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Abstract—Fifth generation wireless networks (5G) will face
key challenges caused by diverse patterns of traffic demands
and massive deployment of heterogeneous access points. In
order to handle this complexity, machine learning techniques
are expected to play a major role. However, due to the large
space of parameters related to network optimization, collecting
data to train models for all possible network configurations can be
prohibitive. In this paper, we analyze the possibility of performing
a knowledge transfer, in which a machine learning model trained
on a particular network configuration is used to predict a
quantity of interest in a new, unknown setting. We focus on
the tilt-dependent received signal strength maps as quantities of
interest and we analyze two cases where the knowledge acquired
for a particular antenna tilt setting is transferred to (i) a different
tilt configuration of the same antenna or (ii) a different antenna
with the same tilt configuration. Promising results supporting
knowledge transfer are obtained through extensive experiments
conducted using different machine learning models on a real
dataset.

Index Terms—Radio map prediction, antenna tilt, machine
learning, knowledge transfer

I. INTRODUCTION

The fifth generation wireless networks (5G) are expected
to support a series of unique features compared to cur-
rent architectures, including more users, higher data rates,
reduced latency and improved energy efficiency. To reach
these goals, 5G will leverage the availability of dense and
heterogeneous deployments coupled with novel technologies
able to be dynamically managed both in a centralized or
distributed manner. To cope with such a complex scenario,
it is envisioned that machine learning tools will play a major
role in enabling the transition from current mobile networks
to the future 5G architecture [1]. By exploiting the constantly
increasing availability of data from both network devices and
user terminals, such tools will assist network operators in
facing the increasing complexity in the setting of the control
parameters for network optimization, forming the basis for
automatic and smart network management techniques.

Among the many parameters that can be configured at the
base station (BS), one of the most important is the antenna
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tilt, that is the angle formed by the vertical direction of the
antenna with the horizon. Antenna tilt can be realized either
mechanically (by physically inclining the antenna up or down)
or electrically (relying on beamforming techniques that steer
the main beam of the antenna towards a desired vertical
direction), or even as a combination of the two. The antenna
tilt directly impacts on many performance measures of the
cell served by a BS, such as coverage, signal strength, and
inter-cell interference, which in turn determine the quality of
service experienced by the end users.

From an operator perspective, being able to predict such
performance measures without performing extensive trials or
measurement campaigns is of key importance for at least
two reasons: first, extensive measurement campaigns such as
test driving are time consuming and costly. Secondly, even
assuming that measurements can be obtained in a cheap way
(e.g., directly from user terminals through crowdsourcing),
this requires that all possible antenna tilts are tested, which
can easily cause issues on the cell performance and decrease
the perceived quality of service. Therefore, such tests could
be realistically performed only for very short periods and
during off-peak traffic hours, making the idea of obtaining
data measurements from users unfeasible.

Given such difficulties, an option which may be particularly
appealing to network operators is to transfer the knowledge
acquired through a single measurement campaign (e.g., for
a given antenna tilt setting) to a new domain (e.g., a new tilt
setting) without needing to acquire a complete set of additional
measurements. Such a learning paradigm, in which the data
distributions of the training (source) and testing (target) sets
are significantly different, can be seen as an example of
transfer learning and has received increasing attention in the
last few years [2].

In this paper, we study the possibility of performing such a
knowledge transfer for the task of predicting the radio signal
strength map of a particular BS cell. We start from a dataset of
signal strength measurements obtained from real-life long term
evolution (LTE) base stations and analyze the performance of
several machine learning algorithms in two different scenarios
where the knowledge acquired for a particular antenna tilt
setting is transferred to (i) a different tilt configuration of the
same antenna or (ii) a different antenna with the same tilt



configuration.
We show through extensive experiments that transferring

knowledge allows for promising prediction performance and
that the domain similarity (the difference between training and
testing data distributions) plays a role in selecting the machine
learning technique that obtains the best performance.

The rest of this paper is organized as it follows: Section II
reviews related works in the area of network planning and
optimization, with particular focus on those works dealing
with antenna tilt. Section III describes in details the scenario
under consideration, while Section IV focuses on the machine
learning tools used for this work. Experiments and discussion
on the obtained results are reported in Section V. Finally,
Section VI concludes the paper and describes future work
directions.

II. RELATED WORK

Recent works have studied the importance of antenna tilt in
the context of network planning and optimization problems.

The literature can be broadly categorized in two areas: (i)
network optimization through antenna tilt adjustment and (ii)
prediction of tilt-dependent radio maps. With reference to the
former area, in [3], a method for finding the optimal antenna
tilts in a heterogeneous network is proposed. The method is
built on a reinforcement learning algorithm which adapts the
antenna tilts to the specific network load conditions in order to
maximize the user throughput fairness and the overall energy
efficiency. Results on simulated data demonstrate that the
proposed method outperforms a fixed strategy for the antenna
tilts. A similar approach is taken by the authors of [4], where
reinforcement learning is again used to optimize the antenna
tilts, this time with the objective of maximizing the overall
data rate of the network. Finally, the work in [5] proposes a
general machine learning-based network planning tool. The
flexibility of the approach is demonstrated with examples,
including readjusting the antenna tilts to compensate for loss
of service caused by faulty cells.

As for the second area of works, the work in [6] proposes
a geometrical-based extension to different traditional log-
distance path loss models (Okumura-Hata, Walfisch-Ikegami)
to take into account the antenna tilt during the prediction of the
signal strength at a given distance from the base station. The
proposed extension, named vertical gain correction (VGC), is
calculated directly from the antenna patterns provided by the
manufacturer and is added to the signal strength estimated
by the path loss models to compensate for the antenna tilt.
Experimental results on data collected from LTE base stations
show that the VGC improves the signal strength prediction
performance compared to traditional models. Such method is
then used to compute predictions that are used in a following
work [7] to optimize the antenna tilts in order to maximize the
capacity and coverage of a simulated LTE network. The pre-
dictive performance are reported to be lower for locations close
to the antenna. Similarly, the work in [8] investigates the effect
of antenna tilt on radio maps, comparing the path loss models
developed by 3GPP for different propagation environments [9]

with the results obtained by a ray tracing tool able to take
into account antenna tilts. Results demonstrate that changing
antenna tilt has a significant impact on the shadowing map,
therefore calling for a rethinking of currently available 3GPP
propagation models and assumptions, which apply identical
shadowing map independently from the antenna tilt.

Our work shares the same research objectives of this second
class with one fundamental novelty: in all the aforementioned
works, the domain of the data used for predicting the signal
strength is similar (if not the same) to the target domain; as an
example, the signal strength radio map of an antenna under
a given tilting configuration is interpolated or predicted out
of available signal strength samples collected for the same
antenna in the same tilting configuration. We also analyze the
cases where the performance of target antenna configuration
is predicted by using training dataset collected under different
configurations or even referring to a totally different antenna.

III. PROBLEM STATEMENT AND BACKGROUND

In this paper we address the following problem in mobile
radio networks: ”how to predict the performance of a given
network configuration by leveraging performance information
of diverse network configurations”. The performance measure
that we target here is the received signal strength in the
downlink and the network configuration domains include the
tilting configuration of the emitting base stations.

Assume K base stations are deployed in the area under anal-
ysis. Each base station can work in H different tilt configura-
tions, indexed by h = 1, . . . ,H . Let sk,h(xi), be the measured
signal strength received at location xi = {yi, zi}, from the k-
th base station when running the h-th tilt configuration, where
yi and zi indicate the latitude and the longitude of the i-th
location, respectively. Let Mh

k be the set of location indexes
where measurements for base station k running configuration
h have been taken.

The problem at hand can be defined as follows: given{
sk,h(xi) : i ∈Mh

k

}
, estimate the unknown signal strength

ŝm,n(xj) at the same or different locations, xj , under di-
verse and different network configuration domains, that is xj ,
j ∈Mn

m with m 6= k and/or n 6= h.
The dataset used in this work is composed of reference

signal received power (RSRP) outdoor measurements collected
in Espoo, Finland in November 2016 out of two LTE com-
mercial base stations with three different 120◦ sectors each
and operating at 2.6 GHz (see Fig. 1 reporting the positions
of the two antennas and the representation of the target area).
Out of the two antennas, we focus here on three physical cell
identifiers (PCIs) which will be referred to as PCI 1, 2 and 3.
PCIs 1 and 2 refer to two different sectors of the same base
stations, whereas PCI 3 is a sector of a totally different base
station.

The RSRP measurements were collected using an Android
device equipped with an application capable of storing the
RSRP from all the received cells, the cell identifier, the GPS
position of the device and the timestamp. Such measurements
were carried out at a frequency of 1 Hz while walking along



PCI total tilt setting (in degrees)
1 3,5,6,7,9
2 3,5,6,7,9
3 5,6,9

TABLE I: Available down-tilt configurations.

Fig. 1: Map showing the base stations position and the PCIs
(sectors) in the reference dataset.

a route of about 8 km within each cell coverage area, with a
minimum and maximum distance from the base station of 30
m and 900 m respectively. The testing paths were designed to
include varied propagation conditions: university campus with
two- or three-story buildings, residential areas, parking lots,
lower density rural and open area with different types of roads
(i.e. pedestrian, cycling and main roads). Each testing path
was walked once for each electronic tilt setting. The different
tilt configurations are shown in Table I. The receiver was
placed at the height of 1.5 m and always kept with the same
orientation. The weather conditions were stable and cloudy and
the road was covered by snow for most of the measurement
campaign. In total, about 3 · 105 RSRP measurements were
obtained. Each observation contains the following fields: the
measurement position, the RSRP value, the corresponding PCI
and the timestamp. The raw dataset was pre-processed to
remove outliers and corrupted samples: as an example, at the
beginning of each experiment the GPS receiver takes some
time to set up, recording incorrect position. Moreover, the
RSRP values are averaged over grid segmentation of the map,
with the grid size of 20 m × 20 m. After the pre-processing
steps, the dataset was reduced to about 3.5 · 103 observations
per PCI and per tilt configuration, for a total of about 5 · 104

measurements.

IV. PREDICTION APPROACHES

In this section, we describe two different prediction ap-
proaches. The first one leverages spatial information only
(latitude and longitude) to predict the signal strength; con-
versely, the second approach adopts a larger set of features to
capture path loss and propagation properties.

A. Location-Only Approaches

Based on the strong spatial correlation between signal
strength and location, three different techniques have been
used:

Baseline: The Baseline (B) method takes as the predicted
value of signal strength for a target position x the signal
strength of the closest point xi available in the training dataset
M. This method is essentially k-nearest neighbors (k-NN)
with k = 1. Formally,

ŝ(x) = s(xi), xi = arg min
xi,i∈M

d(x,xi). (1)

Adjusted Baseline: As proposed in [6], the Baseline method
can be extended by leveraging a priori information on the ra-
diation pattern of the reference antenna. Formally, the Adjusted
Baseline (AB) predicts the value of the signal strength as:

ŝ(x) = s(xi)+∆H(x,xi)+∆V (x,xi), xi = arg min
xi,i∈M

d(x,xi),

(2)
being ∆H(x,xi) and ∆V (x,xi) the difference of the antenna
horizontal and vertical gain respectively in the directions
towards the target position x and the closest known position
xi. Formally,

∆H(x,xi) = η(x)− η(xi) and ∆V (x,xi) = γ(x)− γ(xi),

where η() and γ() are the horizontal and vertical gain of the
antenna respectively.

k-Nearest Neighbors with Inverse Distance Weighting: This
technique extends the classical nearest neighbor approaches
[10] and predicts the signal at an unknown target location
as a weighted average of the signals at the k closest known
locations:

ŝ(x) =
∑

i∈M(x)

wis(xi). (3)

The set M(x) includes the indexes of the k locations which
are geographically closest to the target unknown location x.
Weights wi are chosen to be inversely proportional to the
distance d(xi,x) and normalized to sum to unity, that is:

wi =
d(xi,x)−1∑

j∈M(x) d(xj ,x)−1
. (4)

B. Geometric-aware Approaches

Location-only approaches tend to produce good results
under ideal conditions, when the available labeled dataset is
rich enough and the reference area is sampled uniformly.
On the other hand, when the available dataset is sparsely
sampled in space, then the location-only approaches may fail.
Therefore, we have resorted to more complex prediction mod-
els leveraging additional features besides location. Namely,
being xA the antenna location and x the target position, the
following set of features is considered for the prediction task
(see Figure 2):
• the physical distance between the antenna and the mea-

surement position, d(x,xA);
• the relative elevation angle between the down-tilt of

the antenna and the vertical direction from the antenna
emitting element to the measurement position, defined as:

δ1 = 90◦ − (αA + αE), (5)
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Fig. 2: Relative angles in the vertical (left) and horizontal
(right) planes between the antenna pointing direction and the
direction towards the test position x.

being αA the antenna down-tilt (mechanical plus elec-
trical) and αE the angle at which the antenna “sees”the
target position;

• the relative azimuth between the horizontal orientation of
the antenna and the horizontal direction to the measure-
ment position defined as:

δ2 = βA − βE , (6)

being βA the horizontal orientation of the antenna and
βE the horizontal orientation of the target position with
respect to the antenna position.

• the tilt configuration of the antenna, αA.

Each signal strength sample in the training dataset is there-
fore associated to a feature vector X = {1, d, δ1, δ2, αA}T ,
after applying the logarithm transformation to d, given that
RSRP samples are measured in dBm.

Multivariate Linear Regression: A linear model can be
trained to relate the measured signal strength in a position
to the corresponding feature vector. Given a target position x,
the predicted signal strength is modeled as:

ŝ(x) = ΘTX ,

being Θ the parameter vector of the linear model.
Random Forest: Random forest (RF) is one of the ensemble

methods used for classification and regression purposes. The
algorithm introduced by Ho [11] in 1995, and later extended
by Breiman and Cutler [12], uses the idea of bagging to
perform predictions. During the process several trees are
grown independently using different bootstrapped samples of
the data and majority voting or averaging are used for the final
prediction. In contrast to traditional trees, the variable used to
perform the split in each node is chosen randomly from a set
of predictors [12]. RF is known to sometimes outperform other
machine learning techniques such as Neural Networks due to
its resistance to overfitting [13].

XGBoost: Boosting is a technique that can be used to
improve the performance of a generic machine learning al-
gorithm, by iteratively tuning a model each time giving more
importance to mispredicted test samples [14]. Here we use
a particular version of boosting called XGBoost [15], which
unifies several ideas: Gradient Boosting, regularization to
avoid over fitting, column sampling taken from RF and sparse
data manipulation.

V. EXPERIMENTS

Inspired by the concept of transfer learning [2], we evaluate
here the performance of different prediction approaches when
varying the degree of similarity of the datasets (domains) used
for training and testing. The quantitative measure to capture
domain similarity used in the analysis is the Kullback-Leibler
divergence index (KL) [16] which measures the relative en-
tropy of a given probability distribution with respect to another
one. Namely, given two reference datasets, one used for
training and one used for testing, we derive the KL divergence
indexes of the probability distributions of the logarithm of the
distance (d), relative angle (δ1) and relative azimuth (δ2) of
the two datasets. In details, the range of distances, relative
angles and relative azimuth contained in the two datasets was
uniformly quantized to k intervals, further deriving the related
discrete probability distributions. For example, the symmetric
KL divergence index of the distance probability distributions
in one training and one testing dataset is given by:

DKL(d) =

k∑
i=1

P
(tr)
d (i) log

P
(tr)
d (i)

P
(te)
d (i)

+

k∑
i=1

P
(te)
d (i) log

P
(te)
d (i)

P
(tr)
d (i)

,

(7)
where P

(tr)
d (i) and P

(te)
d (i) with i = 1 . . . k defining the

discrete probability distributions of the distance in the training
and testing dataset respectively. Similar definitions hold for
the KL divergence indexes related to the relative angle, δ1
and relative azimuth δ2. Finally, to give a more succinct
representation of domain similarity, we introduce the domain
distance measure (DD) by summing the three indexes together,
that is:

DD = DKL(d) +DKL(δ1) +DKL(δ2). (8)

Prediction quality is assessed through the mean absolute
error (MAE) and the mean absolute percentage error (MAPE),
defined in Eq. (9), Eq. (10), respectively, where n is the
number of target positions in the testing dataset.

MAE(s, ŝ) =
1

n

n−1∑
i=0

|si − ŝi| (9)

MAPE =
100

n

n−1∑
i=0

∣∣∣∣si − ŝisi

∣∣∣∣ . (10)

A. Tilt-to-Tilt Knowledge Transfer

In Tilt-to-Tilt knowledge transfer, we use a dataset obtained
under a given tilt setting to predict the performance of the same
antenna under a different tilt configuration. Table II reports
the results obtained by the different prediction approaches
described in Section IV when considering PCI 1 and different
combinations for the training and testing tilt conditions. The
text in the table header explains the knowledge transfer in-
volved in the experiment: as an example, the first two columns
(2→3) refer to the case where the training set was obtained
with an antenna tilt of 2 degrees and the tilt configuration for
the test set was 3 degrees.



Tilt 2 ->Tilt 3 Tilt 4 ->Tilt 3 Tilt 6 ->Tilt 3
DD
0.21

DD
0.55

DD
2.58

MAE MAPE% MAE MAPE% MAE MAPE%
B 4.02 4.03 5.27 5.23 7.15 7.31

AB 4.45 4.47 7.49 7.64 11.03 10.86
k-NN 3.9 3.92 5.26 5.19 6.69 6.83
LR 7.75 8.2 7.6 8.1 8.15 8.83
RF 3.89 4.11 5.41 5.38 6.06 6.02

XGB 4.33 4.41 4.68 4.89 6.25 6.59

TABLE II: Prediction performance of different algorithms
under tilt-to-tilt knowledge transfer for reference PCI 1.

From the results in Table II, we can make the following
observations.

• The prediction error is impacted by the training and
test domain distance. As the domain distance increases,
the prediction performance decreases for all tested algo-
rithms.

• Notably, location-only approaches (first three rows in
Table II) and geometric-aware prediction approaches (last
three rows) perform similarly when domain distance is
small, whereas geometric-aware approaches have better
performance when the domain distance increases. This is
because, geometric-aware approaches better capture the
physical properties of channel propagation, thus being
more robust against the cross-domain missing informa-
tion.

• RF generally provides a good prediction performance,
regardless of the domain difference.

Similar results obtained for other PCIs are not reported here
for the sake of brevity.

To further investigate the impact of the domain distance
measure, we have considered the cases where the training
dataset is integrated with samples taken from the test domain.
Figure 3 refers to the cases where increasing percentages of
the training dataset samples (tilt configuration 6) are replaced
by samples from the testing domain (tilt configuration 3).
Sampling is performed randomly and results are averaged over
10 different trials. Fig. 3a and Fig. 3b report the value of the
Domain Distance measure and the MAPE when varying the
percentage of testing samples added to the training datasets.
All tested methods show decreasing prediction error as the
distance between domains decreases.

B. PCI-to-PCI Knowledge Transfer

In case of PCI-to-PCI knowledge transfer, a dataset referring
to one antenna and a given tilt configuration is used to train
the models to predict the signal strength of another antenna
in the same tilt configuration. Table III reports the same
information as Table II when training and test datasets refer
to different antennas (PCIs). In general, the prediction error
is higher with respect to the case of Tilt-to-Tilt knowledge
transfer as training and test datasets are more dissimilar. As
already observed in case of Tilt-to-Tilt knowledge transfer, the
error is smaller when the domain difference is smaller for all
the tested algorithms.

(a) Domain Distance (DD)

(b) MAPE

Fig. 3: Relationship between Domain Distance and MAPE (a),
(b): training on tilt 6, testing on tilt 3 for PCI 1.

PCI 1 ->PCI 2 PCI 3 ->PCI 2
DD
1.89

DD
1.76

MAE MAPE% MAE MAPE%
B 8.41 8.63 10.27 11.09

AB 8.41 8.63 10.27 11.09
k-NN 8.2 8.43 10.27 11.08
LR 11.39 11.21 8.53 8.95
RF 11.37 11.2 8.58 8.85

XGB 11.06 10.97 8.88 9.02

TABLE III: Prediction performance of different algorithms
under PCI-to-PCI knowledge transfer for reference tilt 2.

The same strategy of taking samples of the testing data to
train the model can be applied when transferring knowledge
from PCI to PCI. Figures 4a and 4b report the value of the
Domain Distance measure and the average prediction error
when varying the percentage of samples from the testing
domain (PCI 2) added to the training datasets (PCI 1). Figures
4c and 4d report the same graphs for the case of training over
PCI 3 and testing over PCI 2. In both cases the average error
decreases sharply when adding 20% of the testing dataset to
the training dataset. Notably, the prediction performance levels
off and does not improve much when going beyond 20%.

VI. CONCLUSIONS

In this paper we addressed the problem of predicting
the signal strength in the downlink of a real LTE network
where the antennas can be tuned to operate with different
tilting antenna configurations. Different prediction approaches



(a) (b)

(c) (d)

Fig. 4: DD vs MAPE. (a),(b): training on PCI 1, testing on PCI 2. (c),(d): training on PCI 3, testing on PCI 2 at tilt 2.

were considered with increasing complexity, starting from
models/approaches only leveraging location information to
predict the signal strength up to models/approaches based
on more refined features related to propagation and antenna
configuration. As opposed to other works in the field of
radio map inference, we studied the quality of prediction of
the aforementioned approaches when the datasets used for
training and testing have different statistical characteristics.
We observed that the performance of the predictive models is
highly dependent on the difference between data distributions
of the training and testing domain. Thus, analyzing domain
similarity plays a crucial role in selecting the best performing
model. Furthermore, two approaches are applied to further
reduce the domain difference: (i) choosing the training set
obtained from a tilt setting with higher similarity to the testing
domain, and (ii) adding to the training set a limited number
of samples from the testing domain. Future work will analyze
possible strategies to achieve good tradeoff between improving
prediction performance and reducing measuring effort for
cross-domain data collection.
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