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Abstract—Providing consistently high wireless capacity is
becoming increasingly important to support the applications
required by future digital enterprises. In this paper, we propose
Eigen-direction-aware ZF (EDA-ZF) with partial coordination
among base stations (BSs) and distributed interference suppres-
sion as a practical approach to achieve this objective. We compare
our solution with Zero Forcing (ZF), entailing neither BS coordi-
nation or inter-cell interference mitigation, and Network MIMO
(NeMIMO), where full BS coordination enables centralized inter-
cell interference management. We also evaluate the performance
of said schemes for three sub-6 GHz deployments with varying BS
densities – sparse, intermediate, and dense – all with fixed total
number of antennas and radiated power. Extensive simulations
show that: (i) indoor massive MIMO implementing the proposed
EDA-ZF provides uniformly good rates for all users; (ii) indoor
network densification is detrimental unless full coordination is
implemented; (iii) deploying NeMIMO pays off under strong
outdoor interference, especially for cell-edge users.

I. INTRODUCTION

The fourth industrial revolution underway – Industry 4.0

– urgently demands fast, cable-less, and reliable exchange of

information between sensors, humans, and smart machines,

often found indoors and in large numbers. It is a timely and

critical task to guarantee said ubiquitous in-building wireless

connectivity for enterprises and public institutions alike [1].

While spectrally efficient multi-antenna cellular systems are

regarded as the best candidate to meet this demand, they are

inherently interference limited [2], and they may lose much

of their effectiveness in densely populated indoor scenarios.

Handling indoor interference may thus be identified as the

ultimate task to achieve an ICT-enabled smart industry.

A. Related Work and Contribution

In this paper, we consider three interference management

schemes for multi-antenna indoor deployments:

• Zero Forcing (ZF) – without base station (BS) coordina-

tion nor inter-cell interference management;

• Network MIMO (NeMIMO) – where full BS coordination

enables centralized inter-cell interference management;

• Novel Eigen-direction-aware ZF (EDA-ZF) – with partial

BS coordination and distributed interference suppression.

With conventional ZF [3], each BS simultaneously serves

its scheduled users (UEs) via spatial multiplexing, suppressing

all intra-cell crosstalk. In spite of this, the lack of inter-cell

interference management results in poor user rates, especially

for those UEs located at the cell edge.

With NeMIMO [4], [5] – also known in the literature as

cooperative multipoint (CoMP) [6], distributed MIMO [7],

cell-free MIMO [8], and pCell [9] – all BSs cooperate to

jointly serve all UEs, boosting the cell-edge user throughput.

This requires sharing information about the set of scheduled

UEs, their channel training resources, and – more importantly

– all data intended for all scheduled UEs, e.g., through a

wired backhaul. Moreover, NeMIMO also requires a tight

symbol-level synchronization among BSs, which complicates

its practical implementation [10], [11].

In this paper, we propose EDA-ZF as a more practical alter-

native to improve performance at the cell-edge users through

distributed interference mitigation. With EDA-ZF, BSs steer

the inter-cell interference towards the nullspace of neighboring

UEs. In order to do so, BSs are required to share scheduling

and pilot allocation information, but – unlike NeMIMO – no

user data information.

While recent attempts to distributed interference mitigation

have been made in [12]–[17], the current paper and the

proposed EDA-ZF approach differ from these works in a

number of key aspects: unlike [12], EDA-ZF employs inter-

cell channel state information (CSI) to place radiation nulls,

rather than to regularize the precoder to mitigate inter-tier

interference; unlike [13], [14], EDA-ZF targets the eigen-

directions of the most vulnerable UEs, rather than all neighbor-

ing UEs; furthermore, unlike [12]–[14], this paper considers

an indoor deployment, which exhibits considerably different

features due to the large number of interfering line-of-sight

(LoS) links; finally, unlike [15]–[17], this paper focuses on a

cellular architecture operating in a licensed band.

B. Approach and Summary of Results

We evaluate the performance of the three interference man-

agement schemes – ZF, NeMIMO, and EDA-ZF – in three

different sub-6 GHz indoor deployment scenarios. In all three

scenarios, the total number of antennas and the total radiated

power are kept fixed, in order to perform a fair comparison:

• A sparse deployment of two 64-antenna massive MIMO

BSs, each radiating 24 dBm.

• An intermediate deployment of eight 16-antenna BSs,

each radiating 18 dBm.

• A dense deployment of 32 four-antenna small cell BSs,

each radiating 12 dBm.

A number of key conclusions can be drawn from our study:

http://arxiv.org/abs/1710.03787v1


• A sparse deployment implementing the proposed scheme

– EDA-ZF indoor massive MIMO – provides uniformly

good performance for all UEs. In particular, the achiev-

able rates are very close to the ones attained by NeMIMO,

without requiring full coordination among BSs.

• Due to the strong indoor LoS interference, network

densification is detrimental unless full coordination (Ne-

MIMO) is implemented.

• In the presence of strong outdoor co-channel interference,

a dense, fully coordinated deployment – NeMIMO small

cells – rewards cell-edge UEs, but at the expense of

significant backhaul synchronization requirements.

II. SYSTEM SETUP

A. Deployment

We consider the single-floor 120 m × 50 m indoor hotspot

network depicted in Fig. 1. In this setting, which is convention-

ally recommended for indoor studies [18], an operator deploys

a certain number of BSs NB on the ceiling to complement its

outdoor network and enhance user capacity. Let B denote the

set of deployed BSs, which comply to an individual maximum

transmit power constraint PB. We assume that UEs associate

to the BS that provides the largest average received signal

strength (RSS) and that each BS b ∈ B schedules a subset of

its associated UEs for transmission [19]. The set of scheduled

UEs on a given time-frequency physical resource block (PRB)

and its cardinality are denoted by Ub and NU,b, respectively.

In what follows, we will denote by

U =
⋃

b∈B

Ub (1)

the set of UEs scheduled by all BSs on a given PRB, and by

NU =
∑

b∈B

NU,b (2)

the cardinality of said set U.

B. Channel Model

The considered indoor setup constitutes a challenging de-

ployment due to the physical proximity between nodes. This

is because the interference experienced by nodes reusing the

same PRB is significantly larger than that perceived in more

sparse outdoor deployments. Indeed, the probability of LoS

PLoS as a function of the 3D distance d in meters between

any two nodes follows [20]

PLoS =





1 if d ≤ 18

e−
d−18

27 if 18 < d ≤ 37
0.5 if d > 37.

(3)

In the following we consider that propagation channels are

affected by slow channel gain (comprising antenna gain, path

loss, and shadowing) and fast fading [18]. We adopt a block-

fading propagation model, and assume channel reciprocity

since uplink/downlink (UL/DL) transmissions share the same

frequency band through time division duplexing (TDD). We

consider that all UEs are equipped with a single antenna,

and that each BS is comprised of NA antennas. We also let

(a) Zero Forcing (ZF)

(c) Eigen-direction-aware ZF (EDA-ZF)

(b) Network MIMO (NeMIMO)

Fig. 1: Illustration of the three interference management schemes, for NB = 2

BSs, NA = 64 antennas per BS, and NU,b = 3 scheduled UEs per BS. (a)
ZF: no inter-cell interference management; (b) NeMIMO: all BSs jointly serve
the UEs scheduled in all cells, suppressing all interference; (c) EDA-ZF: each
BS serves its own set of UEs, while placing NN = 3 radiation nulls towards
UEs in neighboring cells.

hib ∈ C
NA denote the channel vector between UE i and BS

b. In this setup, each BS b ∈ B can obtain an estimate of

the channel hib to/from each scheduled UE i ∈ Ub via pilot

signals transmitted by the UE during a training phase [21].

In this paper, we assume that all UEs convey orthogonal pilot

signals.1 Following [22], we also account for the presence of

outdoor interference, which may be generated, e.g., by a co-

channel macro BS pointing towards the building of interest.

III. INTERFERENCE MANAGEMENT SCHEMES

We now detail the three interference management schemes

considered in this paper and shown in Fig. 1, namely: (a) ZF,

(b) NeMIMO, and (c) EDA-ZF. We concentrate on describing

DL transmission for brevity, since similar procedures are

followed for UL reception.

A. Zero Forcing (ZF)

With conventional ZF precoding, as illustrated in Fig. 1(a),

each BS simultaneously serves its scheduled UEs via spatial

1Employing orthogonal pilots is essential in the indoor scenario considered,
where severe pilot contamination due to the high user density would make
data transmission through spatial multiplexing infeasible.



multiplexing, suppressing all intra-cell interference. However,

no inter-cell interference management is performed. Each BS

b, in a distributed fashion, obtains an estimate of the channel

hib to each scheduled UE i ∈ Ub. Neither data or scheduling

information is required to be exchanged among BSs. Let

Hb =
[
h1b, . . . ,hNU,bb

]
(4)

be the NA × NU,b channel matrix at BS b, whose columns

contain the channel vectors of its scheduled UEs. Then, the

ZF precoder

W
ZF
b =

[
w

ZF
1b , . . . ,w

ZF
NU,bb

]
(5)

at BS b is given by [3]

W
ZF
b =

(
D

ZF
b

)− 1

2
Hb

(
H

H
b Hb

)−1
, (6)

where the diagonal matrix D
ZF
b is chosen to meet the power

constraint at each BS with equal UE power allocation, i.e.,

such that ‖wZF
ib ‖2 = PB/NU,b ∀i.

The downlink signal-to-interference-plus-noise ratio (SINR)

on a given PRB for UE i ∈ Ub is given by

SINRZF
ib =

∣∣hH
ibw

ZF
ib

∣∣2
∑

j∈B\b

∑
k∈Uj

|hH
ijw

ZF
kj |

2+Ii+σ2
ǫ

, (7)

where σ2
ǫ is the variance of the zero-mean complex Gaussian

additive thermal noise, and Ii is the outdoor co-channel

interference received by the UE. Moreover, the intra-cell

interference term has been considered negligible owing to both

(i) the UE pilot orthogonality during CSI acquisition, and (ii)

the high power of the pilot signals received at the BSs in the

indoor setup considered.

B. Network MIMO (NeMIMO)

For outdoor deployments, the idea behind network MIMO

is to organize BSs in clusters, where BSs lying in the same

cluster share information about the data to be transmitted to

all UEs in the cluster [5]. For the indoor scenario considered

in this paper, we assume a single cluster as shown in Fig. 1(b),

i.e., all BSs cooperate to jointly serve the UEs scheduled in all

cells [4]. In NeMIMO, all BSs share information about the set

of UEs scheduled on each PRB and about the pilot resources

assigned to such UEs so as to estimate their channels. More

importantly, BSs also share information regarding all data to

be transmitted to all scheduled UEs. Let

H , [h1, . . . ,hNU
] (8)

be a NBNA ×NU matrix whose columns denote the channel

vector between UE i and all BSs in B, given by hi =
[hT

11, . . . ,h
T
1NB

]T. Then, the aggregate NBNA×NU NeMIMO

precoding matrix is designed to suppress all crosstalk and it

is given by

W
NeMIMO =

(
D

NeMIMO
)− 1

2
H

(
H

H
H

)−1

, (9)

where the diagonal matrix D
NeMIMO is chosen such that each

BS allocates equal power to all UEs, and such that the power

constraint is met at every BS, i.e. [23]

max
b∈B





NAb∑

n=NA(b−1)+1

NU∑

i=1

∣∣wNeMIMO
ni

∣∣2


 = PB. (10)

Here, wNeMIMO
ni denotes the entry of WNeMIMO on row n and

column i. Such per-BS power normalization is more fair than

assuming a sum-power constraint as in [5], and more practical

than solving a complex optimization problem as in [24].

The downlink SINR on a given PRB for UE i ∈ U,

irrespective of its association, is given by

SINRNeMIMO
i =

∣∣hH
i w

NeMIMO
i

∣∣2

Ii+σ2
ǫ

, (11)

where w
NeMIMO
i ∈ CNBNA is the i-th column of WNeMIMO

in (9), and intra-cell and inter-cell interference terms have been

considered negligible as in (7).

Although exchanging data information allows BSs to co-

ordinate their transmissions and jointly serve all UEs with

an improved SINR, NeMIMO operations come at the cost of

severe backhaul requirements in terms of data rate and latency,

to enable a tight symbol-level synchronization across multiple

BSs. In some cases, said requirements may defy the purpose

of a NeMIMO implementation [10], [11].

C. Eigen-direction-aware Zero Forcing (EDA-ZF)

In this paper, we propose the EDA-ZF precoder as a more

practical alternative to NeMIMO to increase the cell-edge

throughput via distributed interference mitigation. The reason

is that, in contrast with NeMIMO, no data information is

shared between BSs. Under EDA-ZF, each BS acquires addi-

tional CSI of UEs in neighboring cells, as well as scheduling

information from neighboring BSs. As illustrated in Fig. 1(c),

this additional CSI is leveraged by each BS to perform inter-

ference suppression towards the channel subspace occupied by

neighboring scheduled UEs. While in Section IV we will show

its performance under various scenarios, it should be noted

that EDA-ZF is particularly attractive for massive MIMO

BS deployments, due to the abundance of spatial degrees of

freedom (DoF) provided by large scale antenna arrays.

During the training phase of EDA-ZF, each BS estimates

the channels between itself and all UEs in U through or-

thogonal pilots. Let hkb be such channels, and let Σb be a

NA × (NU −NUb
) matrix whose columns are given by

hkb, k ∈ U\Ub. (12)

Subsequently, BS b applies a singular value decomposition

(SVD) on Σb, obtaining its singular values sorted in decreasing

order νℓb, ℓ = 1, . . . ,min {NA, (NU −NUb
)}, and its corre-

sponding left singular vectors uℓb ∈ C
NA , ℓ = 1, . . . , NA.

The NN vectors uℓb, k = 1, . . . , NN, then span the NN

dominant directions of the channel subspace occupied by the

UEs scheduled in neighboring cells. Any power transmitted by

BS b on said subspace would generate significant interference

at these UEs. For this reason, BS b suppresses the interference



generated on the directions uℓb, ℓ = 1, . . . , NN during data

transmission.2 This is accomplished by sacrificing NN spatial

DoF to place radiation nulls, as illustrated by the red arrows

in Fig. 1(c). Let

H̃b ,
[
h1b, . . . ,hNU,bb,u1b . . . ,uNNb

]
, (13)

be a NA × (NU,b +NN) matrix whose columns contain the

channels vectors of all UEs scheduled by BS b, as well as the

spatial directions uℓb to null, ℓ = 1, . . . , NN. Then, the EDA-

ZF precoder W
EDA−ZF
b at BS b is given by the first NU,b

columns of the matrix W̃
EDA−ZF
b defined as

W̃
EDA−ZF
b =

(
D

EDA−ZF
b

)− 1

2
H̃b

(
H̃

H
b H̃b

)−1

, (14)

where the diagonal matrix D
EDA−ZF
b is chosen for equal UE

power allocation, i.e., such that ‖wEDA−ZF
ib ‖2 = PB/NU,b ∀i,

with w
EDA−ZF
kj denoting the k-th column of (14).

The downlink SINR on a given PRB for UE i served by

BS b is given by

SINREDA−ZF
ib =

∣∣hH
ibw

EDA−ZF
ib

∣∣2

∑
j∈B\b

∑
k∈Uj

∣∣∣hH
ijw

EDA−ZF
kj

∣∣∣
2

+Ii+σ2
ǫ

, (15)

where, similarly to (7) and (11), the intra-cell interference term

has been neglected.

IV. PERFORMANCE EVALUATION

In this section, we compare the DL performance of the three

interference management schemes described in Section III

and depicted in Fig. 1. We investigate three deployment

scenarios with different BS densities: (i) a sparse deployment

of NB = 2 massive MIMO BSs with NA = 64 antennas

each; (ii) an intermediate deployment of NB = 8 BSs with

NA = 16 antennas each; and (iii) a dense deployment of

NB = 32 BSs with NA = 4 antennas each.3 In the sparse

case, BSs are deployed as in Fig. 1. In the intermediate and

dense cases, BSs are uniformly deployed following regular

2 × 4 and 4 × 8 grids, respectively [18]. We keep the total

number of BS antennas NBNA = 128 constant in all three

scenarios, in order to observe the effect of densification. For

a fair comparison, we also fix the total power as Ptot, and

set the power per BS as PB = Ptot/NB. We assume that

each BS schedules a maximum number of UEs for multi-

user DL transmission, i.e., NUb
≤ NA/4, ∀b. In practice, the

allocation of DoF could be dynamically optimized by trading

multiplexing gain for beamforming and nulling capabilities.

We also consider link adaptation, where for each SINR value

the modulation and coding scheme (MCS) is selected to ensure

a block error rate (BLER) of 10−1, and the maximum MCS

2It is more fair to suppress interference on the eigendirections of the
aggregate channel than on the channel directions of certain UEs. In fact,
when there are less DoF for nulls than neighboring UEs, the latter approach
relieves certain UEs of all interference while not suppressing any to others.

3Deploying two BSs (resp. one BS) yields a minimum received signal
strength indicator (RSSI) [25] of −89.2 dBm (resp. −98.0 dBm) at the edges
of the scenario. This accounts for the transmit power, the antenna pattern, and
the path loss. Since the UE sensitivity is −94 dBm when operating in TDD
[26], we do not consider deploying less than two BSs to guarantee coverage.

TABLE I: Deployment scenarios and parameters

Parameter/scenario sparse intermediate dense

Number of BSs, NB 2 8 32

Antennas per BS, NA 64 16 4

Max. scheduled UEs per BS 16 4 1

TABLE II: System parameters

Parameter Description

BS transmit power, PB Sparse: 24 dBm [18]; intermedi-
ate: 18 dBm; dense: 12 dBm.

BS antenna array Uniform square planar array

BS antenna elements 5 dBi with 90
◦ half-power beam

width [18]

UE antenna elements Omnidirectional with 0 dBi [18]

Carrier frequency; bandwidth 4 GHz [18]; 20 MHz [18]

UE noise figure 9 dB [18]

Path loss and prob. of LoS InH [18]

Shadowing Log-normal with σ = 3/4 dB
(LoS/NLoS) [18]

Fast fading Ricean with log-normal K factor
[18] and Rayleigh multipath

Thermal noise −174 dBm/Hz spectral density

Outdoor interference Ranging from no interference to
−60 dBm over 20 MHz

Floor size 120 m × 50 m [18]

BS and UE heights 3 and 1.5 meters [18]

UE distribution 80 uniformly deployed UEs

UE association; scheduling RSS-based; Round Robin

Link adaptation MCS selected for BLER = 10−1.
Maximum MCS: 256-QAM with
code rate 0.93 [27].

is 256-QAM with code rate of 0.93 [27]. Note that while

the theoretically maximum MCS rates are 86.3 Mbps, those

plotted in the following account for the fraction of time each

UE is scheduled. This is because more UEs are deployed

than those that can be spatially multiplexed simultaneously,

and therefore they must also be multiplexed in time. Table I

summarizes the three deployment scenarios, whereas a detailed

list of all system parameters is provided in Table II.

A. Deployment Densification and Indoor Interference

Fig. 2 and Fig. 3 compare the performance of the three inter-

ference management schemes under sparse, intermediate, and

dense deployments without co-channel outdoor interference,

i.e., by forcing Ii = 0 ∀i. For EDA-ZF, NN = NA/4 radiation

nulls are placed by each BS. The two figures respectively

show the cumulative distribution function (CDF) of the user

DL SINR per PRB and of the DL rate. The following two

observations can be made from these figures.

1) Interference suppression: Under conventional ZF the

5%-worst performance is significantly lower than the average

one, showing that cell-edge UEs – affected by strong inter-

cell interference – are heavily penalized. On the contrary,

implementing the proposed EDA-ZF scheme in a sparse de-

ployment with two massive MIMO BSs provides uniformly

good performance for all UEs. In particular, the achievable

rates are very close to the ones supported by the maximum

MCS, and similar to the ones attained by NeMIMO, which

unlike EDA-ZF requires full coordination among BSs.



Fig. 2: UE SINR per PRB for ZF, NeMIMO, and EDA-ZF, under sparse,
intermediate, and dense deployments.

Fig. 3: UE DL rate for ZF, NeMIMO, and EDA-ZF, under sparse, intermediate,
and dense deployments.

2) Densification: Densifying the deployment worsens the

performance of both ZF and EDA-ZF. This is due to the

large number of LoS links, which makes the indoor scenario

strongly interference limited. In other words, the damage of

a larger inter-cell interference outweighs the benefit of an

increased proximity to UEs [19]. On the other hand, NeMIMO

benefits from densification, since BSs gain proximity to UEs

while remaining devoid of inter-cell interference. Densification

is thus detrimental unless full coordination is implemented.

B. Impact of Co-channel Outdoor Interference

Fig. 4 and Fig. 5 evaluate the effect of co-channel outdoor

interference – denoted Ii in (7), (11), and (15) – on the

average and 5%-worst UE rates, respectively. Following [22],

we consider values of Ii ranging between −100 dBm and

−60 dBm over the 20 MHz bandwidth. The highest value may

be generated, e.g., by a macro BS located 200 meters away,

transmitting 43 dBm over a directional antenna of 17 dBi

pointing towards the building of interest. Lower values of

Fig. 4: UE DL average rate versus co-channel outdoor interference for ZF,
NeMIMO, and EDA-ZF.

Fig. 5: UE DL 5%-worst rate versus co-channel outdoor interference for ZF,
NeMIMO, and EDA-ZF.

interference could be experienced if the interfering macro BS

is farther away, if the building is shadowed by other buildings,

or if the outer wall material and thickness cause a higher

penetration loss [22]. The figures show that for lower values

of the outdoor interference, deploying two massive MIMO

indoor BSs and operating them according to the proposed

EDA-ZF is almost optimal in terms of both average and 5%-

worst performance, since it approaches the maximum MCS

rates. Moreover, it can be observed that EDA-ZF approaches

the performance of NeMIMO in the sparse deployment sce-

nario irrespective of the outdoor interference, thanks to the

interference suppression capabilities of the massive antenna

arrays. For higher values of the outdoor interference, a dense

deployment of NeMIMO BSs brings transmitters closer to

receivers, without introducing additional indoor interference.

This especially rewards cell-edge UEs, as observed in the

increased 5%-worst rate, but at the expense of demanding full

coordination among BSs.



Fig. 6: UE DL average and 5%-worst rate for EDA-ZF versus number of DoF
employed for nulls, for sparse, intermediate, and dense deployments.

C. Degrees of Freedom Allocation for Nulls

Fig. 6 shows the performance of EDA-ZF as a function

of the number of DoF allocated for nulls. Average and 5%-

worst rates are plotted for the sparse, intermediate, and dense

deployment cases. With two massive MIMO BSs, each BS

is equipped with NA = 64 antennas and serves a maximum

of 16 UEs. In this case, it pays off allocating the maximum

number of DoF for nulls, i.e., NN = 16, to suppress all inter-

cell interference. The gain is especially noticeable for the 5%-

worst rate, which increases by seven-fold when varying NN

between 0 and 16. With intermediate and dense deployments,

BSs cannot suppress all interference due to their reduced num-

ber of antennas. A tradeoff thus exists between interference

suppression (more nulls) and beamforming gain (fewer nulls).

V. CONCLUSION

We tackled the issue of indoor inter-cell interference man-

agement with the aim of providing uniformly high wireless

capacity. To this end, we proposed eigen-direction-aware ZF

for distributed inter-cell interference mitigation, and we com-

pared its performance against network MIMO – which targets

a complete inter-cell interference removal – and conventional

ZF without BS inter-cell interference management. Our results

demonstrated that indoor massive MIMO deployments, paired

with the proposed eigen-direction-aware ZF, approach the data

rates achieved by network MIMO for all users in the network.

The proposed scheme does not require a tight BS coordination

with symbol-level synchronization nor full data exchange as in

network MIMO, therefore providing a compelling alternative

for future high-capacity wireless indoor networks.
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