
Improving wireless multicast communications with
NC: performance assessment over a COTS platform

Pablo Garrido†, Ramón Agüero†

† Dept. of Communications Engineering
University of Cantabria, Santander 39005, Spain

{pgarrido,ramon}@tlmat.unican.es

Abstract—Multicast services are believed to play a relevant role
in next wireless networking scenarios. In this paper we exploit
Tunable Sparse Network Coding techniques to increase reliability
of multicast communications. We show that the proposed network
coding scheme yields a better performance than state-of-the-art
solutions, which are traditionally based on retransmissions. We
first use a model to analytically compare the two approaches.
Then, we validate and broaden this analysis by means of an
experimental campaign over a testbed deployed with Commercial
Of-The-Shelf devices. This platform, comprising low cost devices
(Raspberry-PI), allows us to assess the feasibility of the proposed
solution, which offers a relevant gain in terms of performance.

Index Terms—Multicast Communications; Random Linear
Network Coding; Sparse Network Coding; Measurements.

I. INTRODUCTION

It is well known that multicast is an efficient mechanism for
packet delivery in one-to-many applications. Their popularity
has been significantly growing during the last years, and
they are believed to play a fundamental role in next wireless
networking scenarios, where services as video streaming will
be prominent. However, most of the existing protocols are
designed seeking reliability, and in-order delivery for unicast
communications and they are thus not suited for multicast.

Hence, the research community has put more effort in pro-
viding new multicast solutions, as the NACK-oriented Reliable
Multicast (NORM) protocol, which was designed to offer
reliable multicast communications based on Negative AC-
Knowledgement (NACK)s. Besides, several protocols based
on coding schemes have been also proposed, such as fountain
codes (for instance, LT [1] or Raptor Codes [2]) or Network
Coding (NC), initially proposed by Ahlswede et al. in [3].
Unlike fountain codes, NC brings greater versatility, where
intermediate nodes can discard, or recode the information, and
has been shown to offer a better performance over packet-
erasure channels.

Random Linear Network Coding (RLNC) stands out, among
other NC solutions, as the most widespread scheme, mostly
due to its simplicity and good performance. Indeed, it hides
losses form the upper layers [4], [5], reduces signaling over-
head over opportunistic networks [6], and leverages efficient
transmissions over wireless mesh networks [7]. On the other
hand, RLNC was in fact designed to offer optimal multicast
performance [8]. However, there are some voices questioning
the use of RLNC, mostly due to its complexity. Tunable Sparse

Network Coding (TSNC) techniques, introduced by Feizi et
al. [9] propose a dynamic increase of the coding density as
long as the transmission evolves, which can help to reduce the
coding and decoding complexity.

In this work we propose using a coding scheme based
on TSNC techniques to improve the performance of multi-
cast communications. The proposed solution exploits a semi-
analytical model to find an almost optimum trade-off between
performance and decoding complexity. Another distinguishing
aspect of this work is that it answers one of the most demand-
ing issues in NC research, which has been mostly based on
analytical models and simulation-based analysis. In this paper,
we use a Commercial of-the-shelf (COTS) platform to assess
the performance of the different solutions. The testbed is based
on low computational power devices (Raspberry-PIs), which
offer a perfect benchmark to analyze the potential of TSNC
schemes. The results are also compared with legacy protocols,
which are based on retransmissions.

The rest of the paper is structured as follows: Section II
summarizes some preliminary concepts of RLNC. It also
introduces the proposed solution, based on a sparse coding
scheme, which alleviates the decoding complexity. We also
model the behavior of a more traditional solution, based on
retransmissions. Section III introduces the platform that was
deployed to run the corresponding experiments, discussing the
results that were obtained. Finally, Section IV concludes the
paper, introducing some aspects that will be addressed in our
future work.

II. PRELIMINARIES AND MOTIVATION

In this Section we depict the initial RLNC approach, and
a model than can be used to assess its performance. We then
study the gain that might be yielded by a coding scheme,
compared to a more traditional solution, based on retransmis-
sion requests, as the NORM protocol. Last, since the goal
is implementing the coding scheme into devices with low
computational power, Raspberry-PIs, we introduce a coding
approach based on TSNC, which offers a performance alike
the RLNC, but with a much lower computational cost.

A. Random Linear Network Coding - (RLNC)

RLNC scheme was originally proposed in [8], where nodes
independently and randomly select linear mappings from input

packets onto output links over some field, GF (2q). Ho et al.
showed in [10] that this approach can yield the maximum
multicast capacity over random networks with high probability.
Besides, Trullols et al. computed the exact probability that a
receiver can decode the information after receiving N coded
packets [11].

In our previous work [5] we characterized the performance
of RLNC over a single wireless link. The information is
divided at the source node into generations, each of them con-
taining k symbols of L bytes. Then, it transmits coded packets,
which are built by the linear random combination of symbols
belonging to the same generation, pkt′ =

∑k−1
i=0 ci · pkti,

where ci are the random coefficients, selected from a Galois
Field, GF (2q). These coefficients can be represented as a
coding vector, c = {c0, · · · , ck−1}, which is included within
a coding header in every coded packet, pkt′. On the other
side, the destination constructs a decoding matrix, D, of size
k × k. Every coding vector, after being extracted from each
coded packet, is added to the ith row of such decoding matrix,
provided it was linearly independent.

We can establish the probability of receiving a linearly
independent packet, from the previously received ones, or
similarly that such reception brings new information. This
probability depends on the degree of freedom at the receiver,
i.e the rank of the decoding matrix (r), and can be obtained
by: ProbRLNC

r+ = 1 − (2q)r−1
(2q)k−1 . Hence, the average number of

packets that need to be received to decode a generation is given
by: #TX =

∑k−1
i=0

1
ProbRLNC

r+
= k + α, where α is a constant

value, which does not depend on the generation size, when
k � 1, but it varies with the Galois Field, as it is derived
in [12]. For the binary case, GF (2), α ≈ 1.6, being almost
negligible as the Galois Field length increases. We can indeed
see that the resulting overhead is rather small, and its relative
impact can be reduced by increasing the generation size, k. It
is also worth highlighting that for the RLNC coding scheme it
is not important the individual packets that are received at the
decoder, but getting enough packets to decode a generation.
This is precisely one of the main advantages of the RLNC
scheme, since it avoids the need for the feedback channel,
and it yields optimum multicast performance.

In our implementation,the source node transmits N = k(1+
ρ) packets, where ρ is a configurable parameter that defines the
system redundancy. Hence, ρ should be tuned according to the
particular link conditions. The probability that a receiver can
decode a generation after receiving N ′ coded packets, which
was calculated by Trullols et al. [11], is given by:

ξq(k,N
′) = ξ0q

[N ′

N ′ − k

]
2q
+

+

N ′−k∑
i=1

(−1)i
(
N ′

i

)[
N ′ − i

N ′ − k − i

]
2q

 (1)

where
[
m
n

]
q

are the Gauss Coefficients and ξ0q is the probability

of decoding a generation after receiving k coded packets1

Lets assume that the quality of the link between the source
and the ith destination (packet erasure channel) is FERi and
that losses follow a random uniform distribution. Hence, we
can calculate the probability of decoding a generation after
transmitting N packets by the encoder:

Probdec =

N∑
j=k

(
N

j

)
FERj

i · (1− FERi)
N−j · ξq(k, j) (2)

Finally, assuming that the whole information to be trans-
mitted is divided into M generations, the probability of
successfully complete a transmission is given by:

Probsucces = (Probdec)
M (3)

Note that if the link with a receiver has a better quality
than FERi, then the probability of successfully receiving the
information will be, at least, equal to Probsucces.

B. Decoding Complexity

RLNC techniques have been shown to offer a good ro-
bustness against packet erasure wireless channels. However,
the main arguments questioning the use of RLNC is their
decoding complexity, which strongly depends on the Gaussian
elimination algorithm, O(k3). The decoding complexity is
considerably high compared to other approaches (for instance,
LT [1] or Raptor Codes [2]). One of the most interesting
alternatives to reduce such decoding complexity is TSNC,
originally proposed by Feizi et al. [9].

Sparse Coding Techniques, as opposed to RLNC, work by
only combining a few symbols from each generation to build a
coded packet. The coding coefficients are selected according to
the following probabilistic scheme, where p is the probability
for a coefficient to be zero in the coded packet. There is a clear
trade-off, since increasing the sparsity level indeed reduces
the decoding complexity, but at the cost of augmenting the
likelihood of receiving linearly dependent packets, which do
not provide new information. When p = 0.5 this probabilistic
scheme is equivalent to the legacy RLNC.

Figure 1 shows the impact of the sparsity level and the
generation size over the decoding probability. In the left Figure
we fixed a sparse coding scheme, p = 0.9, and we changed
the generation size. β is defined as the additional transmissions
that are required to decoded the generation, β = N − k. We
can see that the generation is decoded with greater probability
and fewer extra transmissions, when it gets higher. Then,
in Figure 1b, we keep the generation size (k = 100), and
the results show that the higher the sparsity, the larger the
overhead, since the number of extra transmissions that are
required to decode the generation grows with p.

On the other hand, higher sparsity levels yield a decoding
complexity reduction, as can be seen in Figure 2, which

1ξ0q = ξq(k, k) =
(2q)k

2(
2q

k−1
)k

∏k
j=1

(
1− 1

(2q)j

)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

β

Pr
ob

d
e
c
(N
,K

)

k = 200
k = 100
k = 30
k = 10

(a) p = 0.9

0 20 40 60

β

p = 0.5
p = 0.9
p = 0.925
p = 0.95

(b) k = 100

Fig. 1: Overhead, in terms of the extra transmissions (β) that
are required to successfully decode a generation, for different
number of generation sizes and sparsity levels

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

k

10
4
#

O
pe

ra
tio

ns p = 0.5
p = 0.9
p = 0.925
p = 0.95

Fig. 2: Complexity of the decoding process (# of operations)
Vs. the generation size for various sparsity levels

shows the average number of operations that are performed
by the receiver to decode a generation. Coding and decoding
operations are performed exploiting the KODO library [15],
which also offers a benchmark that counts the number of finite
field operations. When using the binary Galois Field, GF (2),
the operations correspond with permutation and subtraction of
rows from the decoding matrix. When the field size is higher,
2q > 2, then they involve constant multiplication, subtraction
and permutation.

Note that there is a clear trade-off between decoding
complexity and network overhead. Reducing the decoding
complexity yields an increase of the decoding throughput. This
might be quite relevant, since in computational low power
devices, as the Raspberry-PIs, or sensors, it might become
the performance bottleneck. In this sense, Figure 3 shows the
decoding throughput, for two different versions of Raspberry
PIs, where all decoding operations are performed within the
devices themselves. To analyze the decoding throughput of the
Raspberry PI, several coded packets are first built. Afterwards
we measure the time required to copy those coded packets
and decode the corresponding generation. As can be seen, the
decoding throughput achieved by the newer version is higher.
However, it is interesting to note that for the two devices,

0.5 0.6 0.7 0.8 0.9
0

20

40

60

p

T
hr

ou
gh

pu
t

(M
b/

s) RPi v2
RPi v3

Fig. 3: Decoding throughput over different devices (RPi v2
and RPi v3) and for different values of sparsity level, p

when RLNC is used (p = 0.5), the decoding throughput might
be lower than network throughput, thus becoming the system
bottleneck. On the other hand, if we exploit sparse coding
techniques, this performance indicator could increase, ≈ ×2.4
for p = 0.95, in both devices.

In [12] we introduced a semi-analytical model that accu-
rately captures the performance of Sparse Network Coding
(SNC). It is based on an Absorbing Markov Process, S, where
the states are defined by the decoding matrix rank, i.e number
of useful packets received, and the non-zero columns at such
matrix (i.e. coefficients that have been already received).
The model is characterized by the corresponding fundamental
matrix N = (I−Q)−1, where Q is a matrix that includes the
transition probabilities between the transient states. Since they
are used in this work, we recall some of the results that were
derived in [12], in particular Corollary 7:

Corollary 1: Probability of receiving a linearly independent
packet. We define the set of states s(r) as all the states from
the chain where the rank equals r, s(r) = {(i, j) ∈ S |i = r}.
Hence, the probability of increasing the rank of the matrix
when r independent packets have been already received can
be calculated as follows:

δ(r) =
∑

∀j |(r,j)∈S

H(1, nj) · (1− pr,j(0, 0)) (4)

where nj is the index corresponding to the (r, j) state and H
is the transient probability matrix, which is defined by H =
(N − I)N−1d , where Nd is a diagonal matrix with the same
diagonal of N .

In order to mimic the performance that would have been
obtained for RLNC, we tune the sparsity as the transmissions
evolves. We select the corresponding sparsity so as to guar-
antee that the probability of receiving an innovative packet is
slightly smaller than the one that we would characterize the
legacy RLNC: ProbTSNC

r+ (r, w) <= ProbRLNC
r+ (r)(1 − ε).

The ε parameter establishes a trade-off between decoding
complexity and network overhead. In this sense, higher ε yields
higher sparse coding, but at the cost of larger probability of
generating linearly dependent packets.

We include Algorithm 1 at the source node to imple-
ment such functionality. To ease the implementation we
use a fixed sparse coding scheme, where every coded

packet is built by combining w randomly selected packets,
W = {pktj1 , pktj2 , . . . , pktjw |pktjk 6= pktj′k ,∀jk 6= j′k}.

Algorithm 1 Sparse Network Coding Transmission process
Input: k, q, ρ, ε

1: w = 1
2: while TX < k(1+ ρ) do
3: TransmitRandomVector(k,w,q)
4: if rand() ≤ FER then
5: if rand() ≤ ProbTSNC

r+ (r, w) then
6: rankt = rankt + 1
7: end if
8: end if
9: while ProbTSNC

r+ (r, c) ≥ ProbRLNC
r+ (r) · (1− ε) do

10: if w′ < k
2 then

11: w + 1
12: end if
13: end while
14: TX = TX + 1
15: end while

C. Protocol bases on retransmissions

NORM protocol is currently being developed within the
Internet Engineering Task Force (IETF) Reliable Multicast
Transport working group, [13]. It is conceived to provide a
reliable end-to-end communication over generic IP multicast
services. NORM uses a selective, negative acknowledgment
(NACK), mechanism to yield the required reliability.

The main limitation for NORM scalability is the high
overhead caused by the feedback traffic sent by the receiver
set to ensure reliability. NORM uses probabilistic suppression
of redundant feedback, based on exponentially distributed
random back-off timers. The authors of [14] analyze the
performance of this type of schemes. This allows NORM to
scale well, yet keeping a reliable data delivery transport, and
without jeopardizing the overall latency.

However, the performance of retransmission-based proto-
cols is clearly impacted by the number of devices and the
correlation between losses over the different links. We assume
that the amount of information to transmit is T (bytes) =
M(generations) × k(generation size) × L(symbols size). We
further consider that all links are characterized by the same
loss probability, FER, and that they are uncorrelated. Under
these circumstances the probability that all destination nodes
successfully receive a packet is (1 − FER)R. Hence, the
probability of losing X packets is given by:

Problost(X,T) =

(
L

X

)[
1−

(
1− FER

)R]X ·
·
[(
1− FER

)R](T−X)
(5)

Since every receiver needs to get all packets, and losses are
assumed to be uncorrelated between all receivers, the average
number of lost packets after a complete transmission can be
calculated as follows:

Fig. 4: COTS platform, with a source node, at the top, and 30
receivers (matrix of 6× 5)

TXNORM =
T

(1− FER)R
− T (6)

In order to ensure that all receivers successfully get all the
information, the sender would need to retransmit every lost
packet. In order to obtain a simple bound we would assume
that retransmissions are not lost. In addition, it is worth noting
that if the losses were correlated, the average number of lost
packets would notably decrease, as will be seen in Section III.

III. RESULTS

This section describes the experimental platform that has
been deployed to carry out the corresponding measurement
campaign. Then it shows some of the results that were
observed, comparing them with the values that would have
been obtained with the analytical models that were previously
introduced.

A. Experimental Platform

As was briefly discussed before, one of the most relevant
limitations of the research on Network Coding so far is the
lack of results over real platforms. In order to address this, we
deployed a testbed comprising low computational power de-
vices (Raspberry-PI), which is used to assess the performance
of Sparse Network Coding techniques. We have built a panel,
which can be seen in Figure 4, comprising 31 Raspberry-PIs,
configuring a multicast topology: one transmitter, placed at the
top of the platform, and 30 receivers, deployed as an array of
6× 5 Raspberry PIs v3. Every device has a wireless network
interface (802.11), which is used to conduct the experiments,
and a Ethernet connection, which is used to manage the
platform (configuration, results retrieval, etc).

The Wireless LAN is configured in Infrastructure mode,
where the node at the top of the platform takes the access
point role, besides being the transmitter, as was already said.
In order to limit the complexity of the scenario, we fix the
devices to operate only in one wireless channel, and we also
reduce the frequency at which beacons are sent. Furthermore,
we limit the number of clients that can be associated to the

access point, so that it ignores searching processes by other
devices within the coverage area of the panel.

The coding scheme is implemented as depicted in Section II,
exploiting the KODO library [15]. The transmitter broadcasts
N = k · (1 + ρ) coded packets per generation. The receivers
collect as many packets as possible, before trying to decode
the generation. They keep track of the generations that they
are able to decode. When this is not possible, the receiver
registers this information, and will try to decode subsequent
generations.

Since we are interested on measuring the performance of
the proposed scheme over different channel conditions, and
the Raspberry PI devices are at fixed locations, we have
added a function that emulates packet erasures. Loss events
are uniformly generated, with probability FER.

B. Results and Discussion

First of all, we analyze the probability of successfully
receiving all the information, when using different redundancy
values, as can be seen in Figure 5. We can see that the
redundancy level that is required to achieve a high successful
probability clearly depends on the link quality. On the other
hand, the figures also show that such probability gets lower as
we increase the number of generations, as was already seen
in Eq. 3. We can thus decrease the redundancy by increasing
the generation size and, consequently, transmitting the same
amount of information with a fewer number of generations.
Nevertheless, it is important to highlight that increasing the
generation size would also yield larger coding vectors2, and
a bigger overhead. This trade-off was studied in [5], which
concluded that if the network Maximum Transfer Unit (MTU)
is 1500 bytes, the generation size should not be larger than
255.

A comparison in terms of network overhead, between the
RLNC scheme and a retransmission-based approach, NORM,
is shown in Figure 6. For the RLNC scheme, we plot the
redundancy level that should be used by the transmitter to
yield a successful decoding event with probability 99.99%,
using Eq. 3. This, as was previously discussed, does not
depend on the number of receivers. For the retransmission-
based schemes, we just consider the average number of lost
packets by the different receivers during the first transmission,
assuming that retransmitted packets are never lost.

So far, we have assumed that losses are uncorrelated. In
order to assess the impact of correlated loss events, Figure 7,
shows the evolution of lost packets, as the number of nodes
is increased. In this case, the Raspberry PI does not longer
discard any packet, but the transmitter is separated from the
receivers, leading to an average FER ≈ 0.1. The results are
obtained after the transmission of 100 × 100 packets by the
source node. Every receiver keeps track of the lost packets’
identifier, and the experiment is repeated 50 times. We also
plot the bound that would correspond to the situation that has
been considered so far, with uncorrelated losses, Eq. 6. We can

2The coding vector length, c, equals kq
2

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

ρ

Pr
ob

Su
cc

es

(a) FERi = 0.1, M = 1

0 0.2 0.4 0.6 0.8
ρ

(b) FERi = 0.3, M = 1

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

ρ

Pr
ob

Su
cc

es
(c) FERi = 0.1, M = 100

0 0.2 0.4 0.6 0.8
ρ

k = 100

k = 150

k = 200

k = 250

(d) FERi = 0.3, M = 100

Fig. 5: Probability of successfully receiving the information
Vs. system redundancy. The results are compared for different
loss probabilities and generation sizes

0 0.1 0.2
0

1

2

3

FERi

ρ
×

1
0
3

RLNC NORM10

NORM20

Fig. 6: Network overhead for RLNC and NORM Vs. link
qualities

indeed see that, although receivers are very close to each other,
the amount of lost packets gets higher as long as we increase
the number of receivers, but the amount of retransmissions is
quite lower than the bound.

Finally, we compare the RLNC approach with the sparse
network coding proposal. We fix ε to 10−4, parameter associ-
ated with the Algorithm 1, and we carry out 50 independent
experiments. Figure 8 shows the probability of successfully
receiving the information given a redundancy value, ρ. The
overhead caused by the proposed sparse scheme is similar
to the one exhibited by the legacy RLNC but, as shown in
Table I, the decoding complexity is heavily reduced. Hence,
we could assume a higher decoding throughput, or reduce the
energy consumption of the devices. Table I also compares
the overhead caused by the three solutions. Throughput is
measured over a Raspberry-PI v3, and the average number

5 10 15 20 25 30
0

1

2

3

4
·104

receivers

#
rT

x

Platform Bound

Fig. 7: Retransmissions observed over the platform and using
bound (6) Vs. # of receivers

0 10 20 30
0

0.2

0.4

0.6

0.8

1

ρ

Pr
ob

Su
cc

es

k = 100

k = 255

RLNC
Proposal

(a) FER = 0.1

0 20 40 60 80
ρ

k = 100

k = 255

RLNC
Proposal

(b) FER = 0.3

Fig. 8: Probability of successfully receiving the information,
given a redundancy, ρ. The solid lines correspond to the the-
oretical values, while the experimental results are represented
by markers

of transmissions are those needed to ensure a decoding prob-
ability of 99.99%, according to Eq. 3.

IV. CONCLUSIONS AND FUTURE WORK

Despite the attention that has been recently paid to network
coding, there are still very few works that have actually
assessed its feasibility over real platforms. In this paper we
have exploited a COTS tesbed, comprising 30 Raspberry-PIs,
to analyze the behavior of a combination of multicast commu-
nications and network coding. We have compared the proposed
scheme with a more traditional retransmission-based solution,
showing that NC can indeed yield a large performance gain.
Since the platform was based on low computational power
devices, we have studied whether the use of NC schemes
could be actually limited. In this sense, we have seen that the
legacy RLNC imposes a great complexity. We showed that the
use of a Tunable Sparse NC solution could actually overcome

TABLE I: Performance comparison between the three different
approaches

Scheme Thput # Operations #Tx0.1 #Tx0.3
RLNC 26 Mb/s 9.96 ·103 4.1 ·103 9.4 ·103
TSNC 91.24 Mb/s 2.09 ·103 4.1 ·103 9.4 ·103
NORM30 - - 2.26·105 4.43 ·108

this drawback, without a relevant impact of the corresponding
performance.

The work that has been presented in this paper will be
broadened in our future research. First, the testbed that was
introduced could be exploited to carry out more measurements,
which could help us to better understand the full potential
(and limitations) of NC when applied over real devices. On
the other hand, we would like to use real traffic, for instance
video streaming, to assess whether it can actually benefit from
the use of NC. Last, we will also study different schemes to
select the sparsity level of the NC solution.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Government
(Ministerio de Economía y Competitividad, Fondo Europeo
de Desarrollo Regional, FEDER) by means of the project
ADVICE (TEC2015-71329-C2-1-R).

REFERENCES

[1] M. Luby, “LT codes,” in Proc. of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002, pp. 271–280.

[2] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, June 2006.

[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, Jul 2000.

[4] J. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J. Barros,
“Network coding meets TCP,” in Proc. of the IEEE International
Conference on Computer Communications (INFOCOM), April 2009, pp.
280–288.

[5] D. Gómez, E. Rodríguez, R. Agüero, and L. Muñoz, “Reliable commu-
nications over lossy wireless channels by means of the combination of
UDP and random linear coding,” in Proc. of the IEEE Symposium on
Computers and Communications (ISCC), June 2014, pp. 1–6.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. of the ACM
conference on Applications, techonologies, architectures and protocols
for computer communications, vol. 37, no. 4. ACM, Aug. 2007, pp.
169–180.

[7] P. Pahlevani, D. E. Lucani, M. V. Pedersen, and F. H. P. Fitzek,
“PlayNCool: Opportunistic network coding for local optimization of
routing in wireless mesh networks,” in Proc. of the IEEE Globecom
Workshops (GC Wkshps), Dec 2013, pp. 812–817.

[8] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in Proc of the IEEE
International Symposium on Information Theory, 2003, p. 442.

[9] S. Feizi, D. E. Lucani, and M. Médard, “Tunable sparse network coding,”
in Proc. of the Int. Zurich Seminar on Comm, 2012, pp. 107–110.

[10] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, Oct 2006.

[11] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact decoding
probability under random linear network coding,” IEEE Communications
Letters, vol. 15, no. 1, pp. 67–69, January 2011.

[12] P. Garrido, D. E. Lucani, and R. Aguero, “A markov chain model for
the decoding probability of sparse network coding,” IEEE Transactions
on Communications, vol. PP, no. 99, pp. 1–1, 2017.

[13] B. Adamson, C. Bormann, M. Handley, and J. Macker, “Rfc 5740: Nack-
oriented reliable multicast (norm) transport protocol,” IETF, 2009.

[14] J. Nonnenmacher and E. W. Biersack, “Optimal multicast feedback,”
in INFOCOM ’98. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 3,
Mar 1998, pp. 964–971 vol.3.

[15] M. V. Pedersen, J. Heide, and F. Fitzek, Kodo: An Open and Research
Oriented Network Coding Library. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 145–152.

