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Abstract—This paper studies the impact of the base station
(BS) idle mode capability (IMC) on the network performance of
multi-tier and dense heterogeneous cellular networks (HCNs).
Different from most existing works that investigated network
scenarios with an infinite number of user equipments (UEs), we
consider a more practical setup with a finite number of UEs
in our analysis. More specifically, we derive the probability
of which BS tier a typical UE should associate to and the
expression of the activated BS density in each tier. Based on
such results, analytical expressions for the coverage probability
and the area spectral efficiency (ASE) in each tier are also
obtained. The impact of the IMC on the performance of all BS
tiers is shown to be significant. In particular, there will be a
surplus of BSs when the BS density in each tier exceeds the UE
density, and the overall coverage probability as well as the ASE
continuously increase when the BS IMC is applied. Such finding
is distinctively different from that in existing work. Thus, our
result sheds new light on the design and deployment of the
future 5G HCNs.

I. INTRODUCTION

Commercial wireless networks are evolving towards higher
frequency reuse by deploying smaller cells [1] to meet
the explosively increasing demand for more mobile data
traffic [2]. Heterogeneous cellular networks (HCNs), which
are comprised of a conventional cellular network overlaid
with a diverse set of small cell base stations (BSs), such
as metro-, pico- and femto-cells, can help to realize such
view and support much higher data rates per unit area than
conventional networks [3]. It is important to note that each
BS tier in a HCN may have different characteristics, e.g.,
different spatial density, transmit power, path loss function,
etc. A comprehensive analysis that takes into account the
differences among different BS tiers in a HCN has been
carried out in [4], where the BS locations are modeled as a
homogeneous poison point process (HPPP). In [4], a flexible
user equipment (UE) association strategy was considered,
and each BS tier was assumed to have different spatial
densities, transmit powers as well as path loss exponents.

The co-channel deployment of macro cell and small
cell BSs in HCNs, i.e., all BS tiers operate on the same
frequency spectrum, have attracted considerable attention
recently, e.g., [5], [6]. Andrews et al. in [7] first analyzed
the coverage probability of a single-tier small cell network
by modeling BS locations as a HPPP. That study concluded

that the coverage probability does not depend on the density
of BSs in interference-limited scenarios (i.e., when the BSs
are dense enough). Following [7], Jo et al. in [8] also reached
the same conclusion for each BS tier in a multi-tier HCN.
However, it is important to note that the aforementioned work
assumed an unlimited number of UEs in the network, which
implies that all BSs would always be active and transmit in
all time and frequency resources. Obviously, this may not be
the case in practice.

To attain a more practical network performance, Lee et
al. in [9] first analyzed the coverage probability of a single-
tier small cell network with a finite number of UEs, and
derived an optimal BS density accordingly, by considering
the tradeoff between the performance gain and the resultant
network cost. Recently, Ding et al. in [10] analyzed the
coverage probability and area spectral efficiency (ASE) of
a single-tier small BS network with probabilistic line-of-
sight (LoS) and non-LoS (NLoS) transmissions, in which the
UE number is finite (e.g., 300 UEs/km2) and the small cell
BS has an idle mode capability (IMC). More specifically, if
there is no active UE within the coverage areas of a certain
BS, that BS will turn off its transmission module using the
idle mode. The IMC switches off unused BSs, and thus can
improve the network energy efficiency and the UEs’ coverage
probability as the network density increases. This is because
UEs can receive stronger signals from the closer BSs, while
the interference power remains constant thanks to the IMC.
This conclusion in [10] - the coverage probability actually
depends on the density of BSs in a interference-limited
network - is fundamentally different from the previous results
in [7] and [8], and presents new insights for the design of 5G
networks. furthermore, the IMC even changes the capacity
scaling law in ultra-dense networks (UDN) [11].

However, the performance analysis presented in [9]
and [10] is only applicable to the single-tier small cell
networks. To our best knowledge, the theoretical study of
multi-tier and dense HCNs with a finite number of users
has not been conducted before, although some preliminary
simulation results can be found in [1].

Motivated by the above theoretical gap, in this paper, we
for the first time analyze the coverage probability and ASE
of a HCN with i) multiple BS tiers, ii) an IMC at small cell
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BSs, and iii) a limited number of UEs. To this end, we first
derive an analytical expression for the density of active BSs
in each tier. Based on this, the analytical expressions of the
coverage probability and ASE for the HCNs with IMC are
obtained. It is worth pointing out that the extension from a
single-tier network scenario to a multi-tier one is not trivial,
because BS activation needs to be considered for both the
intra-tier and inter-tier BSs.

The rest of this paper is structured as follows. We de-
scribe the system model in Section II, and present the main
analytical results on the activated BS density, the coverage
probability and the ASE for each BS tier and for the overall
HCN in Section III. Numerical results are discussed in
Section IV. Finally, the conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a general HCN model consisting of M BS
tiers that are characterized by different spatial densities and
transmit powers. The positions of BSs in the i-th tier are
modeled by a HPPP Φi with a density of λi BSs/km2. The
positions of UEs are also modeled according to a HPPP
Φu with a density of λu UEs/km2 that is independent of
{Φi}i=1,···,M . In the majority of the existing works, λu was
assumed to be sufficiently large, so that each BS in each
tier always has at least one associated UE. However, in our
model with finite BS and UE densities, there may be no UE
associated to a BS, and thus such BS will be turned off thanks
to the IMC.

We consider a maximum average received power based
cell association strategy, where each UE associates to only
one BS that provides the maximum average received power.
The average received power from the i-th tier is given by

Si = Pir
−α, (1)

where Pi is the BS transmit power in the i-th tier, r is the
distance between the BS and a typical UE sitting at the origin,
and α is the path loss exponent.

Since UEs are randomly and uniformly distributed in the
network, we adopt the following assumption: the activated
BSs in each tier follow a HPPP distribution Φ̃, the density
of which is denoted by λ̃i BSs/km2 [10], [12].

The SINR of the typical UE with a random distance r
from its associated BS in the i-th tier is

SINRi(r) =
Pihi0r

−α∑M
j=1

∑
k∈Φ̃\b0 Pjhjk|Yjk|

−α
+ σ2

, (2)

where hi0 and hji is the exponentially distributed channel
power with unit mean from the serving BS and the k-th
interfering BS in the j-th tier (assuming Rayleigh fading),
respectively, |Yjk| is the distance from the activated BS in
the j-th tier to the origin, and b0 is the serving BS in the i-th
tier. Note that only the activated BSs in Φ̃\b0 inject effective
interference into the network, since the other BSs are muted.

It is important to note that it has been shown in [13]
that the analysis of the following factors/models is not
urgent, as they do not change the qualitative conclusions

Fig. 1. Stochastic-geometry model of a two BS tier HCN. The tier 1 BSs,
tier 2 BSs and UEs are marked with solid squares, solid dots and empty
triangles, respectively. Each UE is connected to the BS that provides the
strongest average receive signal, which is marked by a black arrow. BSs
with no UE associated are in idle mode.

of this type of performance analysis in UDNs: (i) a
non-Poisson distributed BS density, (ii) a BS density
dependent transmission power, (iii) a more accurate
multi-path modeling with Rician fading, and (iv) an
additional modeling of correlated shadow fading. Thus,
we will concentrate on presenting our most fundamental
discoveries in this paper, and show the minor impacts of
the above factors/models in the journal version of this
work.

In Fig. 1, we show an illustration of the proposed network,
which consists of two BS tiers. In this case, UE 1 connects to
BS 2 instead of BS 1 in tier 1 under the assumption that BS 2
provides the strongest average received signal. The other BSs
are in idle mode since there is no UE associated to them.

III. ANALYTICAL RESULTS

To evaluate the impact of the IMC on the performance
of each BS tier, we first analyze the probability of a given
average number of UEs in each cell. Then, we derive
expressions for the coverage probability and the ASE.

A. Average Number of UEs in each Cell

The coverage area of each small cell is a random variable
V , representing the size of a Poisson Voronoi cell. Although
there is no known closed-form expression for V ’s probability
distribution function (PDF), some accurate estimates of this
distribution have been proposed in the literature, e.g., [14]
and [15].

In [14], a simple gamma distribution derived from Monte
Carlo simulations was used to approximate the PDF of V for
the i-th BS tier, given by

fVi(x) =(bλi)
qxq−1 exp(−bλix)

Γ(q)
, (3)

where q and b are fixed values with q = b = 3.5, Γ(x) =∫ +∞
0

tx−1e−tdt is the standard gamma function and λi is
the BS density of the i-th BS tier.



Since the distribution of UEs follows a HPPP with a
density of λu, given a Voronoi cell with size x, the number of
UEs located in this Voronoi cell is a Poisson random variable
with a mean of λux. Denoting by Ni the number of UEs
located in a Voronoi cell in the i-th BS tier, we have

P[Ni = n]

=

∫ +∞

0

(λux)
n

n!
exp(−λux)fVi(x)dx

(a)
=

(bλi)
q
(λu)

n

n!Γ(q)(λu + bλi)
q+n

∫ +∞

0

exp(−ξ)ξn+q−1dξ

(b)
=

Γ(n+ q)

Γ(n+ 1)Γ(q)

(
λu

λu + bλi

)n(
bλi

λu + bλi

)q
, n ≥ 0

(4)

where step (a) is obtained by using ξ = (λu + bλi)x, and
step (b) is obtained by using the definition of the gamma
function.

B. Probability of a UE associated to the i-th Tier

According to (1), each BS tier’s density and transmit power
determine the probability that a typical UE is associated with
a BS in this tier. The following theorem provides the per-tier
association probability, which is essential for deriving the
main results in the sequel.

Theorem 1. The probability of a typical UE associated with
a BS in the i-th BS tier is given by:

Ai =
λi

M∑
j=1

λjCj
2

, (5)

where i denotes the index of the BS tier associating with the
typical UE, and Cj = (

Pj
Pi

)
1
α , where Pi is the BS transmit

power of the i-th tier, and α is its path loss exponent.

Proof. See Appendix A.

The intuition of Theorem 1 is that a UE prefers to connect
to the BS tier with higher spatial density and transmit
power, which follows the maximum received power based
cell association strategy.

C. Density of activated BSs in the i-th tier

After attaining the probability of one UE associating to
a BS in the i-th tier, we are ready to derive the density of
activated BS in the i-th tier.

Defined by Poff
i (n) the probability that the i-th tier BS is

inactive when there are n UEs in its coverage, then Poff
i (n)

is given by

Poff
i (n) = P[Ni = n](1−Ai)n, (6)

where P[Ni = n] is the probability that n UEs in a cell of
i-th BS tier and has been obtained from (4), and Ai is the
tier association probability obtained by Theorem 1.

Remark 1. In (6), we assume there is no spatial correlation
in the UE association process. Thus, selecting which BS

to connect is assumed to be independent for different UEs.
Hence, we have treated the association of the n UEs one
by one. Note that this assumption may cause error as we
underestimate the activated BS density of the considered BS
tier. In the simulation section to be presented later, we will
show that this error is negligible, especially when the density
of BSs is large.

The density of activated BSs in the i-th tier λ̃i can now
be derived as

λ̃i = λi

(
1−

∞∑
n=0

Poff
i (n)

)
, (7)

where Poff
i (n) is the probability that the i-th tier is inactivated

when there are n UEs in its coverage.

D. The Coverage Probability

We now investigate the coverage probability that the typi-
cal UE’s SINR is above a predefined threshold τ . Since the
typical UE is associated with at most one BS, the coverage
probability is given by

Pcov =

M∑
i=1

AiEr {P[SINRi(r) > τ ]} , (8)

where Ai is the probability that the typical UE is asso-
ciated with the i-th BS tier, which is given by (5) and
P[SINRi(r) > τ ] is the coverage probability of the typical
UE associated with the i-th BS tier. Our main results on the
coverage probability is presented in Theorem 2.

Theorem 2. The coverage probability of a typical UE
associated with the i-th tier is
Er {P[SINRi(r) > τ ]}

=

∫ ∞
0

exp

−τrασ2

Pi
−

M∑
j=1

(
πλ̃jCj

2r2Z(τ, α)
) fri(r)dr,

(9)

with Z(τ, α) = 2τ
α−2 2F1[1, 1− 2

α ; 2− 2
α ;−τ ], and α > 2 and

2F1[·] is the Gauss hypergeometric function.
Moreover, fri(r) is given by

fri(r) =
2πλir

Ai
exp

−π M∑
j=1

λjCj
2r2

 . (10)

Proof. See Appendix B.

By substituting (5) and (9) into (8), we can obtain an ana-
lytical expression for the coverage probability. It is important
to note that: 1) The impact of the BS tier association and the
BS selection on the coverage probability is measured in (5)
and (10), the expressions of which are based on λi and λj .
This is because all the BSs can be chosen by the UEs. 2)
The impact of the interference on the coverage probability
is measured in (9). Note that instead of λj , we plug λ̃j into
(9), because only the activated BSs emit effective interference
into the considered network.



Theorem 3. The average ergodic rate of a typical UE associated with the i-th BS tier is

Ri =
2πλi
Ai

∞∫
0

∞∫
0

r exp

−(2t − 1)rασ2Pi
−1 − πr2


m∑
j=1

Cj
2
[
λ̃jZ(2t − 1, α) + λj

]
 dtdr, (13)

where Z(et − 1, α) = 2(2t−1)
α−2 2F1[1, 1− 2

α ; 2− 2
α ; 1− 2t], and α > 2.

Proof. See Appendix C.

E. Area Spectral Efficiency

In this subsection, we use the average ergodic rate of a
typical UE randomly located in the considered multi-tier
network to define the ASE. Using the same approach as in
(8), the average ergodic rate can be expressed as

R =

M∑
i=1

AiRi, (11)

where Ri is the average ergodic rate of a typical UE
associated with the i-th tier, and it is defined by

Ri , Er {ESINRi [log2(1 + SINRi(r))]} . (12)

The unit of the average rate is bps/Hz/km2. It is important to
note that the average is taken over both the channel fading
distribution and the spatial PPP. The ergodic rate is first
averaged on the condition that the typical UE is at a distance
x from its serving BS in the i-th tier. Then, the rate is
averaged by calculating the expectation over the distance r.

We present our results on Ri in Theorem 3 shown on the
top of next page. By substituting (5) and (13) into (11), we
then can obtain an analytical expression for the ASE.

IV. SIMULATION AND DISCUSSION

In this section, we evaluate the network performance and
provide numerical results to validate the accuracy of our
analysis.

A. Validation and Discussion on the BS Inactive Probability

We consider a 3-tier HCN defined by the 3GPP [16] to
show the accuracy of our modeling. In particular, we use the
following parameter values: P1 = 46 dBm, P2 = 30 dBm,
P3 = 24 dBm, λ1 = 10 BSs/km2, λ2 = 100 BSs/km2 and
λ3 ∈ [100, 500] BSs/km2. Besides, we adopt the following
parameters for the network: α = 3.75, q = b = 3.5, and
the UE density is set to λu = 300 UEs/km2. In Fig. 2, we
draw curves of Poff

i versus λ3. As we can observe from this
figure, our analytical results match well with the simulation
results. Moreover, they also show that i) the probability of
a BS being inactive in each tier increases with λ3, when λu
is a finite value, and that ii) the BSs with a lower transmit
power have a less activation probability. For example, more
than 40% and 60% of the BSs in tier 2 and tier 3 are idle
when λ3 > 300 BSs/km2. This means that a large number
of UEs are associated with the BSs in tier 1, as they can
provide stronger signals to these UEs.
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Fig. 2. The inactive BS probability for each HCN tier

B. Validation and Discussion on the Coverage Probability

In this section, we first validate the accuracy of Theorem
2, where the network consists of 2 BS tiers. Specially, we
use P1 = 30 dBm, P2 = 24 dBm, λ1 = 100 BSs/km2 and
τ = 0 dB. The rest of the parameters are the same as those
in the previous subsection. In Fig. 3, we show the results of
Pcov with respect to λ1. As we can see from the figure, there
are some small errors between the simulation and analytical
results in each tier. For example, there is about 1% error
when λ2 is about 200 BSs/km2. With the increasing number
of BSs, the error becomes insignificant. The reason of such
error is that the spatial correlation in UE association process
is not considered in our analysis. Specially, when performing
simulations, nearby UEs have a high probability of being
covered and served by the same BS. However, for tractability,
in the analysis, we consider the BS association of different
UEs as independent process, which underestimates the active
BS density. Due to the good accuracy of Pcov, we will only
use analytical results of Pcov for the figures in the sequel.

In Fig. 4, we compare our analytical results of coverage
probability with those in [4]. In [4], an infinite number of
UEs are considered, so all BSs are working in the fully-
loaded mode. As can be observed from Fig. 4, based on
the results in [4], the coverage probabilities of tier 1 and
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tier 2 decreases and increases as the network densifies,
respectively. As a result, the overall coverage probability
approaches a constant. However, our analytical results show
that although the coverage probabilities of tier 1 and tier 2
show a similar trend as those in [4] (also decreases and
increases as the network densifies), the overall coverage
probability of the HCN does not follow the same trend. Due
to the IMC considered in our analysis, the overall coverage
probability performance continuously increases as the BS
density increases. The intuition behind this phenomenon is
that the interference power will remain constant with the
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Fig. 5. The ASE with respect to tier 2 density λ2

network densification in each tier thanks to the IMC1, while
the signal power will continuously grow due to the closer
proximity of the serving BS as well as the larger BS pool to
select from. This enables stronger serving BS links.

C. Validation and Discussion on the ASE Performance

In this subsection, we validate the accuracy of Theorem 3,
As in the previous subsection, the network consists of 2 BS
tiers, and other parameters are set to be the same with the
previous subsections.

In Fig. 5, we can observe that the ASE analytical results
match well with the simulation results. Moreover, the results
show that with the increasing number of tier 2 BSs, the ASE
of tier 2 increases, while that of tier 1 reduces. The per-
formance improvement of tier 2 is because the interference
power from tier 2 BSs remains constant thank to the IMC,
while the UE is served by a stronger link using a BS in
the tier 2, as the network densifies. However, for the UE
associated with tier 1, although the power of the serving link
does not decline, the cross-tier interference power from tier 2
BSs keeps increasing. Thus, the performance of tier 1 shows
a decreasing trend. We also compare our proposed overall
results with those in [4]. Different from [4], the impact of
IMC is considered in our proposed model, which results
in a better system performance. The performance of our
proposed model grows with the BS density, while that in [4]
is kept constant as the number of BSs increases. This new
observation sheds new light on the design and deployment
of HCNs in 5G.

1The interference power will become constant eventually when there is
an increasing number of BSs. Because of the IMC, the number of active
BSs is at most equal to the number of UEs, and the distance between one
UE and its serving BS keeps decreasing. Thus, from the point of the typical
UE, the injecting interference from other active BSs can be regarded as the
aggregate interference generated by BSs on a HPPP plane with the same
intensity as the UE intensity. Such aggregate interference is bounded and
statistically stable [6].



V. CONCLUSIONS

In this paper, we have studied the impact of the idle
mode capacity (IMC) on the network performance in multi-
tier heterogeneous cellular networks (HCNs) with a limited
number of user equipments (UEs). It is interesting to observe
that the number of tiers and density of base stations (BSs) do
affect the cell activation/inactivation probability, the coverage
probability and the area spectral efficiency (ASE). Different
from the existing works, our results imply that densifying the
BSs in each tier will increase the network capacity as well
as the quality of service for UEs.

In the considered network model, UEs tend to connect to
BSs with a larger transmit power, e.g., the macrocell BSs, and
this effect will be aggravated as the power difference among
different tiers of BSs becomes larger. Thus, this leads to a
high small cell inactivation probability and an over-utilization
of macrocells. To avoid this phenomenon, the current 4G LTE
networks have adopted the technologies of cell range expan-
sion (CRE) and enhanced inter-cell interference coordination
(eICIC) combined with the almost blank subframe (ABS)
mechanism [1]. As our future work, we will consider such
mechanisms in our theoretical analyses.

APPENDIX A
PROOF OF THEOREM 1

When the typical UE is associated with a BS in the i-th
tier, the received signal from the serving BS is the largest
one, which can be interpreted as:

Si,0 > max
j,j 6=i

Sj,0 =⇒


Si,0 > S1,0

Si,0 > S2,0

...

Si,0 > Sj,0

=⇒


r1,0 > C2ri,0

r2,0 > C3ri,0

...

rj,0 > Cjri,0,

(14)

where Cj =
(
Pj
Pi

) 1
α

, i = 2, 3, ...,m.
We can calculate the probability of the event in (14) as

P
(
Si,0 > max

j,j 6=i
Sj,0

)
=

M∏
j=1,j 6=i

P (rj,0 > Cjri,0)

=

M∏
j=1,j 6=i

P[No BS closer than Cjri,0 in the j-th tier]

=

M∏
j=1,j 6=i

exp(−πλjCj2r2
i,0).

(15)

According to the null probability of a 2-D Poisson process
with density λi, the PDF of ri,0 is given by

fri,0(r) = exp(−πλir2)2πλir. (16)

By combining (15) and (16) together, we then have

Ai = Eri,0
{
P
(
Si,0 > max

j,j 6=i
Sj,0

)}
=

∫ ∞
0

M∏
j=1,j 6=i

exp(−πλjCj2r2)fri,0(r)dr

=
λi

M∑
j=1

λjCj
2

.

(17)

APPENDIX B
PROOF OF THEOREM 2

From (8), the coverage probability of the i-th tier is given
by

Er {P[SINRi(r) > τ ]} =

∫ ∞
0

P[SINRi(r) > τ ]fri(r)dr,

(18)

where fri(x) is the PDF of the distance ri between a typical
UE and its serving BS in the i-th tier.

Based on the proof in [4], we can obtain the PDF of ri as
follows,

fri(r) =
2πλir

Ai
exp

−π M∑
j=1

λjCj
2r2

 , (19)

where Ai is given in Theorem 1.
The SINR of UE in (2) can be rewritten as γ(r) =
Pihi,0

rα(Ir+σ2) , where Ir =
∑M
j=1

∑
k∈Φ̃\b0 Pjhjk|Yjk|

−α. So
the CCDF of the typical UE SINR at distance r from its
associated BS in the i-th tier can be expressed as

P[γ(r) > τ ] = P
{
hi0 > rαP−1

i (Ir + σ2)τ
}

= exp

(
−σ2rατ

Pi

) M∏
j=1

LIr (r
αP−1

i τ),
(20)

and the Laplace transform of Ir is

LIr (r
αP−1

i τ)

= EIr
{

exp
(
−rαP−1

i τIr
)}

= EΦj

exp

−rαPi−1τ
∑

k∈Φ̃i\Bi,0

Pjhjk |Yjk|−α


(a)
= exp

{
−2πλ̃j

∫ ∞
Cjr

[
1− Lhjk(rαCjy

−α)
]
ydy

}

= exp

{
−2πλ̃j

∫ ∞
Cjr

y

1 + (rαCjτ)
−1
yα
dy

}
(b)
= exp

{
−πλ̃jCj2r2τ

2
α

∫ ∞
τ− 2

α

(1 + u
α
2 )
−1
du

}
(c)
= exp

{
−πλ̃jC2

j r
2Z(τ, α)

}
(21)

where step (a) states that the closest interferer in the j-th tier
is at least at a distance Cjr, step (b) is obtained from u =



(xαCjτ)−
2
α y2, and Z(τ, α) = 2τ

α−2 2F1[1, 1− 2
α ; 2− 2

α ;−τ ],
and α > 2 and 2F1[·] denotes the Gauss hypergeometric
function in step (c). Combining (19), (20) and (21), we obtain
the coverage probability of a typical UE associated with the
i-th tier in (9).

APPENDIX C
PROOF OF THEOREM 3

From (12), the average ergodic rage of the i-th tier is

Ri =

∫ ∞
0

{ESINRi [log2(1 + SINRi(r))]} fri(r)dr, (22)

where fri(x) is given by (19). Since E[R] =
∫∞

0
P[R > r]dr

for R > 0, we can obtain

ESINRi [log2(1 + SINRi(r))]

=

∫ ∞
0

P {log2[1 + SINRi(r)] > t} dt

=

∫ ∞
0

P
(
SINRi(r) > 2t − 1

)
dt

(23)

The rest proof is similar with Appendix A, and the result is
obtained by plugging τ = 2t − 1.
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