtained
by fmincon solver. Fig.2b evaluates the overall performance
of our scheme. The brute-force scheme given for comparison
is the algorithm which explores the all possible channel
assignments and adopts fmincon solver for power control. We
can find that the performance loss of our scheme compared
with brute-force scheme is at most 20% and is below 10%
when interference tolerance level is larger than -5 dB, and the
performance gain over random scheme is larger than 35%.



4 8 12 16 12

Number of D2D pairs

20

40

60

80

100

120

140
D

u
m

 r
a

te
 o

f 
D

2
D

 p
a

ir
s
(b

p
s
/H

z
)

Centralized scheme [3]

Proposed scheme

Random

Intereference minimization [5]

Orthogonal scheme [2]

Fig. 4: The sum rate of D2D pairs with different number of
D2D pairs, Qk = 0 dB,K = 4.

Next, Fig.3 compares the performance of different schemes
for different interference tolerance level normalized by the
signal strength of cellular link. The interference minimization
is referred to as the scheme in which

∑
k∈K

∑
d∈Dk h

k
dPm is

minimized in channel allocation stage [5] and Algorithm 2
is used for power control stage. Fig.3 shows that as the
interference tolerance level Qk increases, the sum rate of
CUs decreases because D2D pairs are allowed to share the
channel more aggressively which leads to more interference.
On the other hand, the sum rate of D2D pairs increases as
Qk increases, since D2D pairs are allowed to transmit at
higher power. Moreover, adopting the proposed scheme, the
D2D pairs can get much better performance, at the cost of
less sum rate of CUs. However, such trade-off is worthy in
terms of increasing spectrum efficiency. For instance, when
Qk = 0 dB, adopting our scheme, the performance loss of
CU is about 12% compared with other two schemes, but the
sum rate of D2D pairs is at least 25% greater than that of
other schemes. Because of high-throughput of D2D pairs,
the proposed scheme can yield considerable gain over other
scheme in terms of the sum rate of entire system.

Finally, Fig.4 compares the sum rate of D2D pairs achieved
by different schemes for different number of D2D pairs.
We consider two another schemes as comparison, referred to
as centralized scheme and orthogonal scheme respectively.
The first scheme is proposed in [3] to maximize the sum
rate of D2D pairs in centralized way. The second scheme
is similar to the algorithm proposed in [2], which assumes
each channel is used by at most one D2D pair. This scheme
chooses K(K ≥ D) D2D pairs to maximize the sum rate
of D2D pairs. From Fig.4, we can see that the sum rate of
the orthogonal scheme grows approximately sublinearly as the
number of D2D pairs increases, while the other three schemes
grows almost linearly, which indicates that allowing multiple
D2D pairs to reuse one cellular channel can improve the
performance of entire system greatly. Moreover, the proposed
scheme performs almost the same as the centralized scheme
and outperforms the other three schemes significantly. So

we can conclude that our scheme is an efficient distributed
resource allocation scheme in large scale D2D underlaid
cellular networks.

V. CONCLUSION

In this paper, we propose a distributed resource allocation
scheme for D2D underlaid cellular networks where each
channel can be shared by one CU and several D2D pairs. We
try to maximize the sum rate of D2D pairs while limiting
the interference to cellular links. To solve the problem,
we decompose the problem into two cascaded subproblems:
channel allocation and power control problem, and a two-
stage algorithm is proposed. Firstly, we model the channel
allocation problem as a many-to-one matching game with
externalities and try to find a strongly swap-stable matching.
Secondly, we adopt price mechanism and propose an iterative
two-step algorithm to solve the problem. Finally we present
numerical results to verify the efficiency of our scheme.
However, the interference information between D2D pairs is
not fully utilized. In future work, such information can be used
to design a more efficient algorithm for power distribution.
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