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Abstract—This paper proposes a novel analytical framework
based on the Fox H-function distribution. To test its efficacy we
focus on a study case where we derive closed form expressions
for the distribution of the end-to-end signal to noise ratio, and
corresponding outage probability for the dual-hop amplify-and-
forward configuration over Weibull-fading channels with channel
state information. An extensive simulation campaign was carried
out to corroborate the proposed approach.

Index Terms—Machine-to-machine, H-function distribution,
amplify-and-forward, outage probability

I. INTRODUCTION

To fully enable the coexistence of human and machine
type communications in 5G and beyond systems, not only
the already established procedures need to be revised, but
also several new technologies have to be introduced. More
specifically, allowing a large number of machines and legacy
human type communication to simultaneously transmit and
share the air interface requires further development of coop-
erative mechanisms. This new context requires new analytical
models so as to capture the various non-identical propagation
characteristics of radio channel [1], [2].

Cooperative schemes have already been proposed for
device-to-device communication, proving that it can reduces
energy consumption of low-power machine type terminals
while enhance reliability and throughput. In similar way,
Machine-to-Machine (M2M) relaying can also reduce energy
expenditure for cell-edge machine type terminals [3]. In both
cases, the radio link between source, relay and destination may
exhibit distinct characteristics.

In [4], the authors analyzed the performance of digital
modulations on Weibull fading channels and derived new
closed-form expressions for the respective moment generat-
ing function with integer value fading parameters. Similarly,
Hasna et al. studied the End-to-End (E2E) performance of
dual-hop relaying over Rayleigh-fading channels [5], where
closed form expressions for the statistic of the harmonic
mean of two independent exponential variates were derived, as
well as comparisons between regenerativeand non-regenerative
systems were derived. Along the same line, the authors in
[6] evaluated the outage probability of dual-hop relaying over
Nakagami-m fading channels; the exact analytical expression
of the outage probability for non integer m parameters were
obtained by means of bivariate H- and G—functions.

Motivated by these results, we introduce here a new frame-
work to derive closed form expressions for the Probability
Density Function (PDF) and Cumulative Distribution Function
(CDF) (outage probability) of the E2E Signal to Noise Ratio
(SNR) distribution for the dual hop Channel State Informa-
tion (CSI) assisted Amplify and Forward (AF) relaying over
Weibull fading channels. As discussed in [4], the Weibull
distribution offers a convenient model to capture the effects
of multi path fading channels in indoor [7] and outdoor [§]
radio propagation environments. Measurements in vehicle-to-
vehicle urban channels also suggest a multipath fading with
Weibull distribution [9]. To derive our analytical expressions,
we resort to Fox H-function distribution (a generalization of
hypergeometric functions given in term of contour integrals
involving products of gamma functions) and the well known
moment matching approach [11], [12]. The idea of using
Fox H-functions to establish a unified framework to model
radio channel statistics [13], [14] and evaluate the performance
of wireless communication systems [15] is not totally new.
However, the H—function distribution was only introduced in
[12] along with its properties and special cases. Recently, [16]
analyzes the error probability and capacity at high and low
SNR regimes using algebraic asymptotic expansions of the H-
transform. Herein, we use H—function distribution to represent
the Weibull multi-path fading and then compute closed form
expression for the corresponding outage probability.

Our contributions are summarized as follows:

o We introduced a novel analytical framework based on
the Fox H-function distribution [11] for computing the
distribution of the E2E SNR in cooperative AF scenarios.

o We derive the closed-form expressions for the outage
probability for independent, but not necessarily identi-
cally distributed Weibull variates.

o« We propose a closed-form approximation for the sum
of independent, but not necessarily identically distributed
Weibull variates.

The reminder of this paper is organized as follows. Section
II introduces the mathematical concepts used to derived our
analytical framework based on the Fox H-function, Mellin
transform and its main properties. Thereafter, our framework
is applied to the dual hop relay problem in III. We then use
Fox H-function variates to derive closed form expressions for



the dual-hop relaying E2E SNR distribution. The outage prob-
ability is shown in for various radio channel configurations
between source, relay and destination channels. In Section VI,
final observations and conclusions are provided.

II. PRELIMINARIES AND ANALYTICAL FRAMEWORK

We introduce here the proposed analytical framework for
evaluating the performance of wireless networks under various
fading channel regimes [17]. We first discuss Mellin trans-
forms that are used to conveniently carry out the algebra of
random variables [18]. Then, the Fox H—function distribution
is defined based on a Mellin—Barnes integral [19]. Various
identities and properties that are very useful in manipulating
H—functions are introduced as well.

A. Mellin Transform and General Formulas

Definition 1: (Mellin transform) The Mellin Transform
(MT) [20], [21] of a Random Variable (RV) Z whose PDF
is given by fz (2) is defined on the (0,0) as,

M f7(2)} 2 JO@ f2 ()2 'R E[Z57] ()

where s € C and E [-] denotes expectation.

Property 1: Let g (x) be a complex-valued function that
exists over (0,00) and is locally integrable. The MT of g (ax)
with a € C is derived as

Ms{g(azx)} = JOO g (az) 2 dx

Qg Jw 9 ()" dy
=a *Ms{g(x)}, 2

where step (i) comes from the change of variable y = ax.
Property 2: The MT of 2Pg (z) is derived as

ey (@)} = [ arg ()0
= JOO g (z)z5P~ldg

0
= Msip{g(2)}. 3)
B. The Fox H-Function

Definition 2: (the Fox H-function) The Fox H-—function
is defined by means of a Mellin-Barnes type integral in the
following form [11], [12], [18]:

m,n
Hz) =H,5 [ (bj, Bj)1,q

(ai,Ai)l,p]

Llbj+Bjs] [ [/ T[1—a;—A;s]z*ds
Tla; + A;s] [T, P[1—b;— Bys]
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where I'[-] is the gamma function [22, §6], z,¢,a;,b; € C,
A;,Bj € R*, and m,n,p,qg € Z such that 1 < j < m, 1 <
i<n,0<m<gq0<n<p, A4 >0,B;>0; £is acontour

in the complex s-plane ranging from w — 200 to w + 100 so that
all left half-plane poles of [ 7", T'[b; + B; s] lie to the left of
£ and all right half-plane poles of [T, T[1 —a; — A;s] lie
to the right.

The following properties, whose derivations are detailed in
[11], are important to operate with the H—function.

Property 3: For o € C, there holds the relation,

(ais A1, ] Hmn[ (al—i—aAZ,A)lp] s

(bj, Bj), (bj + 0B;, Bj)
Property 4: For k > 0, we also have the following,

Hmn[ (a“Al)l :| kan[ (aiakAl)LP]' (6)

(bj, Bj), (b, kBj)1,q
C. H-Function Distribution and its Raw Moments
Definition 3: (the Fox H-function distribution) The PDF
of an arbitrary RV Z is given by,

(@i, Ai)1,p
(bj, Bi)1,q
0, otherwise,
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where the constant &£ normalizes the area under the density
function (over the appropriate range) to unity [23].

The Fox H-Function Distribution in (4) is interesting be-
cause it covers many non-negative distributions, such as
Gamma, Beta, Exponential, Rayleigh and Weibull [12]. In
other words, they can be readily expressed in the form of
(7). Moreover, many characteristics of probability distributions
such as moments, CDF, integral transforms (Laplace, Fourier,
and Mellin) are easily obtained from such representation.

Property 5: Considering that a real valued RV Z can be
represented as a H-function variate in (7), the rth (non-central)
moment of Z is easily derived using the Mellin transform as

E[Z"|=Alr11{f2z (2)}
k HTlr[b+B+BT]Hn F[l*dj*Aj*Aj’l’]
CT+1HZ:H+1 [QJ+A +A T’] F[l*bj*Bj*BjT‘].
(8)

Proof: The rth moment about the origin of fz (z) is
given by, E[Z"] = SSO 2" f7 (z) dz. Provided that the integra-
tion converges and the fz (z) can be expressed in terms of
the Fox H—function, the rth moment using the MT is given
by, E[Z"] = #,{z" fz (2)}. Finally, using Properties 1 and
2, we obtain (8). [ |

]W+1

III. SYSTEM MODEL

To assess the end-to-end performance of the source-relay
configuration we assume that nodes operate in half-duplex
mode with omni-directional antenna radiation pattern, in which
the relay lies in a straight line between source and destination.
We assume a discrete-time channel with stationary and ergodic
time-varying gain denoted by xz[t]. Signal transmissions occur



over slow, frequency non-selective Weibull fading channels.
The received signal is given by

yilt] = auz[t] + nit], 9)

where «; yields the fading channel amplitude between com-
municating peers, z[t] is the signal transmitted by the source
with unity power E[2%] = 1, and n;[t] is an AWGN noise
signal with one-sided power spectral density Np.

The channel gain (signal squared envelope) follows a
Weibull distribution with parameters (A, 8) with PDF

fz(z) = )\Bzﬁfl exp(f)\zﬁ), (10)

where the parameter A is related to the average fading power

. Bla?] %72
E[a;] given by \; = (W) .

The k-th power of a Weibull distributed variate with param-
eters (A, B) is also a Weibull-distributed with (\/k, 8) [4]. Let
Es be the average symbol energy, then, the average SNR per
symbol for the ith hop is given by ~; = %af. Note that both
the average noise power and the average symbol energy are
considered to be the unity.

A. Weibull as a special case of the H—function distribution

The Weibull distribution PDF (10) can be written by means
of the H-function representation (3) as

/BHLO | \1/8

0, otherwise,

(11/_5,1/6)]’“0’ (11)

where 8 > 0 is the shape parameter and 1/1/\ > 0 is the
scale parameter.

To plot the PDF of the Weibull distribution from the
H-function representation, we need to compute the contour
integral in (3) through a doubly exponential quadrature [24],
[25]. Fig. 1 illustrates the PDF of a Weibull distribution using
the H-function representation. For this plot, we consider the
shape (8) and scale parameters (1/\) equal to 6 and 1/2.

In the next section, we extend this framework to deal with
more elaborate algebra between RVs taking advantage of this
representation.

IV. APPLICATION TO THE DUAL HOP RELAY SCENARIO
A. End-to-End SNR Distribution

We consider a scenario where nodes communicate through
CSl-assisted AF relaying over Weibull fading channels [6].
The end-to-end SNR expression in this case is given by [5]:

-1
Yend = Ny (;) (1 + 1> .
Y1+ 72 Y2

where +; is the SNR of the ith radio link (hop).

To derive (12) using the H—function distribution, we make

use of the mathematical framework introduced in Section II

which allow us to compute the harmonic mean (as in step

(1)) of two independent and non—identically distributed (i.n.i.d)

Weibull variates. Hereafter, we present the formulation needed
to obtain the end to end SNR in (12).

(12)

PDF of a Weibull RV
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Fig. 1. PDF of a Weibull distribution with parameters A and ( using the

H—function representation.

B. Reciprocal of Fox H-Function Variates

To obtain the PDF of the reciprocal of a Weibull distribution
in (11), we derive the distribution of a rational power of
the H—function variate. Then, we use [12, Theorem 4.2] and
Property 4 to derive the reciprocal as Y = Z7, for n < 0, thus

P9 =3 |0y

Fig. 2 shows the reciprocal of the Weibull distribution using
the H—function representation, in which we consider the same
configuration parameters previously used in Section III-A.

C. Distribution of the Sum of Two i.n.i.d H—function Variates

To calculate (12), we need to compute the sum W = Y; +
Y5. Therefore, moment-match approach is used to derive the
sum of two independent H—function variates [26].

Proposition 1: Consider two mutually independent H—
function variates Y7 and Y5. The rth moment about the origin
is computed using the binomial formula

w3 () e e

=0

(14)

Proof: Let p,, = E[W7] = E[(Y1 + Y2)"], then using (8),
we build a nonlinear system of 2(p + ¢) + 2 equations so as
to identify the parameters the approximating H—function dis-
tribution. Note that [26] shows that it is possible to eliminate
the parameters k£ and c from the system of equations through
algebraic manipulation. To solve the system of nonlinear
equations, we use the modified Powell method [27].



Reciprocal of a Weibull RV
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Fig. 2. PDF of a Weibull distribution with parameters A and [ using the
H-function representation.

Sum of two i.n.i.d. Weibull RVs
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Fig. 3. PDF of the sum of two independent not identically distributed Weibull
RVs.

Fig. 3 shows the PDF of the sum of two independent not
identically distributed Weibull RVs. considering the following
pairs of configuration parameters, (81,A1) = (6,2) and

(B2, A2) = (5,3).

D. PDF of the E2E SNR

Using the binomial formula in (14), we can obtain the sum
of inid RVs W = Y; + Y5. Thus, to obtain the end-to-end
SNR performance, we need to compute Z = W~! using the
formulation in (13). Since both variates in this sum are of
type [0110] (refer to the sub- and super-scripts of H), we
fit the sum to another H-function distribution with the same
parameters [0110], as follows

Jz(z A, 8) = k:Hig [czz <“1’_A1>] : (15)
From Property 5 the corresponding moments are:
k.
j22% (Z) = CTTF [1—(11 —A1 —Alr]. (16)

Then, we consider the first four moments and use a modified
version of the Powell hybrid method to solve the resulting
system of equations [28].

Finally, to determine the SNR we just need to derive the
reciprocal W = Z~! using (13) as follows

a7

. _ kz 1,0 w -
fW(wv)‘vﬂ) - gHO,l |:Cz '(1 —a) — 2A1aA1)] '

E. CDF of the E2E SNR

The CDF of a H-function distribution is given as Fz(z) =
§o H(u) du. Using the Laplace transform of a H-function
distribution and its inverse [29], we find that Fz(z) can also
be presented in the H—function following format [23]:

(1,1)
(1—a1—Ay, A1), (0, 1)] (1%

V. NUMERICAL RESULTS

k
Fyfz\,0) = %H%zé

[CW z

We evaluate here the end-to-end SNR performance of the
cooperative system presented in Section III. To corroborate
the proposed analytical framework, we use Monte Carlo
simulations (10% snapshots). We consider i.n.i.d H-function
variates and variable power ratio between the two-hop links.

Fig. 4 shows the CDF of the distribution of the E2E SNR
when the communication links source, relay and destination
are not identically distributed, and with CSI at the relay node.
The H-function representation provides a very good match
to the simulation results obtained throughout Monte Carlo
simulation for the entire range of evaluated SNR values.

VI. CONCLUSIONS AND FINAL REMARKS

In this paper, we introduced an analytical framework to
compute the performance of communication systems that are
subject to different radio channel characteristics. The proposed
approach uses the Fox H-function distribution that incorporates
many traditional fading models like Weibull and Nakagami. To
illustrate its strength, we assessed the performance of the AF
dual-hop relay scenario with perfect CSI. We assume fading
channels modeled as independent but not necessarily identical
Weibull variates, deriving a closed form expression for the
outage probability.
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Fig. 4. E2E Outage probability for the dual hop amplify and forward channel
in (12), whose CDF is given in closed-from in (18), for different rate r
requirements.

More importantly, the proposed framework may be used
to derive closed form expressions for different scenarios in
a relatively simple manner. It is worth saying the H-function
representation simplifies the analysis, while complicates the
numerical solution since it involves nowadays a kind of “hand-
craft” procedure. Although this may impose some technical
difficult, the H-function distribution allows for closed form
analytical solutions and the problem moves to how to compute
them. In future works, we plan to employ the proposed
approach to different scenarios including different cooperative
strategies, multiple hop communication, random positions and
different fading channels.
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