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Abstract—We show that the performance of iterative belief
propagation (BP) decoding of polar codes can be enhanced by
decoding over different carefully chosen factor graph realiza-
tions. With a genie-aided stopping condition, it can achieve the
successive cancellation list (SCL) decoding performance which
has already been shown to achieve the maximum likelihood
(ML) bound provided that the list size is sufficiently large.
The proposed decoder is based on different realizations of the
polar code factor graph with randomly permuted stages during
decoding. Additionally, a different way of visualizing the polar
code factor graph is presented, facilitating the analysis of the
underlying factor graph and the comparison of different graph
permutations. In our proposed decoder, a high rate Cyclic
Redundancy Check (CRC) code is concatenated with a polar code
and used as an iteration stopping criterion (i.e., genie) to even
outperform the SCL decoder of the plain polar code (without the
CRC-aid). Although our permuted factor graph-based decoder
does not outperform the SCL-CRC decoder, it achieves, to the
best of our knowledge, the best performance of all iterative polar
decoders presented thus far.

I. INTRODUCTION

Recently, polar codes [1] have been considered as channel
codes for the upcoming 5th generation mobile communication
standard (5G) as part of the control channel [2] and thus,
decoding of polar codes has more and more become a practical
implementation challenge. As successive cancellation (SC)
decoding [1] for finite length polar codes is sub-optimal,
successive cancellation list (SCL) decoding [3] is applied,
at the cost of increased complexity due to the list decoding
nature. It was shown in [3] that this decoder can approach the
maximum likelihood (ML) bound for a sufficiently large list
size. Furthermore, an additional high rate Cyclic Redundancy
Check (CRC) code can be easily used under SCL decoding
in order to enhance the code itself via increasing its mini-
mum distance. This combination renders polar codes into a
powerful coding scheme. However, SCL suffers from both,
high-complexity and an inherently serial decoding nature.

In this work, we focus on iterative decoding of polar codes
based on the message passing algorithm over the encoding
graph of polar codes [4]. In contrast to SCL decoding, the
belief propagation (BP) algorithm can be easily parallelized
[5]. Additionally, this approach inherently enables soft-in/soft-
out decoding and allows joint iterative detection and decoding
loops. Although the BP algorithm can outperform SC decod-
ing, it is yet not competitive to SCL decoding and, thus, not
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attractive for many applications. In [6], [7], it has been shown
that the finite length polar codes under BP decoding can be
enhanced when the semi-polarized channels are additionally
protected by check nodes, or an augmented (shorter) polar
code [8]. Unfortunately, these approaches are still of an infe-
rior performance when compared to SCL decoding. Besides,
they require an adjusted code structure and are thus not
compatible to the expected standardized polar code (i.e., polar
code concatenated with CRC code). The proposed algorithm
in this paper enhances the decoder without any modifications
needed at the encoder. The proposed algorithm works well
with any polar code concatenated with a CRC code.

For a polar code of length N, the stages of the encoding
graph can be permuted [9] leading to (log2 N)! different graphs
with the same encoding behavior. As a result, an almost
infinite amount of different decoder permuted realizations exist
even for moderate length polar codes (e.g., 10! > 4× 108

permutations for an N = 1024 polar code). The individual
factor graph permutation performance per codeword and noise
realization is different due to the different order of processing
in the decoding graph. In other words, whenever decoding does
not succeed on a specific graph, another graph permutation
can be used until reaching a specific stopping condition.
Decoding on different factor graph permutations in parallel and
combining all obtained decoding results was first mentioned
in [9], but has not been investigated further.

This idea is somewhat akin to the idea of redundant Tanner
graphs for decoding of LDPC codes [10]. Similar ideas
have been successfully applied to high density parity check
(HDPC) codes, e.g., Reed-Solomon (RS) codes in [11]. Re-
cently, the combination of random redundant iterative decoders
[12] and machine learning techniques for Bose-Chaudhuri-
Hocquenghem (BCH) codes has been shown in [13].

In the following, we show that genie-aided iterative de-
coding can approach SCL performance, and thus also ML
performance, when decoding over multiple factor graph per-
muted realizations. Although the decoding complexity (and
maximum latency) seems to increase drastically in our basic
implementation, it is shown in Subsection IV-C that the
increase in complexity is not as dramatic in the low error-
rate region. However, the main objective of this work is to
show the potential of iterative decoding and the effects of
multiple decoding graph permutations; therefore, we keep the
complexity reduction open for future work.
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II. POLAR CODES AND ITERATIVE DECODING

In this section, we briefly mention fundamental concepts of
polar codes, besides introducing the notations used throughout
this work. We also briefly discuss the BP decoder of polar
codes and review some of the recent work pursued on it.

A. Polar Codes

Polar codes introduced in [1] are constructed based on

a 2× 2 kernel (i.e., Arıkan’s kernel G2 =

[
1 0
1 1

]
is the

most commonly used). After recursively acquiring the nth−
kronecker power of the kernel G2, N synthesized bit channels
are obtained, where N = 2n. The term “polarized channels”
indicates that one portion of the synthesized channels is purely
noisy, and thus, would be frozen (i.e., cannot be used for
useful data transmission and would be set to known values,
e.g., 0 in this work), and another portion would be purely
noiseless which will be the information bit channels, i.e., used
for data transmission. However, the phenomenon of channel
polarization requires sufficiently large N, where the channels
converge to either purely noisy or purely noiseless channels.

The selection of good and bad bit channels out of the N
synthesized channels is called code construction, where the
information set A is the set of indices denoting the informa-
tion bit channels. Several code construction algorithms exist,
with different bit channel “quality” criteria, e.g., [14][15][16].
Throughout this paper, we use the polar code construction
based on Arıkan’s Bhattacharyya bounds of bit channels [1],
however, any other polar code construction algorithm could be
used straightforwardly.

A polar code of length N with k information bits and code
rate R= k

N is denoted by P(N,k). Encoding requires the com-
putation of the N×N generator matrix GN by computing the
kronecker product G⊗n

2 . A vector u of length N is constructed
containing k information bits placed in the A indices and zeros
in the remaining indices Ā. The N coded bits x are calculated
as follows x = u ·GN .

For the family of polar codes, there exist two main decoding
schemes: SC decoding (and its variants, e.g., SCL) and BP
decoding. Although polar codes were theoretically proven to
achieve the symmetric channel capacity of a Binary Input
Discrete Memoryless Channel (BI-DMC) under SC decoding
assuming an infinite length code, finite length polar codes
show a degraded performance because of the incomplete
channel polarization phenomenon [6]. An alternative iterative
decoding algorithm based on the idea of message passing over
the encoding graph was introduced in [4], and was shown to
outperform the SC decoding for finite length polar codes.

B. Belief Propagation Decoding

The flooding BP decoding of polar codes is a message
passing algorithm in which the information bits are retrieved
through iterations conducted on the factor graph corresponding
to the polar code generator matrix GN . As depicted in Fig. 1a,
the polar code factor graph consists of n = log2 N stages. In

the following, all messages are assumed to be log-likelihood
ratios (LLR) and are defined as

LLR(x) = log
P(x = 0|y)
P(x = 1|y) .

1) Types of LLR messages: Two types of messages are
involved, left-to-right messages (R-messages) and right-to-left
messages (L-messages). The R-messages at stage 1 represent
the a priori information available to the decoder and, thus,
are either zero or infinity for non-frozen and frozen bits,
respectively. The L-messages at stage n+ 1 carry the LLR
channel output Lch. All other messages are initialized with
zero (i.e., no initial information).

2) Types of LLR updates: Each single iteration is composed
of one left-to-right message propagation, updating the LLR
values of the R-messages and one right-to-left message prop-
agation, updating the LLR values of the L-messages.

3) Factor graph and processing element (PE): The polar
factor graph (see Fig. 1) consists of N

2 · log2(N) PEs. The L-
and R-messages are updated in each PE (shown in [17, Fig.
2]) as follows:

Rout,1 = f (Rin,1,Lin,2 +Rin,2)

Rout,2 = f (Rin,1,Lin,1)+Rin,2

Lout,1 = f (Lin,1,Lin,2 +Rin,2)

Lout,2 = f (Rin,1,Lin,1)+Lin,2

where f (L1,L2) = L1�L2 is commonly referred to as boxplus
operator, which can be expressed as

f (x,y) = x� y = log
1+ ex+y

ex + ey .

4) Decoding termination and stopping conditions: Tra-
ditionally, the conventional BP decoder terminates when it
reaches a predefined maximum number of BP iterations
Nit,max. The LLRs of the estimated message û and the esti-
mated transmitted codeword x̂ are computed according to

L(ûi) = L1,i +R1,i

L(x̂i) = Ln+1,i +Rn+1,i

However, early stopping conditions introduced in [18] are used
to speed up the decoding process by terminating the decoding
process if a certain stopping condition is met. One of the
conditions proposed is G-matrix based, where û is said to
be a valid estimate of u if x̂ = û ·G is fulfilled. Throughout
this work, this stopping condition is called “practical stopping
condition”. Note that this multiplication is of high complexity
and, thus, can be avoided by encoding over the polar encoding
circuit which has a complexity of O(N · logN). One can
obviously infer that if the BP decoder is terminated using the
condition û = u, this would act like a lower bound on the BP
decoder performance (continue iterating till reaching the cor-
rect transmitted information bits, i.e., perfect knowledge-based
decoding). Throughout this work, this stopping condition is
called “perfect knowledge-based stopping condition”, since it
is more of a bound rather than representing a real decoding
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(c) Unfolded factor graph labeled according to (a) and (b)
Fig. 1: Conventional and permuted factor graph of P(8,k).

behavior. A further stopping (and detection) condition was
introduced in [19], where a high rate CRC code is used as
an outer code on the information bit vector to overcome the
situation of undetected errors (where the estimate x̂ is a valid
codeword but x̂ 6= x). Thus, stop the BP iterations when the
CRC on the information bits is satisfied.

III. DECODING ON PERMUTED FACTOR GRAPHS

As exemplary shown in Fig. 1 for two permutations, there
are (log2 N)! different permutations of the polar code factor
graph based on the generator matrix G. The BP decoding algo-
rithm can be performed over any of such permutations [9]. The
leftmost stage (i.e., stage 1) of all of the different permutations
of the polar factor graph represents the vector u containing
the frozen known bits and the non-frozen information bits.
The rightmost stage (i.e., stage n+ 1) of all of the different
permutations of the polar factor graph represents the codeword
x or its corresponding LLRs.

Polar decoding on permuted factor graphs was referred
to as “BP decoding on an overcomplete representation of a
factor graph” in [9], or simply “multi-trellis” BP decoding. It
was used in [17] to overcome error floors due to inadequate
LLR-clipping values. This decoding algorithm (Algorithm 1)
works as follows. BP decoding iterations are performed over
a random permutation of the polar code factor graph shown
in Fig. 1a until a certain early stopping condition (Algorithm
2) [18] is fulfilled, or until a predefined maximum number of
BP iterations per trellis Nit,max is reached. If decoding on one
factor graph permutation fails (i.e., stopping condition is never
satisfied and a maximum number of iterations is reached), the
information from the channel Lch and the a priori information
to the decoder (i.e., frozen and non-frozen bit positions) are
passed on to a new factor graph permutation (e.g., Fig. 1b).
When successively reaching a predefined maximum number of
factor graph permutations qmax, decoding terminates. This can
be viewed as a multi-stage decoding process in which a new
stage is invoked if the previous stage(s) failed to converge.

Algorithm 1 Multi-trellis BP decoder

Input:
Lch, . LLR channel output
A, . information set
qmax, . max. no. of factor graphs
Nit,max, . max. no. of iterations per factor graph
u, . transmitted information bits
stopID. . stopping criterion

Output:
û. . estimated information bits

1: N← length(Lch)
2: n← log2N
3: iq← 1
4: for iq≤ qmax do
5: (L,R)← initializeLandR(Lch,A)
6: schedule← permute({1, ...,n})
7: iI← 1
8: for iI ≤ Nit,max do
9: (L,R)←OneBPiteration(N,n,L,R,schedule)

10: if checkStopCondition(L,R,u,stopID) then
11: û = LLR2bit(L(1, :)+R(1, :))
12: return û
13: end if
14: iI← iI +1
15: end for
16: iq← iq+1
17: end for
18: û = LLR2bit(L(1, :)+R(1, :))

. no stop. cond. satisfied
19: return û

The soft values in the intermediate stages of a specific
factor graph are cleared in subsequent decoding iterations
on a permuted factor graph realization. This is because the
information that L- and R-messages at certain stages hold is



different for each factor graph realization. This can be inferred
from Fig. 1c. Some soft messages are shared between different
realizations of the factor graph, and thus, these messages
can be re-used (i.e, not dismissed). Some soft messages in
a certain factor graph represents certain messages which are
not explicitly seen in another factor graph (i.e., should be
either dismissed or somehow translated according to the new
factor graph permutation). For simplicity we clear all internal
messages after each factor graph permutation in this work.

Algorithm 2 checkStopCondition

Input:
L, . L-matrix of BP factor graph
R, . R-matrix of BP factor graph
u, . transmitted information bits
stopID. . stopping criterion

Output:
isSatis f ied. . indicate if stop. condition is satisfied

1: û← LLR2bit(L(1, :)+R(1, :))
2: x̂← LLR2bit(L(n+1, :)+R(n+1, :))
3: switch stopID do
4: case 1 . practical stopping criterion
5: if û ·G = x̂ then
6: return true
7: end if
8: case 2 . perfect knowledge-based stop. condition
9: if û = u then

10: return true
11: end if
12: case 3 . CRC-aided stop. condition
13: if û satisfiesCRCcheck then
14: return true
15: end if
16: end switch
17: return false

For all simulations in this work, 106 codewords per SNR
point were simulated to get “stable” B(L)ER curves. The error-
rate performance of this multi-trellis-based BP decoder while
using the previously mentioned (practical stopping condition)
is shown in Fig. 2a and 2b, respectively. The multi-trellis
BP has a better error-rate performance when compared to
the conventional BP decoder. It can be also depicted from
Fig. 2a and 2b that the use of more different permutations of
the factor graph enhances the error-rate performance, up to a
certain point, when enhancement is no longer possible with
increasing the number of factor graphs used. In Fig. 2a and
2b, it is also shown that the gain in performance is due to
the use of different permutations of factor graphs not a result
of the increased number of BP iterations. One reason for this
performance improvement is due to the different structure of
loops from one factor graph permutation to another, as seen
from Fig. 1c. As shown, two loops are highlighted in the
unfolded factor graph, whereas the nodes belonging to one
loop in a graph permutation are spread among different loops
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Fig. 2: BER and BLER comparison between BP, SCL with
list size L = 32 and Multi-trellis BP for a P(2048,1024)-
code. Multi-trellis BP: the maximum number of iterations per
trellis is Nit,max = 200, the maximum number of trellises is
qmax = {2,5,10}, all with the practical stopping criterion.

in another graph permutation. Eventually, this means that one
factor graph might be better for a specific noise realization
than another. Besides, in the high SNR region (i.e., error
floor region), the main cause of errors are the stopping sets.
Therefore, shuffling the used factor graphs effectively leads to
shuffling the variable nodes of the decoding graph, and, thus,
resulting in totally different stopping sets [17].

IV. EXTENSIONS AND COMPLEXITY

A. Perfect knowledge-based termination

During our simulations, we noticed that in many cases in
which the decoder fails, the decoder really converged to the set
of correct information bits at a certain point but the stopping
condition was not satisfied (i.e., x̂ and û did not satisfy the
stopping condition due to oscillating errors on both sides). This
led to the conclusion that the performance of the multi-trellis
BP decoder can be enhanced with a better stopping criterion,
e.g., a genie to decide when to stop the iterations.

To test the validity of this lemma, the following experiment
was conducted. The BP decoding stops when the estimated
information bits in û is equal to the transmitted information
bits in u, or when a maximum number of iterations per
trellis Nit,max over the maximum number of trellises qmax is
reached (second stopping condition in Algorithm 2). It is
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Fig. 3: BER and BLER comparison between BP, SCL L = 32
and Multi-trellis BP for a P(2048,1024)-code. Multi-trellis
BP: Nit,max = 200, qmax = {2,10,100,300,500,1000}, all it-
erative decoders use the perfect knowledge-based stopping
criterion (i.e., the results provide a lower bound).

worth mentioning that this is not a practical decoder since
it assumes perfect knowledge of the transmitted information
bits. However, it provides a bound on the achievable decod-
ing performance. The error-rate performance of this decoder
(shown in Fig. 3a and 3b) approaches, and even outperforms,
the SCL decoder performance (due to the perfect knowledge-
based stopping criterion), indicating that one major cause of
decoding failure in the multi-trellis BP decoder is the lack of
proper stopping criterion. One can also see that the enhanced
error-rate performance is due to the multiple different factor
graph permutations used and not due to the increased number
of BP iterations.

This means that for a specific noise realization, if the
SCL decoder (which achieves the ML bound) can decode
successfully, then there exists a polar factor graph such that
the BP decoder can also decode successfully while using this
specific factor graph with a carefully chosen stopping criterion.

B. CRC-aided termination

Inspired by [3], one type of a practical genie that can be
used is a high rate CRC code with r redundancy bits. The
CRC code can be considered as an outer code applied over
the information bits, while the polar code is the inner code.
The multi-trellis BP decoder iterations terminate if the CRC
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Fig. 4: BLER comparison between BP, BP+CRC, SCL L =
32, SCL+CRC L = 32 and Multi-trellis BP+CRC for a
P(2048,1024)-code. The CRC used is r = 32 bits long. Multi-
trellis BP: Nit,max = 200, qmax = {2,10,100,300,500,1000},
with CRC-aided stopping criterion.

is satisfied, or when a maximum number of iterations per
trellis Nit,max over the maximum number of trellises qmax is
used (third stopping condition in Algorithm 2). Although we
introduce a rate loss penalty

( r
N

)
, this CRC-based stopping

criterion is less complex than the previously mentioned prac-
tical stopping condition, which requires an additional polar
re-encoding step. Fig. 4 shows that this CRC-aided decoding
will help in approaching and even outperforming, in the high
SNR region, the error-rate performance of the SCL decoder
of a conventional polar code. Additionally, we provide results
for BP decoding with the CRC-based stopping criterion for
Nit,max = 106 iterations. This shows that the gain observed by
the multi-trellis decoder is neither a result of the increased
number of iterations nor of the CRC stopping condition.
Thus the error-rate performance gain is due to the different
permutations of the factor graphs used. It is worth mentioning
that the concatenation of a polar code with a high rate CRC
code has been proposed for the uplink control channel of
the upcoming 5th generation mobile standard [2]. Thus, the
proposed multi-trellis BP decoder is compatible with the
(expected) standardized polar codes.

We want to emphasize that the performance of this CRC-
aided decoder is not as good as the CRC-aided version of
the SCL decoder (i.e., SCL-CRC). The CRC codes are well-
suited for the task of picking the correct codeword from the
list in the SCL decoder but in the multi-trellis BP decoder it is
just used as a stopping guideline, thus, it is not adding much
gain in the sense of information transfer (outer-inner iterative
decoding strategy).

C. Complexity

The main objective of this work is to propose this new
variant of the BP decoder for polar codes and present its error-
rate performance when compared to the conventional BP and
SCL decoders. However, in its naive implementation, the price
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Fig. 5: Average number of iterations performed per iterative
decoding algorithm; polar code P(2048,1024).

to pay is a rather high decoding complexity which we briefly
evaluate next.

As can be seen from Fig. 5, the average number of per-
formed decoding iterations does not drastically increase under
multi-trellis decoding in the SNR range of interest, as the
decoder typically operates in the low error-rate region. Obvi-
ously, the average number of iterations depends on the BLER
of the plain BP decoder as each block failure causes additional
iterations over the permuted trellises. Thus, decoding over
multiple trellises is only required in some rare cases.

In the CRC-aided multi-trellis decoder, the complexity in
the low SNR region is high, because the decoder will stop
iterating when the CRC is satisfied, which is very unlikely
due to bad channel conditions (i.e., the CRC-aided stopping
condition is stricter than the practical stopping condition).

Various ideas can be implemented in order to reduce the
complexity of the proposed decoder. The concept of a par-
titioned successive cancellation list (PSCL) decoder [20] can
be used in this decoder where we treat a polar code of length
N as two polar codes of length N

2 (i.e., two partitions), and
the proposed decoder is applied over each partition. This will
reduce the complexity indeed, but on the expense of error-rate
performance.

Furthermore, wasting useless iterations on non-converging
factor graphs can be later avoided by using an LLR-based
metric which quantifies the convergence behavior of a spe-
cific factor graph permutation. This will certainly reduce the
complexity (and maximum latency) by a significant factor via
skipping some (non-useful) permutations only after perform-
ing a few BP iterations over them.

V. CONCLUSION

In this paper, we presented a new variant of the BP decoder
for polar codes based on different permutations of the polar
code factor graph. The proposed decoder, with a perfect
knowledge-based termination criterion, approaches the error-

rate performance of the state-of-the-art SCL decoder, suggest-
ing that the current early BP decoding stopping criteria are
not yet optimum and can be further optimized. A CRC-aided
version of this decoder is proposed, which can outperform, in
the high SNR region, the state-of-the-art SCL decoder of a
plain polar code. Obviously, a CRC is a well-suited “genie”
in the context of SCL decoding, and thus the performance of
the CRC-aided SCL decoder is still better than any iterative
decoding-based scheme for polar codes. Yet, to the best of
our knowledge, the permuted factor graph-based BP decoder
presented in this paper is the best iterative decoder for polar
codes known thus far.
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[6] J. Guo, M. Qin, A. G. i Fàbregas, and P. H. Siegel, “Enhanced Belief
Propagation Decoding of Polar Codes through Concatenation,” in IEEE
Inter. Symp. Inf. Theory (ISIT), June 2014, pp. 2987–2991.

[7] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Improving
Belief Propagation Decoding of Polar Codes Using Scattered EXIT
Charts,” in IEEE Inf. Theory Workshop (ITW), Sep. 2016, pp. 91–95.

[8] ——, “Flexible Length Polar Codes through Graph Based Augmenta-
tion,” in IEEE Inter. ITG Conf. on Syst., Commun. and Coding (SCC),
Feb. 2017.

[9] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of Polar Codes
for Channel and Source Coding,” in IEEE Inter. Symp. Inf. Theory (ISIT),
June 2009, pp. 1488–1492.

[10] T. R. Halford and K. M. Chugg, “Random Redundant Soft-In Soft-Out
Decoding of Linear Block Codes,” in IEEE Inter. Symp. Inf. Theory
(ISIT), July 2006, pp. 2230–2234.

[11] J. Jiang and K. R. Narayanan, “Iterative Soft Decoding of Reed-Solomon
Codes,” IEEE Commun. Lett., vol. 8, no. 4, pp. 244–246, April 2004.

[12] I. Dimnik and Y. Be’ery, “Improved Random Redundant Iterative HDPC
Decoding,” IEEE Trans. Commun., vol. 57, no. 7, July 2009.

[13] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN
Decoding of Linear Block Codes,” CoRR, Feb. 2017. [Online].
Available: http://arxiv.org/abs/1702.07560

[14] R. Mori and T. Tanaka, “Performance of Polar Codes with the Construc-
tion using Density Evolution,” IEEE Commun. Lett., vol. 13, no. 7, pp.
519–521, July 2009.

[15] P. Trifonov, “Efficient Design and Decoding of Polar Codes,” IEEE
Trans. Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

[16] I. Tal and A. Vardy, “How to Construct Polar Codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.

[17] A. Elkelesh, S. Cammerer, M. Ebada, and S. ten Brink, “Mitigating
Clipping Effects on Error Floors under Belief Propagation Decoding of
Polar Codes,” in Proc. Inter. Symp. Wireless Commun. Syst. (ISWCS),
Aug. 2017.

[18] B. Yuan and K. K. Parhi, “Early Stopping Criteria for Energy-Efficient
Low-Latency Belief-Propagation Polar Code Decoders,” IEEE Trans.
Sig. Process., vol. 62, no. 24, pp. 6496–6506, Dec. 2014.

[19] S. Sun, S. G. Cho, and Z. Zhang, “Error Patterns in Belief Propagation
Decoding of Polar Codes and Their Mitigation Methods,” in Asilomar
Conf. on Sig., Syst. and Computers, Nov. 2016, pp. 1199–1203.

[20] S. A. Hashemi, A. Balatsoukas-Stimming, P. Giard, C. Thibeault, and
W. J. Gross, “Partitioned Successive-Cancellation List Decoding of Polar
Codes,” in IEEE Inter. Conf. on Acoustics, Speech and Sig. Process.
(ICASSP), March 2016, pp. 957–960.


